Search results for: extreme wind
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2037

Search results for: extreme wind

477 Numerical Tools for Designing Multilayer Viscoelastic Damping Devices

Authors: Mohammed Saleh Rezk, Reza Kashani

Abstract:

Auxiliary damping has gained popularity in recent years, especially in structures such as mid- and high-rise buildings. Distributed damping systems (typically viscous and viscoelastic) or reactive damping systems (such as tuned mass dampers) are the two types of damping choices for such structures. Distributed VE dampers are normally configured as braces or damping panels, which are engaged through relatively small movements between the structural members when the structure sways under wind or earthquake loading. In addition to being used as stand-alone dampers in distributed damping applications, VE dampers can also be incorporated into the suspension element of tuned mass dampers (TMDs). In this study, analytical and numerical tools for modeling and design of multilayer viscoelastic damping devices to be used in dampening the vibration of large structures are developed. Considering the limitations of analytical models for the synthesis and analysis of realistic, large, multilayer VE dampers, the emphasis of the study has been on numerical modeling using the finite element method. To verify the finite element models, a two-layer VE damper using ½ inch synthetic viscoelastic urethane polymer was built, tested, and the measured parameters were compared with the numerically predicted ones. The numerical model prediction and experimentally evaluated damping and stiffness of the test VE damper were in very good agreement. The effectiveness of VE dampers in adding auxiliary damping to larger structures is numerically demonstrated by chevron bracing one such damper numerically into the model of a massive frame subject to an abrupt lateral load. A comparison of the responses of the frame to the aforementioned load, without and with the VE damper, clearly shows the efficacy of the damper in lowering the extent of frame vibration.

Keywords: viscoelastic, damper, distributed damping, tuned mass damper

Procedia PDF Downloads 107
476 A Review of Critical Framework Assessment Matrices for Data Analysis on Overheating in Buildings Impact

Authors: Martin Adlington, Boris Ceranic, Sally Shazhad

Abstract:

In an effort to reduce carbon emissions, changes in UK regulations, such as Part L Conservation of heat and power, dictates improved thermal insulation and enhanced air tightness. These changes were a direct response to the UK Government being fully committed to achieving its carbon targets under the Climate Change Act 2008. The goal is to reduce emissions by at least 80% by 2050. Factors such as climate change are likely to exacerbate the problem of overheating, as this phenomenon expects to increase the frequency of extreme heat events exemplified by stagnant air masses and successive high minimum overnight temperatures. However, climate change is not the only concern relevant to overheating, as research signifies, location, design, and occupation; construction type and layout can also play a part. Because of this growing problem, research shows the possibility of health effects on occupants of buildings could be an issue. Increases in temperature can perhaps have a direct impact on the human body’s ability to retain thermoregulation and therefore the effects of heat-related illnesses such as heat stroke, heat exhaustion, heat syncope and even death can be imminent. This review paper presents a comprehensive evaluation of the current literature on the causes and health effects of overheating in buildings and has examined the differing applied assessment approaches used to measure the concept. Firstly, an overview of the topic was presented followed by an examination of overheating research work from the last decade. These papers form the body of the article and are grouped into a framework matrix summarizing the source material identifying the differing methods of analysis of overheating. Cross case evaluation has identified systematic relationships between different variables within the matrix. Key areas focused on include, building types and country, occupants behavior, health effects, simulation tools, computational methods.

Keywords: overheating, climate change, thermal comfort, health

Procedia PDF Downloads 351
475 Water Productivity as an Indicator of Bioenergetic Sustainability in Sugarcane

Authors: Rubens Duarte Coelho, Timóteo Herculino da Silva Barros, Jefferson de Olveira Costa

Abstract:

Brazil has an electrical matrix of predominantly renewable origin, with emphasis on water sources, which account for 65.2%, biomass energy for 8.2%, wind for 6.8% and solar for 0.13% of the domestic supply. Among these sources, sugarcane cultivation stands out, aiming both at the production of bioethanol and biomass to supply “clean energy”. However, like all other crops, sugar cane demands a large volume of a natural resource that is increasingly “scarce” in quantity and quality: water. Adequate and strategic water management throughout the entire sugarcane cycle is of fundamental importance, and water productivity can be used to adjust irrigation planning and decision-making, increasing the productivity of stalks, bioethanol, biomass, and sugar. In this way, water productivity is a good indicator for analysis and decision-making considering the sustainability of cultivation, as it allows evaluation of the variation in the ratio between production and the amount of water used, suggesting values that maximize the use of this natural resource. In this context, studies that relate water demand, in this case, expressed by water productivity, with the energy production of this crop, in this case, expressed by the production of bioethanol, biomass and sugar, are fundamental to obtaining an efficient production of renewable energy, which aims at the rational use of natural resources, especially water. The objective of the present work was to evaluate the response of sugarcane varieties subjected to different water availability to obtain better sustainability in bioenergy production, presenting water productivity indices for Bioethanol, Sugar and Biomass. The variety that responded best was RB966928, with a bioethanol yield of 68.7 L Mg-1. Future research should focus on the water response under each of the sugarcane fractions in terms of their elemental composition so that the influence of water on the energy supply of this crop can be better understood.

Keywords: energy matrix, water use, water use efficiency, sustainability

Procedia PDF Downloads 75
474 Physical and Mechanical Behavior of Compressed Earth Blocks Stabilized with Ca(OH)2 on Sub-Humid Warm Weather

Authors: D. Castillo T., Luis F. Jimenez

Abstract:

The compressed earth blocks (CEBs) constitute an alternative as a constructive element for building homes in regions with high levels of poverty and marginalization. Such is the case of Southeastern Mexico, where the population, predominantly indigene, build their houses with feeble materials like wood and palm, vulnerable to extreme weather in the area, because they do not have the financial resources to acquire concrete blocks. There are several advantages that can provide BTCs compared to traditional vibro-compressed concrete blocks, such as the availability of materials, low manufacturing cost and reduced CO2 emissions to the atmosphere for not be subjected to a burning process. However, to improve its mechanical properties and resistance to adverse weather conditions in terms of humidity and temperature of the sub-humid climate zones, it requires the use of a chemical stabilizer; in this case we chose Ca(OH)2. The stabilization method Eades-Grim was employed, according to ASTM C977-03. This method measures the optimum amount of lime required to stabilize the soil, increasing the pH to 12.4 or higher. The minimum amount of lime required in this experiment was 1% and the maximum was 10%. The employed material was clay unconsolidated low to medium plasticity (CL type according to the Unified Soil Classification System). Based on these results, the CEBs manufacturing process was determined. The obtained blocks were from 10x15x30 cm using a mixture of soil, water and lime in different proportions. Later these blocks were put to dry outdoors and subjected to several physical and mechanical tests, such as compressive strength, absorption and drying shrinkage. The results were compared with the limits established by the Mexican Standard NMX-C-404-ONNCCE-2005 for the construction of housing walls. In this manner an alternative and sustainable material was obtained for the construction of rural households in the region, with better security conditions, comfort and cost.

Keywords: calcium hydroxide, chemical stabilization, compressed earth blocks, sub-humid warm weather

Procedia PDF Downloads 401
473 Assessing the Impacts of Riparian Land Use on Gully Development and Sediment Load: A Case Study of Nzhelele River Valley, Limpopo Province, South Africa

Authors: B. Mavhuru, N. S. Nethengwe

Abstract:

Human activities on land degradation have triggered several environmental problems especially in rural areas that are underdeveloped. The main aim of this study is to analyze the contribution of different land uses to gully development and sediment load on the Nzhelele River Valley in the Limpopo Province. Data was collected using different methods such as observation, field data techniques and experiments. Satellite digital images, topographic maps, aerial photographs and the sediment load static model also assisted in determining how land use affects gully development and sediment load. For data analysis, the researcher used the following methods: Analysis of Variance (ANOVA), descriptive statistics, Pearson correlation coefficient and statistical correlation methods. The results of the research illustrate that high land use activities create negative changes especially in areas that are highly fragile and vulnerable. Distinct impact on land use change was observed within settlement area (9.6 %) within a period of 5 years. High correlation between soil organic matter and soil moisture (R=0.96) was observed. Furthermore, a significant variation (p ≤ 0.6) between the soil organic matter and soil moisture was also observed. A very significant variation (p ≤ 0.003) was observed in bulk density and extreme significant variations (p ≤ 0.0001) were observed in organic matter and soil particle size. The sand mining and agricultural activities has contributed significantly to the amount of sediment load in the Nzhelele River. A high significant amount of total suspended sediment (55.3 %) and bed load (53.8 %) was observed within the agricultural area. The connection which associates the development of gullies to various land use activities determines the amount of sediment load. These results are consistent with other previous research and suggest that land use activities are likely to exacerbate the development of gullies and sediment load in the Nzhelele River Valley.

Keywords: drainage basin, geomorphological processes, gully development, land degradation, riparian land use and sediment load

Procedia PDF Downloads 307
472 Artificial Neural Networks and Hidden Markov Model in Landslides Prediction

Authors: C. S. Subhashini, H. L. Premaratne

Abstract:

Landslides are the most recurrent and prominent disaster in Sri Lanka. Sri Lanka has been subjected to a number of extreme landslide disasters that resulted in a significant loss of life, material damage, and distress. It is required to explore a solution towards preparedness and mitigation to reduce recurrent losses associated with landslides. Artificial Neural Networks (ANNs) and Hidden Markov Model (HMMs) are now widely used in many computer applications spanning multiple domains. This research examines the effectiveness of using Artificial Neural Networks and Hidden Markov Model in landslides predictions and the possibility of applying the modern technology to predict landslides in a prominent geographical area in Sri Lanka. A thorough survey was conducted with the participation of resource persons from several national universities in Sri Lanka to identify and rank the influencing factors for landslides. A landslide database was created using existing topographic; soil, drainage, land cover maps and historical data. The landslide related factors which include external factors (Rainfall and Number of Previous Occurrences) and internal factors (Soil Material, Geology, Land Use, Curvature, Soil Texture, Slope, Aspect, Soil Drainage, and Soil Effective Thickness) are extracted from the landslide database. These factors are used to recognize the possibility to occur landslides by using an ANN and HMM. The model acquires the relationship between the factors of landslide and its hazard index during the training session. These models with landslide related factors as the inputs will be trained to predict three classes namely, ‘landslide occurs’, ‘landslide does not occur’ and ‘landslide likely to occur’. Once trained, the models will be able to predict the most likely class for the prevailing data. Finally compared two models with regards to prediction accuracy, False Acceptance Rates and False Rejection rates and This research indicates that the Artificial Neural Network could be used as a strong decision support system to predict landslides efficiently and effectively than Hidden Markov Model.

Keywords: landslides, influencing factors, neural network model, hidden markov model

Procedia PDF Downloads 384
471 An Analysis of Millennials Using Secondhand Clothing as an Ongoing Fashion Trend

Authors: Patricia Sumod

Abstract:

There is a unique movement of fashion that features a trend around secondhand clothing. This is especially observed in the lifestyles of the millennials, where the concept of reusing apparel and accessories is noticeable and, therefore, slowly diminishing the high consumption of fast fashion and generating environmental awareness. This paper will focus on how this clothing trend influences and engages consumers in buying secondhand clothing and creating fashionable looks simultaneously. To further examine the millennials’ motivation towards consumption and using secondhand fashion, a concept as a trendsetter, this paper will take a closer look at their idea of concern for the environment. Considering second-hand clothing is a sustainable consumption practice, it will investigate the role of social influencers, trendsetters, and millennials in overall fashion consumption in this context. This study aims to understand how secondhand clothing and millennials differ from other consumers regarding the perception of fast-depleting natural resources, price sensitivity, vintage attachments, and psychographics. Secondly, the paper will also present the connection of emotion between millennials and secondhand clothing that may not be necessarily purchased but received. This study will reflect on the already identified influences in increased purchase behavior and an uncharted positive relationship between the consumer and the products. This behavior will further formulate into a habit by consumer segments, creating an expanded market for secondhand clothing. There is no definite indication that fast fashion will cease to exist, but slowing its rapid movement is an attempt to work toward a sustainable future. The conclusion will present possibilities for consumers to engage in C2C online interaction, thereby reinforcing a notable change in consumer behavior and attitude in contradiction to today’s extreme consumerism and willingness to be adaptable to a minimalist way of life. Fashion brands will then begin a new forecast to actively accommodate the new millennial concept of fashion that will advertise more concern than insatiability. The research will be with literature from various authors, insights provided by researchers on this new wave of consumers, and a qualitative approach with face-to-face interviews with a sample group who are in the practice of secondhand clothing consumption.

Keywords: second-hand clothing, millennials, sustainability, consumption practice, fashion environment.

Procedia PDF Downloads 61
470 A Systematic Approach to Mitigate the Impact of Increased Temperature and Air Pollution in Urban Settings

Authors: Samain Sabrin, Joshua Pratt, Joshua Bryk, Maryam Karimi

Abstract:

Globally, extreme heat events have led to a surge in the number of heat-related moralities. These incidents are further exacerbated in high-density population centers due to the Urban Heat Island (UHI) effect. Varieties of anthropogenic activities such as unsupervised land surface modifications, expansion of impervious areas, and lack of use of vegetation are all contributors to an increase in the amount of heat flux trapped by an urban canopy which intensifies the UHI effect. This project aims to propose a systematic approach to measure the impact of air quality and increased temperature based on urban morphology in the selected metropolitan cities. This project will measure the impact of build environment for urban and regional planning using human biometeorological evaluations (mean radiant temperature, Tmrt). We utilized the Rayman model (capable of calculating short and long wave radiation fluxes affecting the human body) to estimate the Tmrt in an urban environment incorporating location and height of buildings and trees as a supplemental tool in urban planning, and street design. Our current results suggest a strong correlation between building height and increased surface temperature in megacities. This model will help with; 1. Quantify the impacts of the built environment and surface properties on surrounding temperature, 2. Identify priority urban neighborhoods by analyzing Tmrt and air quality data at pedestrian level, 3. Characterizing the need for urban green infrastructure or better urban planning- maximizing the cooling benefit from existing Urban Green Infrastructure (UGI), and 4. Developing a hierarchy of streets for new UGI integration and propose new UGI based on site characteristics and cooling potential.

Keywords: air quality, heat mitigation, human-biometeorological indices, increased temperature, mean radiant temperature, radiation flux, sustainable development, thermal comfort, urban canopy, urban planning

Procedia PDF Downloads 141
469 Implication of Built-Up Area, Vegetation, and Motorized Vehicles to Urban Microclimate in Bandung City Center

Authors: Ira Irawati, Muhammad Rangga Sururi

Abstract:

The expansion of built-up areas in many cities, particularly, as the consequences of urbanization process, is a common phenomenon in our contemporary world. As happened in many cities in developing world, this horizontal expansion let only a handful size of the area left for green open spaces, creating an extreme unbalance between built-up and green spaces. Combined with the high density and variety of human activities with its transportation modes; a process of urban heat island will occur, resulting in an increase in air temperature. This is one of the indicators of decreasing of the quality of urban microclimate. This paper will explore the effect of several variables of built-up areas and open spaces to the increase of air temperature using multiple linear regression analysis. We selected 11 zones within the radius of 1 km in Inner Bandung city center, and each zones measured within 300 m radius to represent the variety of land use, as well as the composition of buildings and green open spaces. By using a quantitative method which is multiple linear regression analysis, six dependent variables which are a) tree density-x1, b) shade level of tree-x2, c) surface area of buildings’ side which are facing west and east-x3, d) surface area of building side material-x4, e) surface area of pathway material, and f) numbers of motorized vehicles-x6; are calculated to find those influence to the air temperature as an independent variable-y. Finally, the relationship between those variables shows in this equation: y = 30.316 - 3.689 X1 – 6.563 X2 + 0.002 X3 – 2,517E6 X4 + 1.919E-9 X5 + 1.952E-4 X6. It shows that the existence of vegetation has a great impact on lowering temperature. In another way around, built up the area and motorized vehicles would increase the temperature. However, one component of built up area, the surface area of buildings’ sides which are facing west and east, has different result due to the building material is classified in low-middle heat capacity.

Keywords: built-up area, microclimate, vehicles, urban heat island, vegetation

Procedia PDF Downloads 258
468 Special Single Mode Fiber Tests of Polarization Mode Dispersion Changes in a Harsh Environment

Authors: Jan Bohata, Stanislav Zvanovec, Matej Komanec, Jakub Jaros, David Hruby

Abstract:

Even though there is a rapid development in new optical networks, still optical communication infrastructures remain composed of thousands of kilometers of aging optical cables. Many of them are located in a harsh environment which contributes to an increased attenuation or induced birefringence of the fibers leading to the increase of polarization mode dispersion (PMD). In this paper, we report experimental results from environmental optical cable tests and characterization in the climate chamber. We focused on the evaluation of optical network reliability in a harsh environment. For this purpose, a special thermal chamber was adopted, targeting to the large temperature changes between -60 °C and 160 C° with defined humidity. Single mode optical cable 230 meters long, having six tubes and a total number of 72 single mode optical fibers was spliced together forming one fiber link, which was afterward tested in the climate chamber. The main emphasis was put to the polarization mode dispersion (PMD) changes, which were evaluated by three different PMD measuring methods (general interferometry technique, scrambled state-of-polarization analysis and polarization optical time domain reflectometer) in order to fully validate obtained results. Moreover, attenuation and chromatic dispersion (CD), as well as the PMD, were monitored using 17 km long single mode optical cable. Results imply a strong PMD dependence on thermal changes, imposing the exceeding 200 % of its value during the exposure to extreme temperatures and experienced more than 20 dB insertion losses in the optical system. The derived statistic is provided in the paper together with an evaluation of such as optical system reliability, which could be a crucial tool for the optical network designers. The environmental tests are further taken in context to our previously published results from long-term monitoring of fundamental parameters within an optical cable placed in a harsh environment in a special outdoor testbed. Finally, we provide a correlation between short-term and long-term monitoring campaigns and statistics, which are necessary for optical network safety and reliability.

Keywords: optical fiber, polarization mode dispersion, harsh environment, aging

Procedia PDF Downloads 383
467 Estimation of Soil Erosion Potential in Herat Province, Afghanistan

Authors: M. E. Razipoor, T. Masunaga, K. Sato, M. S. Saboory

Abstract:

Estimation of soil erosion is economically and environmentally important in Herat, Afghanistan. Degradation of soil has negative impact (decreased soil fertility, destroyed soil structure, and consequently soil sealing and crusting) on life of Herat residents. Water and wind are the main erosive factors causing soil erosion in Herat. Furthermore, scarce vegetation cover, exacerbated by socioeconomic constraint, and steep slopes accelerate soil erosion. To sustain soil productivity and reduce soil erosion impact on human life, due to sustaining agricultural production and auditing the environment, it is needed to quantify the magnitude and extent of soil erosion in a spatial domain. Thus, this study aims to estimate soil loss potential and its spatial distribution in Herat, Afghanistan by applying RUSLE in GIS environment. The rainfall erosivity factor ranged between values of 125 and 612 (MJ mm ha-1 h-1 year-1). Soil erodibility factor varied from 0.036 to 0.073 (Mg h MJ-1 mm-1). Slope length and steepness factor (LS) values were between 0.03 and 31.4. The vegetation cover factor (C), derived from NDVI analysis of Landsat-8 OLI scenes, resulting in range of 0.03 to 1. Support practice factor (P) were assigned to a value of 1, since there is not significant mitigation practices in the study area. Soil erosion potential map was the product of these factors. Mean soil erosion rate of Herat Province was 29 Mg ha-1 year-1 that ranged from 0.024 Mg ha-1 year-1 in flat areas with dense vegetation cover to 778 Mg ha-1 year-1 in sharp slopes with high rainfall but least vegetation cover. Based on land cover map of Afghanistan, areas with soil loss rate higher than soil loss tolerance (8 Mg ha-1 year-1) occupies 98% of Forests, 81% rangelands, 64% barren lands, 60% rainfed lands, 28% urban area and 18% irrigated Lands.

Keywords: Afghanistan, erosion, GIS, Herat, RUSLE

Procedia PDF Downloads 434
466 Exploring Social and Economic Barriers in Adoption and Expansion of Agricultural Technologies in Woliatta Zone, Southern Ethiopia

Authors: Akalework Mengesha

Abstract:

The adoption of improved agricultural technologies has been connected with higher earnings and lower poverty, enhanced nutritional status, lower staple food prices, and increased employment opportunities for landless laborers. The adoption and extension of the technologies are vastly crucial in that it enables the countries to achieve the millennium development goals (MDG) of reducing extreme poverty and hunger. There are efforts which directed to the enlargement and provision of modern crop varieties in sub-Saharan Africa in the past 30 years. Nevertheless, by and large, the adoption and expansion of rates for improved technologies have insulated behind other regions. This research aims to assess social and economic barriers in the adoption and expansion of agricultural technologies by local communities living around a private agricultural farm in Woliatta Zone, Southern Ethiopia. The study has been carried out among rural households which are located in the three localities selected for the study in the Woliatta zone. Across sectional mixed method, the design was used to address the study objective. The qualitative method was employed (in-depth interview, key informant, and focus group discussion) involving a total of 42 in-depth informants, 17 key-informant interviews, 2 focus group discussions comprising of 10 individuals in each group through purposive sampling techniques. The survey method was mainly used in the study to examine the impact of attitudinal, demographic, and socioeconomic variables on farmers’ adoption of agricultural technologies for quantitative data. The finding of the study revealed that Amibara commercial farm has not made a resolute and well-organized effort to extend agricultural technology to the surrounding local community. A comprehensive agricultural technology transfer scheme hasn’t been put in place by the commercial farm ever since it commenced operating in the study area. Besides, there is an ongoing conflict of interest between the farm and the community, which has kept on widening through time, bounds to be irreversible.

Keywords: adoption, technology transfer, agriculture, barriers

Procedia PDF Downloads 150
465 Memory Retrieval and Implicit Prosody during Reading: Anaphora Resolution by L1 and L2 Speakers of English

Authors: Duong Thuy Nguyen, Giulia Bencini

Abstract:

The present study examined structural and prosodic factors on the computation of antecedent-reflexive relationships and sentence comprehension in native English (L1) and Vietnamese-English bilinguals (L2). Participants read sentences presented on the computer screen in one of three presentation formats aimed at manipulating prosodic parsing: word-by-word (RSVP), phrase-segment (self-paced), or whole-sentence (self-paced), then completed a grammaticality rating and a comprehension task (following Pratt & Fernandez, 2016). The design crossed three factors: syntactic structure (simple; complex), grammaticality (target-match; target-mismatch) and presentation format. An example item is provided in (1): (1) The actress that (Mary/John) interviewed at the awards ceremony (about two years ago/organized outside the theater) described (herself/himself) as an extreme workaholic). Results showed that overall, both L1 and L2 speakers made use of a good-enough processing strategy at the expense of more detailed syntactic analyses. L1 and L2 speakers’ comprehension and grammaticality judgements were negatively affected by the most prosodically disrupting condition (word-by-word). However, the two groups demonstrated differences in their performance in the other two reading conditions. For L1 speakers, the whole-sentence and the phrase-segment formats were both facilitative in the grammaticality rating and comprehension tasks; for L2, compared with the whole-sentence condition, the phrase-segment paradigm did not significantly improve accuracy or comprehension. These findings are consistent with the findings of Pratt & Fernandez (2016), who found a similar pattern of results in the processing of subject-verb agreement relations using the same experimental paradigm and prosodic manipulation with English L1 and L2 English-Spanish speakers. The results provide further support for a Good-Enough cue model of sentence processing that integrates cue-based retrieval and implicit prosodic parsing (Pratt & Fernandez, 2016) and highlights similarities and differences between L1 and L2 sentence processing and comprehension.

Keywords: anaphora resolution, bilingualism, implicit prosody, sentence processing

Procedia PDF Downloads 152
464 Media Framing and Democratization Under Multi-Party System: A Case Study of the 2023 Malaysian Six-State Elections

Authors: Chew Zhao Hong

Abstract:

Since the transition of power in 2018, the Malaysian political landscape has experienced substantial shifts and complexities. The decline of the longstanding ruling party, United Malays National Organization (UMNO), following the party rotation, has given rise to splinter parties such as the Indigenous Unity Party (Bersatu), along with the enduring presence of the Pan-Malaysian Islamic Party (PAS) in the northern region of the Malay Peninsula. However, the "Sheraton Move" in 2020 led to the fall of the Pakatan Harapan government and the emergence of Perikatan Nasional, signifying the ascent of a third political force. The 2022 general elections marked Malaysia's entry into a hung parliament, culminating in an intricate negotiation that resulted in a coalition government formed by Pakatan Harapan, Barisan Nasional, and the Sarawak parties alliance (GPS), collectively governing the Malaysian federal administration. During the 2023 state elections, Pakatan Harapan and Barisan Nasional formed an unprecedented alliance, yet the media framing benefited Perikatan Nasional, even securing substantial support from UMNO's traditional constituencies. In the era of converging new media, Malaysia’s democratization faces new challenges: first, political leaders leveraging media to cultivate unfiltered personas risk inducing populism; second, under the influence of agenda-setting and two-step flow theories, media contributes to polarization; lastly, Malaysia's multi-party system is no longer effectively moderate extreme ideologies into the political center. This study examines the role of media framing and its impact on the democratization process within Malaysia's consociational democracy under a multi-party system and analyzes media discourse before and after the 2023 Malaysian state elections to explore how different parties shape public opinion and political discourse, and how political messages may be amplified or distorted in the process.

Keywords: multi-party system, democratization, elections, political polarization, Malaysia, media framing

Procedia PDF Downloads 90
463 The Feasibility Evaluation Of The Compressed Air Energy Storage System In The Porous Media Reservoir

Authors: Ming-Hong Chen

Abstract:

In the study, the mechanical and financial feasibility for the compressed air energy storage (CAES) system in the porous media reservoir in Taiwan is evaluated. In 2035, Taiwan aims to install 16.7 GW of wind power and 40 GW of photovoltaic (PV) capacity. However, renewable energy sources often generate more electricity than needed, particularly during winter. Consequently, Taiwan requires long-term, large-scale energy storage systems to ensure the security and stability of its power grid. Currently, the primary large-scale energy storage options are Pumped Hydro Storage (PHS) and Compressed Air Energy Storage (CAES). Taiwan has not ventured into CAES-related technologies due to geological and cost constraints. However, with the imperative of achieving net-zero carbon emissions by 2050, there's a substantial need for the development of a considerable amount of renewable energy. PHS has matured, boasting an overall installed capacity of 4.68 GW. CAES, presenting a similar scale and power generation duration to PHS, is now under consideration. Taiwan's geological composition, being a porous medium unlike salt caves, introduces flow field resistance affecting gas injection and extraction. This study employs a program analysis model to establish the system performance analysis capabilities of CAES. The finite volume model is then used to assess the impact of porous media, and the findings are fed back into the system performance analysis for correction. Subsequently, the financial implications are calculated and compared with existing literature. For Taiwan, the strategic development of CAES technology is crucial, not only for meeting energy needs but also for decentralizing energy allocation, a feature of great significance in regions lacking alternative natural resources.

Keywords: compressed-air energy storage, efficiency, porous media, financial feasibility

Procedia PDF Downloads 66
462 Evaluation of Flow Alteration under Climate Change Scenarios for Disaster Risk Management in Lower Mekong Basin: A Case Study in Prek Thnot River in Cambodia

Authors: Vathanachannbo Veth, Ilan Ich, Sophea Rom Phy, Ty Sok, Layheang Song, Sophal Try, Chantha Oeurng

Abstract:

Climate change is one of the major global challenges inducing disaster risks and threatening livelihoods and communities through adverse impacts on food and water security, ecosystems, and services. Prek Thnot River Basin of Cambodia is one of the largest tributaries in the Lower Mekong that has been exposed to hazards and disasters, particularly floods and is said to be the effect of climate change. Therefore, the assessment of precipitation and streamflow changes under the effect of climate change was proposed in this river basin using Soil Water Assessment Tool (SWAT) model and different flow indices under baseline (1997 to 2011) and climate change scenarios (RCP2.6 and RCP8.5 with three General Circulation Models (GCMs): GFDL, GISS, and IPSL) in two time-horizons: near future (the 2030s: 2021 to 2040) and medium future (2060s: 2051 to 2070). Both intensity and frequency indices compared with the historical extreme rainfall indices significantly change in the GFDL under the RCP8.5 for both 2030s and 2060s. The average rate change of Rx1day, Rx10day, SDII, and R20mm in the 2030s and 2060s of both RCP2.6 and RCP8.5 was found to increase in GFDL and decrease in both GISS and IPSL. The mean percentage change of the flow analyzed in the IHA tool (Group1) indicated that the flow in the Prek Thnot River increased in GFDL for both RCP2.6 and RCP8.5 in both 2030s and 2060s, oppositely in GISS, the flow decreases. Moreover, the IPSL affected the flow by increasing in five months (January, February, October, November, and December), and in the other seven months, the flow decreased accordingly. This study provides water resources managers and policymakers with a wide range of precipitation and water flow projections within the Prek Thnot River Basin in the context of plausible climate change scenarios.

Keywords: IHA, climate change, disaster risk, Prek Thnot River Basin, Cambodia

Procedia PDF Downloads 101
461 Microclimate Impacts on Solar Panel Power Generation in Midlands Area, UK

Authors: Stamatis Zoras, Boris Ceranic, Ashley Redfern

Abstract:

Green House Gas emissions from domestic properties currently account for a substantial part of the total UK’s carbon emissions and is a priority area for UK to reach zero carbon emissions. However, GHG emissions of urban complexes depend on building, road, structural developments etc surfaces that form urban microclimate. This in turn may further influence renewable energy system power generation that depend on solar or wind potential. Moreover, urban climatic conditions are also influenced by the installation of those power generation systems that may impact their own power generation efficiency. Increased air temperature is attributed to densely installed roof based solar panels that consequently impact their own production efficiency. Installation of roof based solar panels requires adequate guidance to enable housing businesses, councils and organisations to implement sufficient measures for improved power generation in relation to local urban microclimate. How microclimate is affected and how, in return, it affects solar power productivity. Derby Council & Derby Homes have been collecting solar panel power generation data for a large number of properties. The different building areas and system operation performance will be studied against microclimate conditions through time. It is envisaged that the outcomes of the study will support a working up strategy for Derby city to ensure that owned homes would be able to access information and data of solar photo voltaic PV and solar thermal panels potential on social housing, helping residents on low incomes create their own green energy to power their homes and heat their homeshot water.

Keywords: microclimate, solar power, urban climatology, urban morphology

Procedia PDF Downloads 69
460 Project-Bbased Learning (PBL) Taken to Extremes: Full-Year/Full-Time PBL Replacement of Core Curriculum

Authors: Stephen Grant Atkins

Abstract:

Radical use of project-based learning (PBL) in a small New Zealand business school provides an opportunity to longitudinally examine its effects over a decade of pre-Covid data. Prior to this business school’s implementation of PBL, starting in 2012, the business pedagogy literature presented just one example of PBL replacing an entire core-set of courses. In that instance, a British business school merged four of its ‘degree Year 3’ accounting courses into one PBL semester. As radical as that would have seemed, to students aged 20-to-22, the PBL experiment conducted in a New Zealand business school was notably more extreme: 41 nationally-approved Learning Outcomes (L.O.s), these deriving from 8 separate core courses, were aggregated into one grand set of L.O.s, and then treated as a ‘full-year’/‘full-time’ single course. The 8 courses in question were all components of this business school’s compulsory ‘degree Year 1’ curriculum. Thus, the students involved were notably younger (…ages 17-to-19…), and no ‘part-time’ enrolments were allowed. Of interest are this PBL experiment’s effects on subsequent performance outcomes in ‘degree Years 2 & 3’ (….which continued to operate in their traditional ways). Of special interest is the quality of ‘group project’ outcomes. This is because traditionally, ‘degree Year 1’ course assessments are only minimally based on group work. This PBL experiment altered that practice radically, such that PBL ‘degree Year 1’ alumni entered their remaining two years of business coursework with far more ‘project group’ experience. Timeline-wise, thus of interest here, firstly, is ‘degree Year 2’ performance outcomes data from years 2010-2012 + 2016-2018, and likewise ‘degree Year 3’ data for years 2011-2013 + 2017-2019. Those years provide a pre-&-post comparative baseline for performance outcomes in students never exposed to this school’s radical PBL experiment. That baseline is then compared to PBL alumni outcomes (2013-2016….including’Student Evaluation of Course Quality’ outcomes…) to clarify ‘radical PBL’ effects.

Keywords: project-based learning, longitudinal mixed-methods, students criticism, effects-on-learning

Procedia PDF Downloads 97
459 Structural Design and Environmental Analysis of Oyster Mushroom Cultivation House in Korea

Authors: Lee Sunghyoun, Yu Byeongkee, Kim Hyuckjoo, Yun Namkyu, Jung Jongcheon

Abstract:

Most of the recent on-sale oyster mushrooms are raised in a oyster mushroom house, in which the necessary adjustment of growing condition is feasible. The rationale for such artificial growing is the impossibility of successive cultivation in the case of a natural cultivation due to external weather conditions. A oyster mushroom house adopts an equipment called growing bed, laying one growing bed upon another in a multi-column fashion, growing and developing the mushrooms on the respective equipments. The indispensable environment management factors of mushroom cultivation are temperature, humidity, and CO2; on which an appropriate regulation of the three requisites is a necessitated condition for the sake of the total output’s increase. However, due to the multiple layers of growing bed’s disturbance on air circulation, a oyster mushroom house’s internal environmental uniformity meets with considerable instability. This research presents a technology which assures the facilitation of environment regulation over all the internal space of a oyster mushroom house, irrespective of its location. The research staff reinforced the oyster mushroom house’s insulation in order to minimize the external environment’s influence on the oyster mushroom house’s internal environment and installed circulation fan to improve the oyster mushroom house’s interior environmental uniformity. Also, the humidifier nozzle’s position was set to prevent dew condensation when humidifying. As a result, a highly sophisticated management over all the oyster mushroom house‘s internal space was realized with the temperature of 0.2~1.3℃, and the relative humidity of 2~7% at the cultivating stage of mushroom’s growth. Therefore, to maximize oyster mushroom house‘s internal environmental uniformity, it can be concluded that consideration of various factors such as insulation reinforcement, decision on the humidifier nozzle’s location, disposition of circulation fan’s installation and the direction of wind discharge is needed.

Keywords: mushroom growing facility, environmental uniformity, temperature, relative humidity, CO2 concentration

Procedia PDF Downloads 531
458 Influence of Gold Nanoparticles on NiAlZr Type Layered Double Hydroxide for the Catalytic Transfer Oxidation of Biomass Derived Aldehydes

Authors: Nihel Dib, Redouane Bachir, Ghezlane Berrahou, Chaima Zoulikha Tabet Zatla, Sumeya Bedrane, Ginessa Blanco Montilla, Jose Juan Calvino Gamez

Abstract:

In recent decades, the world’s population has rapidly increased annually, resulting in the consumption of huge amounts of conventional non-renewable petroleum-based resources at an alarming rate. The scarcity of such resources will shut down the corresponding industries and consequently have negative effects on the well-being of humanity. Accordingly, to combat the forthcoming crises and to serve the ever-growing demands, seeking potentially sustainable resources such as geothermal, wind, solar, and biomass has become an active field of study. Currently, lignocellulosic biomass, one of the world’s most plentiful resources, is acknowledged as a cost-effective material that has drawn great interest from many researchers since it has substantial energy potential as well as containing useful C5 and C6 sugars. These C5 and C6 sugars are the key reactants for the production of the valuable 16-platform chemicals such as 5-hydroxymethyl furfural, furfural, levulinic acid, succinic acid, and fumaric acid, all of which are crucial intermediates for synthesizing high-value bio-based chemicals and polymers. Succinic acid (SA) has been predicted to make a significant contribution to the global bio-based economy soon since it serves as a C4 building block that is used in a wide spectrum of industries, including biopolymers, solvents, and pharmaceuticals. In the present work, we modify the HDL MgAl with Zr to try to create acid sites on the supports and deposit gold by deposition precipitation with urea with a low gold content (0.25%). The catalyst was used to produce succinic acid by selective oxidation of furfuraldehyde with hydrogen peroxide under mild reaction conditions.

Keywords: hydrotalcite, catalysis, gold, biomass, furfural, oxidation

Procedia PDF Downloads 69
457 Surface Morphology and Wetting Behavior of the Aspidiotus spp. Scale Covers

Authors: Meril Kate Mariano, Billy Joel Almarinez Divina Amalin, Jose Isagani Janairo

Abstract:

The scale insects Aspidiotus destructor and Aspidiotus rigidus exhibit notable scale covers made of wax which provides protection against water loss and is capable to resist wetting, thus making them a desirable model for biomimetic designs. Their waxy covers enable them to infest mainly leaves of coconut trees despite the harsh wind and rain. This study aims to describe and compare the micro morphological characters on the surfaces of their scale covers consequently, how these micro structures affect their wetting properties. Scanning electron microscope was used for the surface characterization while an optical contact angle meter was employed in the wetting measurement. The scale cover of A. destructor is composed of multiple overlapping layers of wax that is arranged regularly while that of A. rigidus is composed of a uniform layer of wax with much more prominent wax ribbons irregularly arranged compared to the former. The protrusions found on the two organisms are formed by the wax ribbons that differ in arrangement with their height being A. destructor (3.57+1.29) < A. rigidus (4.23+1.22) and their density A. destructor (15+2.94) < A. rigidus (18.33+2.64). These morphological measurements could affect the contact angle (CA θ) measurement of A. destructor (102.66+9.78°) < A. rigidus (102.77 + 11.01°) wherein the assessment that the interaction of the liquid to the microstructures of the substrate is a large factor in the wetting properties of the insect scales is realized. The calculated surface free energy of A. destructor (38.47 mJ/m²) > A. rigidus (31.02 mJ/m²) shows inverse proportionality with the CA measurement. The dispersive interaction between the surface and liquid is more prevalent compared to the polar interaction for both Aspidiotus species, which was observed using the Fowkes method. The results of this study have possible applications to be a potential biomimetic design for various industries such as textiles and coatings.

Keywords: Aspidiotus spp., biomimetics, contact angle, surface characterization, wetting behavior

Procedia PDF Downloads 121
456 Developing Sustainable Rammed Earth Material Using Pulp Mill Fly Ash as Cement Replacement

Authors: Amin Ajabi, Chinchu Cherian, Sumi Siddiqua

Abstract:

Rammed earth (RE) is a traditional soil-based building material made by compressing a mixture of natural earth and binder ingredients such as chalk or lime, in temporary formworks. However, the modern RE uses 5 to 10% cement as a binder in order to meet the strength and durability requirements as per the standard specifications and guidelines. RE construction is considered to be an energy-efficient and environmental-friendly approach when compared to conventional concrete systems, which use 20 to 30% cement. The present study aimed to develop RE mix designs by utilizing non-hazardous wood-based fly ash generated by pulp and paper mills as a partial replacement for cement. The pulp mill fly ash (PPFA)-stabilized RE is considered to be a sustainable approach keeping in view of the massive carbon footprints associated with cement production as well as the adverse environmental impacts due to disposal of PPFA in landfills. For the experimental study, as-received PPFA, as well as PPFA-based geopolymer (synthesized by alkaline activation method), were incorporated as cement substitutes in the RE mixtures. Initially, local soil was collected and characterized by index and engineering properties. The PPFA was procured from a pulp manufacturing mill, and its physicochemical, mineralogical and morphological characterization, as well as environmental impact assessment, was conducted. Further, the various mix designs of RE material incorporating local soil and different proportions of cement, PPFA, and alkaline activator (a mixture of sodium silicate and sodium hydroxide solutions) were developed. The compacted RE specimens were cured and tested for 7-day and 28-day unconfined compressive strength (UCS) variations. Based on UCS results, the optimum mix design was identified corresponding to maximum strength improvement. Further, the cured RE specimens were subjected to freeze-thaw cycle testing for evaluating its performance and durability as a sustainable construction technique under extreme climatic conditions.

Keywords: sustainability, rammed earth, stabilization, pulp mill fly ash, geopolymer, alkaline activation, strength, durability

Procedia PDF Downloads 99
455 Assessment of Air Quality Around Western Refinery in Libya: Mobile Monitoring

Authors: A. Elmethnani, A. Jroud

Abstract:

This coastal crude oil refinery is situated north of a big city west of Tripoli; the city then could be highly prone to downwind refinery emissions where the NNE wind direction is prevailing through most seasons of the year. Furthermore, due to the absence of an air quality monitoring network and scarce emission data available for the neighboring community, nearby residents have serious worries about the impacts of the oil refining operations on local air quality. In responding to these concerns, a short term survey has performed for three consecutive days where a semi-continues mobile monitoring approach has developed effectively in this study; the monitoring station (Compact AQM 65 AeroQual) was mounted on a vehicle to move quickly between locations, measurements of 10 minutes averaging of 60 seconds then been taken at each fixed sampling point. The downwind ambient concentration of CO, H₂S, NOₓ, NO₂, SO₂, PM₁, PM₂.₅ PM₁₀, and TSP were measured at carefully chosen sampling locations, ranging from 200m nearby the fence-line passing through the city center up to 4.7 km east to attain best spatial coverage. Results showed worrying levels of PM₂.₅ PM₁₀, and TSP at one sampling location in the city center, southeast of the refinery site, with an average mean of 16.395μg/m³, 33.021μg/m³, and 42.426μg/m³ respectively, which could be attributed to road traffic. No significant concentrations have been detected for other pollutants of interest over the study area, as levels observed for CO, SO₂, H₂S, NOₓ, and NO₂ haven’t respectively exceeded 1.707 ppm, 0.021ppm, 0.134 ppm, 0.4582 ppm, and 0.0018 ppm, which was at the same sampling locations as well. Although it wasn’t possible to compare the results with the Libyan air quality standards due to the difference in the averaging time period, the technique was adequate for the baseline air quality screening procedure. Overall, findings primarily suggest modeling of dispersion of the refinery emissions to assess the likely impact and spatial-temporal distribution of air pollutants.

Keywords: air quality, mobil monitoring, oil refinery

Procedia PDF Downloads 96
454 An ANOVA-based Sequential Forward Channel Selection Framework for Brain-Computer Interface Application based on EEG Signals Driven by Motor Imagery

Authors: Forouzan Salehi Fergeni

Abstract:

Converting the movement intents of a person into commands for action employing brain signals like electroencephalogram signals is a brain-computer interface (BCI) system. When left or right-hand motions are imagined, different patterns of brain activity appear, which can be employed as BCI signals for control. To make better the brain-computer interface (BCI) structures, effective and accurate techniques for increasing the classifying precision of motor imagery (MI) based on electroencephalography (EEG) are greatly needed. Subject dependency and non-stationary are two features of EEG signals. So, EEG signals must be effectively processed before being used in BCI applications. In the present study, after applying an 8 to 30 band-pass filter, a car spatial filter is rendered for the purpose of denoising, and then, a method of analysis of variance is used to select more appropriate and informative channels from a category of a large number of different channels. After ordering channels based on their efficiencies, a sequential forward channel selection is employed to choose just a few reliable ones. Features from two domains of time and wavelet are extracted and shortlisted with the help of a statistical technique, namely the t-test. Finally, the selected features are classified with different machine learning and neural network classifiers being k-nearest neighbor, Probabilistic neural network, support-vector-machine, Extreme learning machine, decision tree, Multi-layer perceptron, and linear discriminant analysis with the purpose of comparing their performance in this application. Utilizing a ten-fold cross-validation approach, tests are performed on a motor imagery dataset found in the BCI competition III. Outcomes demonstrated that the SVM classifier got the greatest classification precision of 97% when compared to the other available approaches. The entire investigative findings confirm that the suggested framework is reliable and computationally effective for the construction of BCI systems and surpasses the existing methods.

Keywords: brain-computer interface, channel selection, motor imagery, support-vector-machine

Procedia PDF Downloads 50
453 Influence of Water Reservoir Parameters on the Climate and Coastal Areas

Authors: Lia Matchavariani

Abstract:

Water reservoir construction on the rivers flowing into the sea complicates the coast protection, seashore starts to degrade causing coast erosion and disaster on the backdrop of current climate change. The instruments of the impact of a water reservoir on the climate and coastal areas are its contact surface with the atmosphere and the area irrigated with its water or humidified with infiltrated waters. The Black Sea coastline is characterized by the highest ecological vulnerability. The type and intensity of the water reservoir impact are determined by its morphometry, type of regulation, level regime, and geomorphological and geological characteristics of the adjoining area. Studies showed the impact of the water reservoir on the climate, on its comfort parameters is positive if it is located in the zone of insufficient humidity and vice versa, is negative if the water reservoir is found in the zone with abundant humidity. There are many natural and anthropogenic factors determining the peculiarities of the impact of the water reservoir on the climate, which can be assessed with maximum accuracy by the so-called “long series” method, which operates on the meteorological elements (temperature, wind, precipitations, etc.) with the long series formed with the stationary observation data. This is the time series, which consists of two periods with statistically sufficient duration. The first period covers the observations up to the formation of the water reservoir and another period covers the observations accomplished during its operation. If no such data are available, or their series is statistically short, “an analog” method is used. Such an analog water reservoir is selected based on the similarity of the environmental conditions. It must be located within the zone of the designed water reservoir, under similar environmental conditions, and besides, a sufficient number of observations accomplished in its coastal zone.

Keywords: coast-constituent sediment, eustasy, meteorological parameters, seashore degradation, water reservoirs impact

Procedia PDF Downloads 45
452 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process

Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf

Abstract:

Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.

Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals

Procedia PDF Downloads 186
451 The Proton Flow Battery for Storing Renewable Energy: Hydrogen Storage Capacity of Selected Activated Carbon Electrodes Made from Brown Coal

Authors: Amandeep Singh Oberoi, John Andrews, Alan L. Chaffee, Lachlan Ciddor

Abstract:

Electrochemical storage of hydrogen in activated carbon electrodes as part of a reversible fuel cell offers a potentially attractive option for storing surplus electrical energy from inherently variable solar and wind energy resources. Such a system – which we have called a proton flow battery – promises to have roundtrip energy efficiency comparable to lithium ion batteries, while having higher gravimetric and volumetric energy densities. Activated carbons with high internal surface area, high pore volume, light weight and easy availability have attracted considerable research interest as a solid-state hydrogen storage medium. This paper compares the physical characteristics and hydrogen storage capacities of four activated carbon electrodes made by different methods from brown coal. The fabrication methods for these samples are explained. Their proton conductivity was measured using electrochemical impedance spectroscopy, and their hydrogen storage capacity by galvanostatic charging and discharging in a three-electrode electrolytic cell with 1 mol sulphuric acid as electrolyte. The highest hydrogen storage capacity obtained was 1.29 wt%, which compares favourably with metal hydrides used in commercially available solid-state hydrogen storages. The hydrogen storage capacity of the samples increased monotonically with increasing BET surface area (calculated from CO2 adsorption method). The results point the way towards selecting high-performing electrodes for proton flow batteries that the competitiveness of this energy storage technology.

Keywords: activated carbon, electrochemical hydrogen storage, proton flow battery, proton conductivity

Procedia PDF Downloads 577
450 Adaptation Nature-Based Solutions: CBA of Woodlands for Flood Risk Management in the Aire Catchment, UK

Authors: Olivia R. Rendon

Abstract:

More than half of the world population lives in cities, in the UK, for example, 82% of the population was urban by 2013. Cities concentrate valuable and numerous infrastructure and sectors of the national economies. Cities are particularly vulnerable to climate change which will lead to higher damage costs in the future. There is thus a need to develop and invest in adaptation measures for cities to reduce the impact of flooding and other extreme weather events. Recent flood episodes present a significant and growing challenge to the UK and the estimated cost of urban flood damage is 270 million a year for England and Wales. This study aims to carry out cost-benefit analysis (CBA) of a nature-based approach for flood risk management in cities, focusing on the city of Leeds and the wider Aire catchment as a case study. Leeds was chosen as a case study due to its being one of the most flood vulnerable cities in the UK. In Leeds, over 4,500 properties are currently vulnerable to flooding and approximately £450 million of direct damage is estimated for a potential major flood from the River Aire. Leeds is also the second largest Metropolitan District in England with a projected population of 770,000 for 2014. So far the city council has mainly focused its flood risk management efforts on hard infrastructure solutions for the city centre. However, the wider Leeds district is at significant flood risk which could benefit from greener adaptation measures. This study presents estimates of a nature-based adaptation approach for flood risk management in Leeds. This land use management estimate is based on generating costings utilising primary and secondary data. This research contributes findings on the costs of different adaptation measures to flood risk management in a UK city, including the trade-offs and challenges of utilising nature-based solutions. Results also explore the potential implementation of the adaptation measures in the case study and the challenges of data collection and analysis for adaptation in flood risk management.

Keywords: green infrastructure, ecosystem services, woodland, adaptation, flood risk

Procedia PDF Downloads 285
449 A Comparative Study of the Techno-Economic Performance of the Linear Fresnel Reflector Using Direct and Indirect Steam Generation: A Case Study under High Direct Normal Irradiance

Authors: Ahmed Aljudaya, Derek Ingham, Lin Ma, Kevin Hughes, Mohammed Pourkashanian

Abstract:

Researchers, power companies, and state politicians have given concentrated solar power (CSP) much attention due to its capacity to generate large amounts of electricity whereas overcoming the intermittent nature of solar resources. The Linear Fresnel Reflector (LFR) is a well-known CSP technology type for being inexpensive, having a low land use factor, and suffering from low optical efficiency. The LFR was considered a cost-effective alternative option to the Parabolic Trough Collector (PTC) because of its simplistic design, and this often outweighs its lower efficiency. The LFR has been found to be a promising option for directly producing steam to a thermal cycle in order to generate low-cost electricity, but also it has been shown to be promising for indirect steam generation. The purpose of this important analysis is to compare the annual performance of the Direct Steam Generation (DSG) and Indirect Steam Generation (ISG) of LFR power plants using molten salt and other different Heat Transfer Fluids (HTF) to investigate their technical and economic effects. A 50 MWe solar-only system is examined as a case study for both steam production methods in extreme weather conditions. In addition, a parametric analysis is carried out to determine the optimal solar field size that provides the lowest Levelized Cost of Electricity (LCOE) while achieving the highest technical performance. As a result of optimizing the optimum solar field size, the solar multiple (SM) is found to be between 1.2 – 1.5 in order to achieve as low as 9 Cent/KWh for the direct steam generation of the linear Fresnel reflector. In addition, the power plant is capable of producing around 141 GWh annually and up to 36% of the capacity factor, whereas the ISG produces less energy at a higher cost. The optimization results show that the DSG’s performance overcomes the ISG in producing around 3% more annual energy, 2% lower LCOE, and 28% less capital cost.

Keywords: concentrated solar power, levelized cost of electricity, linear Fresnel reflectors, steam generation

Procedia PDF Downloads 111
448 Characterization and Optimization of Culture Conditions for Sulphur Oxidizing Bacteria after Isolation from Rhizospheric Mustard Soil, Decomposing Sites and Pit House

Authors: Suman Chaudhary, Rinku Dhanker, Tanvi, Sneh Goyal

Abstract:

Sulphur oxidizing bacteria (SOB) have marked their significant role in perspectives of maintaining healthy environment as researchers from all over the world tested and apply these in waste water treatment plants, bioleaching of heavy metals, deterioration of bridge structures, concrete and for bioremediation purposes, etc. Also, these SOB are well adapted in all kinds of environment ranging from normal soil, water habitats to extreme natural sources like geothermal areas, volcanic eruptions, black shale and acid rock drainage (ARD). SOB have been isolated from low pH environment of anthropogenic origin like acid mine drainage (AMD) and bioleaching heaps, hence these can work efficiently in different environmental conditions. Besides having many applications in field of environment science, they may be proven to be very beneficial in area of agriculture as sulphur is the fourth major macronutrients required for the growth of plants. More amount of sulphur is needed by pulses and oilseed crops with respect to the cereal grains. Due to continuous use of land for overproduction of more demanding sulphur utilizing crops and without application of sulphur fertilizers, its concentration is decreasing day by day, and thus, sulphur deficiency is becoming a great problem as it affects the crop productivity and quality. Sulphur is generally found in soils in many forms which are unavailable for plants (cannot be use by plants) like elemental sulphur, thiosulphate which can be taken up by bacteria and converted into simpler forms usable by plants by undergoing a series of transformations. So, keeping the importance of sulphur in view for various soil types, oilseed crops and role of microorganisms in making them available to plants, we made an effort to isolate, optimize, and characterize SOB. Three potential strains of bacteria were isolated, namely SSF7, SSA21, and SSS6, showing sulphate production of concentration, i.e. 2.268, 3.102, and 2.785 mM, respectively. Also, these were optimized for various culture conditions like carbon, nitrogen source, pH, temperature, and incubation time, and characterization was also done.

Keywords: sulphur oxidizing bacteria, isolation, optimization, characterization, sulphate production

Procedia PDF Downloads 337