Search results for: current spectral analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33287

Search results for: current spectral analysis

31727 An Elaborated Software Solution: The Tennis Ranking System

Authors: Dionysios Kakaroumpas, Jesseka Farago, Stephen Webber

Abstract:

Athletes and spectators depend on the tennis ranking system to represent the truest caliber of athletic prowess; a careful look at the current ranking system though, reveals its main weakness: it undermines expectations of fans and players. Our study proposes several key changes to the existing ranking formula that provide a fair and accurate approach to measure player performance. The study proposes a modification of the system to value: participation, continued advancement, and overall achievement. The new ranking formula facilitates closing the trust gap, encouraging competition equality, engaging the fan base, attracting investment, and promoting tennis involvement worldwide. To probe the crux of our main contention we performed week-by-week comparisons between results procured from the current and proposed formulae. After performing this rigorous case-study of top players of each gender, the findings strongly indicated that there is identifiable inflation in the ranks and enhanced the conviction that the current system should be updated. The new system is accompanied by a web-based software package freely available to anyone involved or interested in tennis rankings. The software package is designed to automatically calculate new player rankings based on a responsive, multi-faceted formula that also generates projected point scenarios and provides separate rankings for the three different court surfaces. By taking a critical look at the current tennis ranking system with consideration to the perspective of fans, players, and businesses involved, an upgrade is in order for it to maintain the balance of trust between fans and the evaluation process. In closure, this proposed solution increases fair play competition, eliminates rank inflation, and better engages fans, players, and sponsors by bringing in a new era of professional tennis.

Keywords: measurement and evaluation, rules and regulations, sports management and marketing, tennis ranking system

Procedia PDF Downloads 252
31726 Development of a Software System for Management and Genetic Analysis of Biological Samples for Forensic Laboratories

Authors: Mariana Lima, Rodrigo Silva, Victor Stange, Teodiano Bastos

Abstract:

Due to the high reliability reached by DNA tests, since the 1980s this kind of test has allowed the identification of a growing number of criminal cases, including old cases that were unsolved, now having a chance to be solved with this technology. Currently, the use of genetic profiling databases is a typical method to increase the scope of genetic comparison. Forensic laboratories must process, analyze, and generate genetic profiles of a growing number of samples, which require time and great storage capacity. Therefore, it is essential to develop methodologies capable to organize and minimize the spent time for both biological sample processing and analysis of genetic profiles, using software tools. Thus, the present work aims the development of a software system solution for laboratories of forensics genetics, which allows sample, criminal case and local database management, minimizing the time spent in the workflow and helps to compare genetic profiles. For the development of this software system, all data related to the storage and processing of samples, workflows and requirements that incorporate the system have been considered. The system uses the following software languages: HTML, CSS, and JavaScript in Web technology, with NodeJS platform as server, which has great efficiency in the input and output of data. In addition, the data are stored in a relational database (MySQL), which is free, allowing a better acceptance for users. The software system here developed allows more agility to the workflow and analysis of samples, contributing to the rapid insertion of the genetic profiles in the national database and to increase resolution of crimes. The next step of this research is its validation, in order to operate in accordance with current Brazilian national legislation.

Keywords: database, forensic genetics, genetic analysis, sample management, software solution

Procedia PDF Downloads 353
31725 Detailed Degradation-Based Model for Solid Oxide Fuel Cells Long-Term Performance

Authors: Mina Naeini, Thomas A. Adams II

Abstract:

Solid Oxide Fuel Cells (SOFCs) feature high electrical efficiency and generate substantial amounts of waste heat that make them suitable for integrated community energy systems (ICEs). By harvesting and distributing the waste heat through hot water pipelines, SOFCs can meet thermal demand of the communities. Therefore, they can replace traditional gas boilers and reduce greenhouse gas (GHG) emissions. Despite these advantages of SOFCs over competing power generation units, this technology has not been successfully commercialized in large-scale to replace traditional generators in ICEs. One reason is that SOFC performance deteriorates over long-term operation, which makes it difficult to find the proper sizing of the cells for a particular ICE system. In order to find the optimal sizing and operating conditions of SOFCs in a community, a proper knowledge of degradation mechanisms and effects of operating conditions on SOFCs long-time performance is required. The simplified SOFC models that exist in the current literature usually do not provide realistic results since they usually underestimate rate of performance drop by making too many assumptions or generalizations. In addition, some of these models have been obtained from experimental data by curve-fitting methods. Although these models are valid for the range of operating conditions in which experiments were conducted, they cannot be generalized to other conditions and so have limited use for most ICEs. In the present study, a general, detailed degradation-based model is proposed that predicts the performance of conventional SOFCs over a long period of time at different operating conditions. Conventional SOFCs are composed of Yttria Stabilized Zirconia (YSZ) as electrolyte, Ni-cermet anodes, and LaSr₁₋ₓMnₓO₃ (LSM) cathodes. The following degradation processes are considered in this model: oxidation and coarsening of nickel particles in the Ni-cermet anodes, changes in the pore radius in anode, electrolyte, and anode electrical conductivity degradation, and sulfur poisoning of the anode compartment. This model helps decision makers discover the optimal sizing and operation of the cells for a stable, efficient performance with the fewest assumptions. It is suitable for a wide variety of applications. Sulfur contamination of the anode compartment is an important cause of performance drop in cells supplied with hydrocarbon-based fuel sources. H₂S, which is often added to hydrocarbon fuels as an odorant, can diminish catalytic behavior of Ni-based anodes by lowering their electrochemical activity and hydrocarbon conversion properties. Therefore, the existing models in the literature for H₂-supplied SOFCs cannot be applied to hydrocarbon-fueled SOFCs as they only account for the electrochemical activity reduction. A regression model is developed in the current work for sulfur contamination of the SOFCs fed with hydrocarbon fuel sources. The model is developed as a function of current density and H₂S concentration in the fuel. To the best of authors' knowledge, it is the first model that accounts for impact of current density on sulfur poisoning of cells supplied with hydrocarbon-based fuels. Proposed model has wide validity over a range of parameters and is consistent across multiple studies by different independent groups. Simulations using the degradation-based model illustrated that SOFCs voltage drops significantly in the first 1500 hours of operation. After that, cells exhibit a slower degradation rate. The present analysis allowed us to discover the reason for various degradation rate values reported in literature for conventional SOFCs. In fact, the reason why literature reports very different degradation rates, is that literature is inconsistent in definition of how degradation rate is calculated. In the literature, the degradation rate has been calculated as the slope of voltage versus time plot with the unit of voltage drop percentage per 1000 hours operation. Due to the nonlinear profile of voltage over time, degradation rate magnitude depends on the magnitude of time steps selected to calculate the curve's slope. To avoid this issue, instantaneous rate of performance drop is used in the present work. According to a sensitivity analysis, the current density has the highest impact on degradation rate compared to other operating factors, while temperature and hydrogen partial pressure affect SOFCs performance less. The findings demonstrated that a cell running at lower current density performs better in long-term in terms of total average energy delivered per year, even though initially it generates less power than if it had a higher current density. This is because of the dominant and devastating impact of large current densities on the long-term performance of SOFCs, as explained by the model.

Keywords: degradation rate, long-term performance, optimal operation, solid oxide fuel cells, SOFCs

Procedia PDF Downloads 116
31724 Minimally Invasive versus Conventional Sternotomy for Aortic Valve Replacement: A Systematic Review and Meta-Analysis

Authors: Ahmed Shaboub, Yusuf Jasim Althawadi, Shadi Alaa Abdelaal, Mohamed Hussein Abdalla, Hatem Amr Elzahaby, Mohamed Mohamed, Hazem S. Ghaith, Ahmed Negida

Abstract:

Objectives: We aimed to compare the safety and outcomes of the minimally invasive approaches versus conventional sternotomy procedures for aortic valve replacement. Methods: We conducted a PRISMA-compliant systematic review and meta-analysis. We ran an electronic search of PubMed, Cochrane CENTRAL, Scopus, and Web of Science to identify the relevant published studies. Data were extracted and pooled as standardized mean difference (SMD) or risk ratio (RR) using StataMP version 17 for macOS. Results: Forty-one studies with a total of 15,065 patients were included in this meta-analysis (minimally invasive approaches n=7231 vs. conventional sternotomy n=7834). The pooled effect size showed that minimally invasive approaches had lower mortality rate (RR 0.76, 95%CI [0.59 to 0.99]), intensive care unit and hospital stays (SMD -0.16 and -0.31, respectively), ventilation time (SMD -0.26, 95%CI [-0.38 to -0.15]), 24-h chest tube drainage (SMD -1.03, 95%CI [-1.53 to -0.53]), RBCs transfusion (RR 0.81, 95%CI [0.70 to 0.93]), wound infection (RR 0.66, 95%CI [0.47 to 0.92]) and acute renal failure (RR 0.65, 95%CI [0.46 to 0.93]). However, minimally invasive approaches had longer operative time, cross-clamp, and bypass times (SMD 0.47, 95%CI [0.22 to 0.72], SMD 0.27, 95%CI [0.07 to 0.48], and SMD 0.37, 95%CI [0.20 to 0.45], respectively). There were no differences between the two groups in blood loss, endocarditis, cardiac tamponade, stroke, arrhythmias, pneumonia, pneumothorax, bleeding reoperation, tracheostomy, hemodialysis, or myocardial infarction (all P>0.05). Conclusion: Current evidence showed higher safety and better operative outcomes with minimally invasive aortic valve replacement compared to the conventional approach. Future RCTs with long-term follow-ups are recommended.

Keywords: aortic replacement, minimally invasive, sternotomy, mini-sternotomy, aortic valve, meta analysis

Procedia PDF Downloads 99
31723 Potential for Massive Use of Biodiesel for Automotive in Italy

Authors: Domenico Carmelo Mongelli

Abstract:

The context of this research is that of the Italian reality, which, in order to adapt to the EU Directives that prohibit the production of internal combustion engines in favor of electric mobility from 2035, is extremely concerned about the significant loss of jobs resulting from the difficulty of the automotive industry in converting in such a short time and due to the reticence of potential buyers in the face of such an epochal change. The aim of the research is to evaluate for Italy the potential of the most valid alternative to this transition to electric: leaving the current production of diesel engines unchanged, no longer powered by gasoil, imported and responsible for greenhouse gas emissions, but powered entirely by a nationally produced and eco-sustainable fuel such as biodiesel. Today in Italy, the percentage of biodiesel mixed with gasoil for diesel engines is too low (around 10%); for this reason, this research aims to evaluate the functioning of current diesel engines powered 100% by biodiesel and the ability of the Italian production system to cope to this hypothesis. The research geographically identifies those abandoned lands in Italy, now out of the food market, which is best suited to an energy crop for the final production of biodiesel. The cultivation of oilseeds is identified, which for the Italian agro-industrial reality allows maximizing the agricultural and industrial yields of the transformation of the agricultural product into a final energy product and minimizing the production costs of the entire agro-industrial chain. To achieve this objective, specific databases are used, and energy and economic balances are prepared for the different agricultural product alternatives. Solutions are proposed and tested that allow the optimization of all production phases in both the agronomic and industrial phases. The biodiesel obtained from the most feasible of the alternatives examined is analyzed, and its compatibility with current diesel engines is identified, and from the evaluation of its thermo-fluid-dynamic properties, the engineering measures that allow the perfect functioning of current internal combustion engines are examined. The results deriving from experimental tests on the engine bench are evaluated to evaluate the performance of different engines fueled with biodiesel alone in terms of power, torque, specific consumption and useful thermal efficiency and compared with the performance of engines fueled with the current mixture of fuel on the market. The results deriving from experimental tests on the engine bench are evaluated to evaluate the polluting emissions of engines powered only by biodiesel and compared with current emissions. At this point, we proceed with the simulation of the total replacement of gasoil with biodiesel as a fuel for the current fleet of diesel vehicles in Italy, drawing the necessary conclusions in technological, energy, economic, and environmental terms and in terms of social and employment implications. The results allow us to evaluate the potential advantage of a total replacement of diesel fuel with biodiesel for powering road vehicles with diesel cycle internal combustion engines without significant changes to the current vehicle fleet and without requiring future changes to the automotive industry.

Keywords: biodiesel, economy, engines, environment

Procedia PDF Downloads 53
31722 Heat Transfer Enhancement by Localized Time Varying Thermal Perturbations at Hot and Cold Walls in a Rectangular Differentially Heated Cavity

Authors: Nicolas Thiers, Romain Gers, Olivier Skurtys

Abstract:

In this work, we study numerically the effect of a thermal perturbation on the heat transfer in a rectangular differentially heated cavity of aspect ratio 4, filled by air. In order to maintain the center symmetry, the thermal perturbation is imposed by a square wave at both active walls, at the same relative position of the hot or cold boundary layers. The influences of the amplitude and the vertical location of the perturbation are investigated. The air flow is calculated solving the unsteady Boussinesq-Navier-Stokes equations using the PN - PN-2 Spectral Element Method (SEM) programmed in the Nek5000 opencode, at RaH= 9x107, just before the first bifurcation which leads to periodical flow. The results show that the perturbation has a major impact for the highest amplitude, and at about three quarters of the cavity height, upstream, in both hot and cold boundary layers.

Keywords: direct numerical simulation, heat transfer enhancement, localized thermal perturbations, natural convection, rectangular differentially-heated cavity

Procedia PDF Downloads 128
31721 System Transformation: Transitioning towards Low Carbon, Resource Efficient, and Circular Economy for Global Sustainability

Authors: Anthony Halog

Abstract:

In the coming decades the world that we know today will be drastically transformed. Population and economic growth, particularly in developing countries, are radically changing the demand for food and natural resources. Due to the transformations caused by these megatrends, especially economic growth which is rapidly expanding the middle class and changing consumption patterns worldwide, it is expected that this will result to an increase of approximately 40 percent in the demand for food, water, energy and other resources in the next decades. To fulfill this demand in a sustainable and efficient manner while avoiding food and water scarcity as well as environmental catastrophes in the near future, some industries, particularly the ones involved in food and energy production, have to drastically change its current production systems towards circular and green economy. In Australia, the agri-food industry has played a very important role in the scenario described above. It is one of the major food exporters in the world, supplying fast growing international markets in Asia and the Middle East. Though the Australian food supply chains are economically and technologically developed, it has been facing enduring challenges about its international competitiveness and environmental burdens caused by its production processes. An integrated framework for sustainability assessment is needed to precisely identify inefficiencies and environmental impacts created during food production processes. This research proposes a combination of industrial ecology and systems science based methods and tools intending to develop a novel and useful methodological framework for life cycle sustainability analysis of the agri-food industry. The presentation highlights circular economy paradigm aiming to implement sustainable industrial processes to transform the current industrial model of agri-food supply chains. The results are expected to support government policy makers, business decision makers and other stakeholders involved in agri-food-energy production system in pursuit of green and circular economy. The framework will assist future life cycle and integrated sustainability analysis and eco-redesign of food and other industrial systems.

Keywords: circular economy, eco-efficiency, agri-food systems, green economy, life cycle sustainability assessment

Procedia PDF Downloads 267
31720 Elasto-Plastic Analysis of Structures Using Adaptive Gaussian Springs Based Applied Element Method

Authors: Mai Abdul Latif, Yuntian Feng

Abstract:

Applied Element Method (AEM) is a method that was developed to aid in the analysis of the collapse of structures. Current available methods cannot deal with structural collapse accurately; however, AEM can simulate the behavior of a structure from an initial state of no loading until collapse of the structure. The elements in AEM are connected with sets of normal and shear springs along the edges of the elements, that represent the stresses and strains of the element in that region. The elements are rigid, and the material properties are introduced through the spring stiffness. Nonlinear dynamic analysis has been widely modelled using the finite element method for analysis of progressive collapse of structures; however, difficulties in the analysis were found at the presence of excessively deformed elements with cracking or crushing, as well as having a high computational cost, and difficulties on choosing the appropriate material models for analysis. The Applied Element method is developed and coded to significantly improve the accuracy and also reduce the computational costs of the method. The scheme works for both linear elastic, and nonlinear cases, including elasto-plastic materials. This paper will focus on elastic and elasto-plastic material behaviour, where the number of springs required for an accurate analysis is tested. A steel cantilever beam is used as the structural element for the analysis. The first modification of the method is based on the Gaussian Quadrature to distribute the springs. Usually, the springs are equally distributed along the face of the element, but it was found that using Gaussian springs, only up to 2 springs were required for perfectly elastic cases, while with equal springs at least 5 springs were required. The method runs on a Newton-Raphson iteration scheme, and quadratic convergence was obtained. The second modification is based on adapting the number of springs required depending on the elasticity of the material. After the first Newton Raphson iteration, Von Mises stress conditions were used to calculate the stresses in the springs, and the springs are classified as elastic or plastic. Then transition springs, springs located exactly between the elastic and plastic region, are interpolated between regions to strictly identify the elastic and plastic regions in the cross section. Since a rectangular cross-section was analyzed, there were two plastic regions (top and bottom), and one elastic region (middle). The results of the present study show that elasto-plastic cases require only 2 springs for the elastic region, and 2 springs for the plastic region. This showed to improve the computational cost, reducing the minimum number of springs in elasto-plastic cases to only 6 springs. All the work is done using MATLAB and the results will be compared to models of structural elements using the finite element method in ANSYS.

Keywords: applied element method, elasto-plastic, Gaussian springs, nonlinear

Procedia PDF Downloads 211
31719 Soul-Body Relationship in Medieval Islamic Thought – Analysis of Avicenna’s Psychology and Medicine with Implication to Mental Health

Authors: Yula Milshteyn

Abstract:

The present study focuses on the science of the “Soul” in Islamic Medieval Psychology.The main objective of the current essay is to analyze the concept of the “soul” in relation to “mental” disorders, in the philosophical psychology and medicinal treatise of Ibn Sina, a Muslim Persian physician-philosopher (known as Avicenna in the Western world) (981-1037 CE). The examination will concentrate on the nature of the soul, and the relationship of the soul to the body, as well as the manifestation of health and sickness in soul and body, The analysis draws on Avicenna’s Psychology (Kitab al-Najat or The Book of Salvation), Remarks and Admonitions (Al-isharat wa al-tanbihat), and the medical treatise – The Canon of Medicine (al-Qānūn fī al-Ṭibb). Avicenna’s psychology of the soul is primarily based on Aristotelian and Neo-platonic paradigms. For Avicenna, soul is a metaphysical, independent substance, which in modern terms implies independence of human consciousness from the material body. The soul however, is linked to the body and controls all its’ faculties or functions. It is suggested that in the specific case study of schizophrenia, it is a disorder pertained to both, soul and body and can be characterized as a multi-faceted neurobiological, physiological, psychological and metaphysical spiritual phenomenon.

Keywords: Avicenna, canon of the medicine, mental disorders, psychology, schizophrenia, soul-body

Procedia PDF Downloads 33
31718 Correlation between Seismic Risk Insurance Indexes and Uninhabitability Indexes of Buildings in Morocco

Authors: Nabil Mekaoui, Nacer Jabour, Abdelhamid Allaoui, Abderahim Oulidi

Abstract:

The reliability of several insurance indexes of the seismic risk is evaluated and compared for an efficient seismic risk coverage of buildings in Morocco, thus, reducing the basic risk. A large database of earthquake ground motions is established from recent seismic events in Morocco and synthetic ground motions compatible with the design spectrum in order to conduct nonlinear time history analyses on three building models representative of the building stock in Morocco. The uninhabitability index is evaluated based on the simulated damage index, then correlated with preselected insurance indexes. Interestingly, the commonly used peak ground acceleration index showed poor correlation when compared with other indexes, such as spectral accelerations at low periods. Recommendations on the choice of suitable insurance indexes are formulated for efficient seismic risk coverage in Morocco.

Keywords: catastrophe modeling, damage, earthquake, reinsurance, seismic hazard, trigger index, vulnerability

Procedia PDF Downloads 56
31717 Effect of Wetting Layer on the Energy Spectrum of One-Electron Non-Uniform Quantum Ring

Authors: F. A. Rodríguez-Prada, W Gutierrez, I. D. Mikhailov

Abstract:

We study the spectral properties of one-electron non-uniform crater-shaped quantum dot whose thickness is increased linearly with different slopes in different radial directions between the central hole and the outer border and which is deposited over thin wetting layer in the presence of the external vertically directed magnetic field. We show that in the adiabatic limit, when the crater thickness is much smaller than its lateral dimension, the one-particle wave functions of the electron confined in such structure in the zero magnetic field case can be found exactly in an analytical form and they can be used subsequently as the base functions in framework of the exact diagonalization method to study the effect of the wetting layer and an external magnetic field applied along of the grown axis on energy levels of one-electron non-uniform quantum dot. It is shown that both the structural non-uniformity and the increase of the thickness of the wetting layer provide a quenching of the Aharonov-Bohm oscillations of the lower energy levels.

Keywords: electronic properties, quantum rings, volcano shaped, wetting layer

Procedia PDF Downloads 373
31716 Evaluating Climate Risks to Enhance Resilience in Durban, South Africa

Authors: Cabangile Ncengeni Ngwane, Gerald Mills

Abstract:

Anthropogenic climate change is exacerbating natural hazards such as droughts, heat waves and sea-level rise. The associated risks are the greatest in places where socio-ecological systems are exposed to these changes and the populations and infrastructure are vulnerable. Identifying the communities at risk and enhancing local resilience are key issues in responding to the current and project climate changes. This paper explores the types of risks associated with multiple overlapping hazards in Durban, South Africa where the social, cultural and economic dimensions that contribute to exposure and vulnerability are compounded by its history of apartheid. As a result, climate change risks are highly concentrated in marginalized communities that have the least adaptive capacity. In this research, a Geographic Information System is to explore the spatial correspondence among geographic layers representing hazards, exposure and vulnerability across Durban. This quantitative analysis will allow authors to identify communities at high risk and focus our study on the nature of the current human-environment relationships that result in risk inequalities. This work will employ qualitative methods to critically examine policies (including educational practices and financial support systems) and on-the-ground actions that are designed to improve the adaptive capacity of these communities and meet UN Sustainable Development Goals. This work will contribute to a growing body of literature on disaster risk management, especially as it relates to developing economies where socio-economic inequalities are correlated with ethnicity and race.

Keywords: adaptive capacity, disaster risk reduction, exposure, resilience, South Africa

Procedia PDF Downloads 126
31715 Magnetohydrodynamic Flows in a Misaligned Duct under a Uniform Magnetic Field

Authors: Mengqi Zhu, Chang Nyung Kim

Abstract:

This study numerically investigates three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a misaligned duct under a uniform magnetic field. The duct consists of two misaligned horizontal channels (one is inflow channel, the other is outflow channel) and one central vertical channel. Computational fluid dynamics simulations are performed to predict the behavior of the MHD flows, using commercial code CFX. In the current study, a case with Hartmann number 1000 is considered. The electromagnetic features of LM MHD flows are elucidated to examine the interdependency of the flow velocity, current density, electric potential, pressure drop and Lorentz force. The results show that pressure decreases linearly along the main flow direction.

Keywords: CFX, liquid-metal magnetohydrodynamic flows, misaligned duct, pressure drop

Procedia PDF Downloads 271
31714 Bridging the Gap: Theoretical Challenges in Cognitive Translation Studies and the Language Industry

Authors: Alvaro Marin

Abstract:

This paper explores the challenges in Cognitive Translation Studies (CTS) conceptual development to accommodate professionals’ perceptions in the language industry into CTS established theoretical apparatus, empirical research projects, and university pedagogical proposals. A comparative conceptual assessment framework is developed from a pluralist epistemological stance that promotes interdisciplinary explorations of the translation process. The framework is used to review key notions such as expertise or feedback, as understood by language industry stakeholders. This review is followed by an analysis of how these notions can enrich research constructs to be applied in empirical investigations of translators’ cognitive processes from an embedded, situated cognition perspective. Thus, it will be proposed to apply the conceptual assessment framework as an effort towards strengthening the interpretative research tools and bridging the gap between industry and academia. The conclusions of this analysis will serve as a basis to further discuss how professional practices, combined with our current knowledge about expertise development in cognitive science and Expertise Studies, can enhance the learning experience of university translation students and help them better understand the processes and requirements of professional cross-linguistic mediation.

Keywords: language industry, cognitive translation studies, translation cognitive theory, translation teaching

Procedia PDF Downloads 139
31713 Seasonal Variability of M₂ Internal Tides Energetics in the Western Bay of Bengal

Authors: A. D. Rao, Sachiko Mohanty

Abstract:

The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, subsurface ridges, and the seamounts, etc. The IWs of the tidal frequency are generally known as internal tides. These waves have a significant influence on the vertical density and hence causes mixing in the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the Bay of Bengal with special emphasis on its energetics is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution in-situ data sets are available. The model is initially validated through the spectral estimates of density and the baroclinic velocities. From the estimates, it is inferred that the internal tides associated with semi-diurnal frequency are more dominant in both observations and model simulations for November-December and March-April. However, in August, the estimate is found to be maximum near-inertial frequency at all the available depths. The observed vertical structure of the baroclinic velocities and its magnitude are found to be well captured by the model. EOF analysis is performed to decompose the zonal and meridional baroclinic tidal currents into different vertical modes. The analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The first three modes are sufficient to describe most of the variability for semidiurnal internal tides, as they represent 90-95% of the total variance for all the seasons. The phase speed, group speed, and wavelength are found to be maximum for post-monsoon season compared to other two seasons. The model simulation suggests that the internal tide is generated all along the shelf-slope regions and propagate away from the generation sites in all the months. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m²) in northern BoB and minimum in August (14kg/m²). The detailed energy budget calculation are made for all the seasons and results are analysed.

Keywords: available potential energy, baroclinic energy flux, internal tides, Bay of Bengal

Procedia PDF Downloads 150
31712 Determination of Relationship among Shape Indexes Used for Land Consolidation

Authors: Firat Arslan, Hasan Degirmenci, Serife Tulin Akkaya Aslan

Abstract:

The aim of the current experiment was to determine the relationship among shape indexes which are used by the researchers in many fields to evaluate parcel shapes which is very important for farming even if these indexes are controversial. In the current study, land consolidation project of Halitaga village in Mersin province in Turkey which has 278 parcel and cover 894.4 ha, was taken as a material. Commonly used indicators such as fractal dimension (FD), shape index (SI), form factor (FORM), areal form factor (AFF) and two distinct area-perimeter ratio (APR-1 and APR2) in land consolidation are used to measure agricultural plot’s shape. FD was positively correlated with SI, APR-1 and APR-2 whereas it was negatively correlated with FORM and AFF. SI was positively correlated with APR-1 and APR-2 whereas it was negatively correlated with FORM and AFF. As a conclusion, it is likely that these indexes involved may be used interchangeably due to high correlations among them.

Keywords: GIS, land consolidation, parcel shape, shape index

Procedia PDF Downloads 166
31711 Cybersecurity Challenges in the Era of Open Banking

Authors: Krish Batra

Abstract:

The advent of open banking has revolutionized the financial services industry by fostering innovation, enhancing customer experience, and promoting competition. However, this paradigm shift towards more open and interconnected banking ecosystems has introduced complex cybersecurity challenges. This research paper delves into the multifaceted cybersecurity landscape of open banking, highlighting the vulnerabilities and threats inherent in sharing financial data across a network of banks and third-party providers. Through a detailed analysis of recent data breaches, phishing attacks, and other cyber incidents, the paper assesses the current state of cybersecurity within the open banking framework. It examines the effectiveness of existing security measures, such as encryption, API security protocols, and authentication mechanisms, in protecting sensitive financial information. Furthermore, the paper explores the regulatory response to these challenges, including the implementation of standards such as PSD2 in Europe and similar initiatives globally. By identifying gaps in current cybersecurity practices, the research aims to propose a set of robust, forward-looking strategies that can enhance the security and resilience of open banking systems. This includes recommendations for banks, third-party providers, regulators, and consumers on how to mitigate risks and ensure a secure open banking environment. The ultimate goal is to provide stakeholders with a comprehensive understanding of the cybersecurity implications of open banking and to outline actionable steps for safeguarding the financial ecosystem in an increasingly interconnected world.

Keywords: open banking, financial services industry, cybersecurity challenges, data breaches, phishing attacks, encryption, API security protocols, authentication mechanisms, regulatory response, PSD2, cybersecurity practices

Procedia PDF Downloads 34
31710 Power Circuit Schemes in AC Drive is Made by Condition of the Minimum Electric Losses

Authors: M. A. Grigoryev, A. N. Shishkov, D. A. Sychev

Abstract:

The article defines the necessity of choosing the optimal power circuits scheme of the electric drive with field regulated reluctance machine. The specific weighting factors are calculation, the linear regression dependence of specific losses in semiconductor frequency converters are presented depending on the values of the rated current. It is revealed that with increase of the carrier frequency PWM improves the output current waveform, but increases the loss, so you will need depending on the task in a certain way to choose from the carrier frequency. For task of optimization by criterion of the minimum electrical losses regression dependence of the electrical losses in the frequency converter circuit at a frequency of a PWM signal of 0 Hz. The surface optimization criterion is presented depending on the rated output torque of the motor and number of phases. In electric drives with field regulated reluctance machine with at low output power optimization criterion appears to be the worst for multiphase circuits. With increasing output power this trend hold true, but becomes insignificantly different optimal solutions for three-phase and multiphase circuits. This is explained to the linearity of the dependence of the electrical losses from the current.

Keywords: field regulated reluctance machine, the electrical losses, multiphase power circuit, the surface optimization criterion

Procedia PDF Downloads 274
31709 Application of Neutron Activation Analysis Technique for the Analysis of Soil Samples from Farmlands of Yebrage Hawariat, East Gojjam, Ethiopia

Authors: Yihunie Hibstie Asres, Manny Mathuthu

Abstract:

Farmers may not be conscious for their farmland’s nutrients, soil organic matter, water and air because they simply concerned only for their labor availability and soil fertility losses. The composition and proportion of these components greatly influence soil physical properties, including texture, structure, and porosity, the fraction of pore space in a soil. The soil of this farmland must be able to supply adequate amount of plant nutrients, in forms which can be absorbed by the crop, within its lifespan. Deficiencies or imbalances in the supply of any of essential elements can compromise growth, affecting root development, cell division, crop quality, crop yield and resistance to disease and drought. This study was conducted to fill this knowledge gap in order to develop economically vital and environmentally accepted nutrient management strategies for the use of soils in agricultural lands. The objective of this study is to assess the elemental contents and concentration of soil samples collected from farmlands of ‘Yebrage’ using Neutron Activation Analysis (NAA) techniques regardless of oxidation state, chemical form or physical locations. NAA is used to determine the elemental composition and concentrations present in a soil. The macro/micronutrient and organic matter deficiencies have been verified in agricultural soils through increased use of soil testing and plant analysis. The challenge for agriculture over the coming decades will meet the world’s increasing demands for food in a sustainable way. Current issues and future challenges point out that as long as agriculture remains a soil-based industry, major decreases in productivity likely to be attained ensuring that plants do not have adequate and balanced supply of nutrients.

Keywords: NAA, Yebrage, Chemoga, macro/micronutrient

Procedia PDF Downloads 154
31708 Time Series Analysis of Air Pollution in Suceava County ( Nord- East of Romania)

Authors: Lazurca Liliana Gina

Abstract:

Different time series analysis of yearly air pollution at Suceava County, Nord-East of Romania, has been performed in this study. The trends in the atmospheric concentrations of the main gaseous and particulate pollutants in urban, industrial and rural environments across Suceava County were estimated for the period of 2008-2014. The non-parametric Mann-Kendall test was used to determine the trends in the annual average concentrations of air pollutants (NO2, NO, NOx, SO2, CO, PM10, O3, C6H6). The slope was estimated using the non-parametric Sen’s method. Trend significance was assumed at the 5% significance level (p < 0.05) in the current study. During the 7 year period, trends in atmospheric concentrations may not have been monotonic, in some instances concentrations of species increased and subsequently decreased. The trend in Suceava County is to keep a low concentration of pollutants in ambient air respecting the limit values.All the results that we obtained show that Romania has taken a lot of regulatory measures to decrease the concentrations of air pollutants in the last decade, in Suceava County the air quality monitoring highlight for the most part of the analyzed pollutants decreasing trends. For the analyzed period we observed considerable improvements in background air in Suceava County.

Keywords: pollutant, trend, air quality monitoring, Mann-Kendall

Procedia PDF Downloads 349
31707 The Extension of Monomeric Computational Results to Polymeric Measurable Properties: An Introductory Computational Chemistry Experiment

Authors: Jing Zhao, Yongqing Bai, Qiaofang Shi, Huaihao Zhang

Abstract:

Advances in software technology enable computational chemistry to be commonly applied in various research fields, especially in pedagogy. Thus, in order to expand and improve experimental instructions of computational chemistry for undergraduates, we designed an introductory experiment—research on acrylamide molecular structure and physicochemical properties. Initially, students construct molecular models of acrylamide and polyacrylamide in Gaussian and Materials Studio software respectively. Then, the infrared spectral data, atomic charge and molecular orbitals of acrylamide as well as solvation effect of polyacrylamide are calculated to predict their physicochemical performance. At last, rheological experiments are used to validate these predictions. Through the combination of molecular simulation (performed on Gaussian, Materials Studio) with experimental verification (rheology experiment), learners have deeply comprehended the chemical nature of acrylamide and polyacrylamide, achieving good learning outcomes.

Keywords: upper-division undergraduate, computer-based learning, laboratory instruction, molecular modeling

Procedia PDF Downloads 120
31706 Effect of Coupling Media on Ultrasonic Pulse Velocity in Concrete: A Preliminary Investigation

Authors: Sura Al-Khafaji, Phil Purnell

Abstract:

Measurement of the ultrasonic pulse velocity (UPV) is an important tool in diagnostic examination of concrete. In this method piezoelectric transducers are normally held in direct contact with the concrete surface. The current study aims to test the hypothesis that a preferential coupling effect might exist i.e. that the speed of sound measured depends on the couplant used. In this study, different coupling media of varying acoustic impedance were placed between the transducers and concrete samples made with constant aggregate content but with different compressive strengths. The preliminary results show that using coupling materials (both solid and a range of liquid substances) has an effect on the pulse velocity measured in a given concrete. The effect varies depending on the material used. The UPV measurements with solid coupling were higher than these from the liquid coupling at all strength levels. The tests using couplants generally recorded lower UPV values than the conventional test, except when carbon fiber composite was used, which retuned higher values. Analysis of variances (ANOVA) was performed to confirm that there are statistically significant differences between the measurements recorded using a conventional system and a coupled system.

Keywords: compressive strength, coupling effect, statistical analysis, ultrasonic

Procedia PDF Downloads 311
31705 The Use of Water Resources Yield Model at Kleinfontein Dam

Authors: Lungile Maliba, O. I. Nkwonta, E Onyari

Abstract:

Water resources development and management are regarded as crucial for poverty reduction in many developing countries and sustainable economic growth such as South Africa. The contribution of large hydraulic infrastructure and management of it, particularly reservoirs, to development remains controversial. This controversy stems from the fact that from a historical point of view construction of reservoirs has brought fewer benefits than envisaged and has resulted in significant environmental and social costs. A further complexity in reservoir management is the variety of stakeholders involved, all with different objectives, including domestic and industrial water use, flood control, irrigation and hydropower generation. The objective was to evaluate technical adaptation options for kleinfontein Dam’s current operating rule curves. To achieve this objective, the current operating rules curves being used in the sub-basin were analysed. An objective methodology was implemented in other to get the operating rules with regards to the target storage curves. These were derived using the Water Resources Yield/Planning Model (WRY/PM), with the aim of maximising of releases to demand zones. The result showed that the system is over allocated and in addition the demands exceed the long-term yield that is available for the system. It was concluded that the current operating rules in the system do not produce the optimum operation such as target storage curves to avoid supply failures in the system.

Keywords: infrastructure, Kleinfontein dam, operating rule curve, water resources yield and planning model

Procedia PDF Downloads 120
31704 Renewable Energy Interfaced Shunt Active Filter Using a Virtual Flux Direct Power Control

Authors: M. R. Bengourina, M. Rahli, L. Hassaine, S. Saadi

Abstract:

In this study, we present a control method entitled virtual flux direct power control of a grid connected photovoltaic system associated with an active power filter. The virtual flux direct control of power (VF-DPC) is employed for the calculation of reference current generation. In this technique, the switches states of inverter are selected from a table of switching based on the immediate errors between the active and reactive powers and their reference values. The objectives of this paper are the reduction of Total Harmonic Distortion (THD) of source current, compensating reactive power and injecting the maximum active power available from the PV array into the load and/or grid. MATLAB/SIMULINK simulations are provided to demonstrate the performance of the proposed approach.

Keywords: shunt active power filter, VF-DPC, photovoltaic, MPPT

Procedia PDF Downloads 299
31703 Using Integrative Assessment in Distance Learning: The Case of Department of Education - Navotas City

Authors: Meduranda Marco

Abstract:

This paper aimed to discuss the Integrative Assessment (IA) initiative of the Schools Division Office - Navotas City. The introduction provided a brief landscape analysis of the current state of education, the context of SDO Navotas, and the rationale for the administration of Integrative Assessment (IA) in schools. The IA methodology, procedure, and implementation activities were also shared. Feedback and reports on IA showed positive results as all schools in the Division were able to operationalize IA and consequently foster academic ease for learners and parents. Challenges met after compliance were also documented and strategies to continuously improve the Integrative Assessment process were proposed.

Keywords: distance learning assessment, integrative assessment, academic ease, learning outcomes evaluation

Procedia PDF Downloads 125
31702 The Model of Open Cooperativism: The Case of Open Food Network

Authors: Vangelis Papadimitropoulos

Abstract:

This paper is part of the research program “Techno-Social Innovation in the Collaborative Economy”, funded by the Hellenic Foundation for Research and Innovation (H.F.R.I.) for the years 2022-2024. The paper showcases the Open Food Network (OFN) as an open-sourced digital platform supporting short food supply chains in local agricultural production and consumption. The paper outlines the research hypothesis, the theoretical framework, and the methodology of research as well as the findings and conclusions. Research hypothesis: The model of open cooperativism as a vehicle for systemic change in the agricultural sector. Theoretical framework: The research reviews the OFN as an illustrative case study of the three-zoned model of open cooperativism. The OFN is considered a paradigmatic case of the model of open cooperativism inasmuch as it produces commons, it consists of multiple stakeholders including ethical market entities, and it is variously supported by local authorities across the globe, the latter prefiguring the mini role of a partner state. Methodology: Research employs Ernesto Laclau and Chantal Mouffe’s discourse analysis -elements, floating signifiers, nodal points, discourses, logics of equivalence and difference- to analyse the breadth of empirical data gathered through literature review, digital ethnography, a survey, and in-depth interviews with core OFN members. Discourse analysis classifies OFN floating signifiers, nodal points, and discourses into four themes: value proposition, governance, economic policy, and legal policy. Findings: OFN floating signifiers align around the following nodal points and discourses: “digital commons”, “short food supply chains”, “sustainability”, “local”, “the elimination of intermediaries” and “systemic change”. The current research identifies a lack of common ground of what the discourse of “systemic change” signifies on the premises of the OFN’s value proposition. The lack of a common mission may be detrimental to the formation of a common strategy that would be perhaps deemed necessary to bring about systemic change in agriculture. Conclusions: Drawing on Laclau and Mouffe’s discourse theory of hegemony, research introduces a chain of equivalence by aligning discourses such as “agro-ecology”, “commons-based peer production”, “partner state” and “ethical market entities” under the model of open cooperativism, juxtaposed against the current hegemony of neoliberalism, which articulates discourses such as “market fundamentalism”, “privatization”, “green growth” and “the capitalist state” to promote corporatism and entrepreneurship. Research makes the case that for OFN to further agroecology and challenge the current hegemony of industrial agriculture, it is vital that it opens up its supply chains into equivalent sectors of the economy, civil society, and politics to form a chain of equivalence linking together ethical market entities, the commons and a partner state around the model of open cooperativism.

Keywords: sustainability, the digital commons, open cooperativism, innovation

Procedia PDF Downloads 50
31701 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach

Authors: Ju-Young Hwang, Hyo-Gyoung Kwak

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis

Procedia PDF Downloads 395
31700 MHD Flow in a Curved Duct with FCI under a Uniform Magnetic Field

Authors: Yue Yan, Chang Nyung Kim

Abstract:

The numerical investigation of the three-dimensional liquid-metal (LM) magnetohydrodynamic (MHD) flows in a curved duct with flow channel insert (FCI) is presented in this paper, based on the computational fluid dynamics (CFD) method. A uniform magnetic field is applied perpendicular to the duct. The interdependency of the flow variables is examined in terms of the flow velocity, current density, electric potential and pressure. The electromagnetic characteristics of the LM MHD flows are reviewed with an introduction of the electric-field component and electro-motive component of the current. The influence of the existence of the FCI on the fluid flow is investigated in detail. The case with FCI slit located near the side layer yields smaller pressure gradient with stable flow field.

Keywords: curved duct, flow channel insert, liquid-metal, magnetohydrodynamic

Procedia PDF Downloads 468
31699 Fuzzy Approach for Fault Tree Analysis of Water Tube Boiler

Authors: Syed Ahzam Tariq, Atharva Modi

Abstract:

This paper presents a probabilistic analysis of the safety of water tube boilers using fault tree analysis (FTA). A fault tree has been constructed by considering all possible areas where a malfunction could lead to a boiler accident. Boiler accidents are relatively rare, causing a scarcity of data. The fuzzy approach is employed to perform a quantitative analysis, wherein theories of fuzzy logic are employed in conjunction with expert elicitation to calculate failure probabilities. The Fuzzy Fault Tree Analysis (FFTA) provides a scientific and contingent method to forecast and prevent accidents.

Keywords: fault tree analysis water tube boiler, fuzzy probability score, failure probability

Procedia PDF Downloads 100
31698 Structural, Spectral and Optical Properties of Boron-Aluminosilicate Glasses with High Dy₂O₃ and Er₂O₃ Content for Faraday Rotator Operating at 2µm

Authors: Viktor D. Dubrovin, Masoud Mollaee, Jie Zong, Xiushan Zhu, Nasser Peyghambarian

Abstract:

Glasses doped with high rare-earth (RE) elements concentration attracted considerable attention since the middle of the 20th century due to their particular magneto-optical properties. Such glasses exhibit the Faraday effect in which the polarization plane of a linearly polarized light beam is rotated by the interaction between the incident light and the magneto-optical material. That effect found application in optical isolators that are useful for laser systems, which can prevent back reflection of light into lasers or optical amplifiers and reduce signal instability and noise. Glasses are of particular interest since they are cost-effective and can be formed into fibers, thus breaking the limits of traditional bulk optics requiring optical coupling for use with fiber-optic systems. The advent of high-power fiber lasers operating near 2µm revealed a necessity in the development of all fiber isolators for this region. Ce³⁺, Pr³⁺, Dy³⁺, and Tb³⁺ ions provide the biggest contribution to the Verdet constant value of optical materials among the RE. It is known that Pr³⁺ and Tb³⁺ ions have strong absorption bands near 2 µm, thus making Dy³⁺ and Ce³⁺ the only prospective candidates for fiber isolator operating in that region. Due to the high tendency of Ce³⁺ ions pass to Ce⁴⁺ during the synthesis, glasses with high cerium content usually suffers from Ce⁴⁺ ions absorption extending from visible to IR. Additionally, Dy³⁺ (₆H¹⁵/²) same as Ho³⁺ (⁵I₈) ions, have the largest effective magnetic moment (µeff = 10.6 µB) among the RE ions that starts to play the key role if the operating region is far from 4fⁿ→ 4fⁿ⁻¹5 d¹ electric-dipole transition relevant to the Faraday Effect. Considering the high effective magnetic moment value of Er³⁺ ions (µeff = 9.6 µB) that is 3rd after Dy³⁺/ Ho³⁺ and Tb³⁺, it is possible to assume that Er³⁺ doped glasses should exhibit Verdet constant value near 2µm that is comparable with one of Dy doped glasses. Thus, partial replacement of Dy³⁺ on Er³⁺ ions has been performed, keeping the overall concentration of Re₂O₃ equal to 70 wt.% (30.6 mol.%). Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ (RE= Er, Dy) glasses had been synthesized, and their thermal, spectral, optical, structural, and magneto-optical properties had been studied. Glasses synthesis had been conducted in Pt crucibles for 3h at 1500 °C. The obtained melt was poured into preheated up to 400 °C mold and annealed from 800 oC to room temperature for 12h with 1h dwell. The mass of obtained glass samples was about 200g. Shown that the difference between crystallization and glass transition temperature is about 150 oC, even taking into account the fact that high content of RE₂O₃ leads to glass network depolymerization. Verdet constant of Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses for wavelength 1950 nm can reach more than 5.9 rad/(T*m), which is among the highest number reported for a paramagnetic glass at this wavelength. The refractive index value was found to be equal to 1.7545 at 633 nm. Our experimental results show that Al₂O₃-B₂O₃-SiO₂-30.6RE₂O₃ glasses with high Dy₂O₃ content are expected to be promising material for use as highly effective Faraday isolators and modulators of electromagnetic radiation in the 2μm region.

Keywords: oxide glass, magneto-optical, dysprosium, erbium, Faraday rotator, boron-aluminosilicate system

Procedia PDF Downloads 97