Search results for: apprenticeship training
2375 Posterior Acetabular Fractures-Optimizing the Treatment by Enhancing Practical Skills
Authors: Olivera Lupescu, Taina Elena Avramescu, Mihail Nagea, Alexandru Dimitriu
Abstract:
Acetabular fractures represent a real challenge due to their impact upon the long term function of the hip joint, and due to the risk of intra- and peri-operative complications especially that they affect young, active people. That is why treating these fractures require certain skills which must be exercised, regarding the pre-operative planning, as well as the execution of surgery.The authors retrospectively analyse 38 cases with acetabular fractures operated using the posterior approach in our hospital between 01.01.2013- 01.01.2015 for which complete medical records ensure a follow-up of 24 months, in order to establish the main causes of potential errors and to underline the methods for preventing them. This target is included in the Erasmus + project ‘Collaborative learning for enhancing practical skills for patient-focused interventions in gait rehabilitation after orthopedic surgery COR-skills’. This paper analyses the pitfalls revealed by these cases, as well as the measures necessary to enhance the practical skills of the surgeons who perform acetabular surgery. Pre-op planning matched the intra and post-operative outcome in 88% of the analyzed points, from 72% at the beginning to 94% in the last case, meaning that experience is very important in treating this injury. The main problems detected for the posterior approach were: nervous complications - 3 cases, 1 of them a complete paralysis of the sciatic nerve, which recovered 6 months after surgery, and in other 2 cases intra-articular position of the screws was demonstrated by post-operative CT scans, so secondary screw removal was necessary in these cases. We analysed this incident, too, due to lack of information about the relationship between the screws and the joint secondary to this approach. Septic complications appeared in 3 cases, 2 superficial and 1 profound (requiring implant removal). The most important problems were the reduction of the fractures and the positioning of the screws so as not to interfere with the the articular space. In posterior acetabular fractures, pre-op complex planning is important in order to achieve maximum treatment efficacy with minimum of risk; an optimal training of the surgeons insisting on the main points of potential mistakes ensure the success of the procedure, as well as a favorable outcome for the patient.Keywords: acetabular fractures, articular congruency, surgical skills, vocational training
Procedia PDF Downloads 2062374 A New Scheme for Chain Code Normalization in Arabic and Farsi Scripts
Authors: Reza Shakoori
Abstract:
This paper presents a structural correction of Arabic and Persian strokes using manipulation of their chain codes in order to improve the rate and performance of Persian and Arabic handwritten word recognition systems. It collects pure and effective features to represent a character with one consolidated feature vector and reduces variations in order to decrease the number of training samples and increase the chance of successful classification. Our results also show that how the proposed approaches can simplify classification and consequently recognition by reducing variations and possible noises on the chain code by keeping orientation of characters and their backbone structures.Keywords: Arabic, chain code normalization, OCR systems, image processing
Procedia PDF Downloads 4042373 Optimal Pricing Based on Real Estate Demand Data
Authors: Vanessa Kummer, Maik Meusel
Abstract:
Real estate demand estimates are typically derived from transaction data. However, in regions with excess demand, transactions are driven by supply and therefore do not indicate what people are actually looking for. To estimate the demand for housing in Switzerland, search subscriptions from all important Swiss real estate platforms are used. These data do, however, suffer from missing information—for example, many users do not specify how many rooms they would like or what price they would be willing to pay. In economic analyses, it is often the case that only complete data is used. Usually, however, the proportion of complete data is rather small which leads to most information being neglected. Also, the data might have a strong distortion if it is complete. In addition, the reason that data is missing might itself also contain information, which is however ignored with that approach. An interesting issue is, therefore, if for economic analyses such as the one at hand, there is an added value by using the whole data set with the imputed missing values compared to using the usually small percentage of complete data (baseline). Also, it is interesting to see how different algorithms affect that result. The imputation of the missing data is done using unsupervised learning. Out of the numerous unsupervised learning approaches, the most common ones, such as clustering, principal component analysis, or neural networks techniques are applied. By training the model iteratively on the imputed data and, thereby, including the information of all data into the model, the distortion of the first training set—the complete data—vanishes. In a next step, the performances of the algorithms are measured. This is done by randomly creating missing values in subsets of the data, estimating those values with the relevant algorithms and several parameter combinations, and comparing the estimates to the actual data. After having found the optimal parameter set for each algorithm, the missing values are being imputed. Using the resulting data sets, the next step is to estimate the willingness to pay for real estate. This is done by fitting price distributions for real estate properties with certain characteristics, such as the region or the number of rooms. Based on these distributions, survival functions are computed to obtain the functional relationship between characteristics and selling probabilities. Comparing the survival functions shows that estimates which are based on imputed data sets do not differ significantly from each other; however, the demand estimate that is derived from the baseline data does. This indicates that the baseline data set does not include all available information and is therefore not representative for the entire sample. Also, demand estimates derived from the whole data set are much more accurate than the baseline estimation. Thus, in order to obtain optimal results, it is important to make use of all available data, even though it involves additional procedures such as data imputation.Keywords: demand estimate, missing-data imputation, real estate, unsupervised learning
Procedia PDF Downloads 2852372 Functional Impairment in South African Children with ADHD: Design, Implementation and Evaluation of a Targeted Intervention
Authors: Mareli Fischer, Kevin G. F. Thomas
Abstract:
Although Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most prevalent childhood neurobehavioural disorders, little empirical research has been published on its clinical presentation in Africa, and, globally, few studies evaluate ADHD intervention programs that emphasize parent training. Hence, Stage 1 of this research programme aimed to describe the functional impairment of South African children with ADHD, and also sought to investigate the influence of sociodemographic variables (e.g., sex, age, socioeconomic status, family environment) and clinical variables (e.g., ADHD subtype and comorbidity) on the degree of that impairment. We used the Mini International Neuropsychiatric Interview for Children and Adolescents as a diagnostic tool, and the Child Behavior Checklist, the Strengths and Difficulties Questionnaire, and the Impairment Rating Scale as measures of functional impairment. Results from this stage of the research indicated that South African children and adolescents who meet diagnostic criteria for ADHD experience most functional impairment in the school domain, as well as in the area of social functioning. None of the measured sociodemographic variables had a significant detrimental or protective effect on how ADHD symptoms impacted on functioning. In terms of comorbidity, the presence of Major Depressive Disorder, Conduct Disorder, and Oppositional Defiant Disorder were all associated with significantly impaired overall functioning. Stage 2 of the research programme aimed to design, implement, and evaluate a child-specific intervention that targeted the primary areas of impairment identified in Stage 1. Existing literature suggests that a positive parent-training programme, in the group format, is one of the best options for cost-effective and successful ADHD intervention. Hence, the intervention took that form. Parents were taught basic behaviour analysis concepts within a supportive group context. Evaluation of the intervention’s efficacy used many of the same measures as in Stage 1, but also featured semi-structured interviews with participants and naturalistic observation of parent-child interaction. We will discuss preliminary results of that evaluation. Studying functional impairment and designing intervention plans in this way will pave the way for evidence-based treatment plans for children and adolescents diagnosed with ADHD.Keywords: attention deficit/hyperactivity disorder, children, intervention, parenting groups
Procedia PDF Downloads 4312371 Navigating through Uncertainty: An Explorative Study of Managers’ Experiences in China-foreign Cooperative Higher Education
Abstract:
To drive practical interpretations and applications of various policies in building the transnational education joint-ventures, middle managers learn to navigate through uncertainties and ambiguities. However, the current literature views very little about those middle managers’ experiences, perceptions, and practices. This paper takes the empirical approach and aims to uncover the middle managers’ experiences by conducting interviews, campus visits, and document analysis. Following the qualitative research method approach, the researchers gathered information from a mixture of fourteen foreign and Chinese managers. Their perceptions of the China-foreign cooperation in higher education and their perceived roles have offered important, valuable insights to this group of people’s attitudes and management performances. The diverse cultural and demographic backgrounds contributed to the significance of the study. There are four key findings. One, middle managers’ immediate micro-contexts and individual attitudes are the top two influential factors in managers’ performances. Two, the foreign middle managers showed a stronger sense of self-identity in risk-taking. Three, the Chinese middle managers preferred to see difficulties as part of their assigned responsibilities. Four, middle managers in independent universities demonstrated a stronger sense of belonging and fewer frustrations than middle managers in secondary institutes. The researchers propose that training for managers in a transnational educational setting should consider these discoveries when select fitting topics and content. In particular, middle managers should be better prepared to anticipate their everyday jobs in the micro-environment; hence, information concerning sponsor organizations’ working culture is as essential as knowing the national and local regulations, and socio-culture. Different case studies can help the managers to recognize and celebrate the diversity in transnational education. Situational stories can help them to become aware of the diverse and wide range of work contexts so that they will not feel to be left alone when facing challenges without relevant previous experience or training. Though this research is a case study based in the Chinese transnational higher education setting, the implications could be relevant and comparable to other transnational higher education situations and help to continue expanding the potential applications in this field.Keywords: educational management, middle manager performance, transnational higher education
Procedia PDF Downloads 1632370 Reflections on Mechanism of Foreign Teachers’ Administration in Colleges and Universities in China
Authors: YangHui
Abstract:
Foreign teachers play an important role in the process of internationalization of higher education in China. Based on the method of literature analysis, firstly study the contents about the mechanism of the foreign teachers’ administration in our country, then secondly analyze the main barriers of the foreign teacher’s administration mechanism. Finally, it is suggested that the international exchange department in universities should constantly improve the employment mechanism, training mechanism, appraisal mechanism and incentive mechanism to promote the internationalization of higher education.Keywords: internationalization of higher education, mechanism, administration of foreign teachers, colleges and universities, China
Procedia PDF Downloads 4782369 Research Networks and Knowledge Sharing: An Exploratory Study of Aquaculture in Europe
Authors: Zeta Dooly, Aidan Duane
Abstract:
The collaborative European funded research and development landscape provides prime environmental conditions for multi-disciplinary teams to learn and enhance their knowledge beyond the capability of training and learning within their own organisation cocoons. Whilst the emergence of the academic entrepreneur has changed the focus of educational institutions to that of quasi-businesses, the training and professional development of lecturers and academic staff are often not formalised to the same level as industry. This research focuses on industry and academic collaborative research funded by the European Commission. The impact of research is scalable if an optimum research network is created and managed effectively. This paper investigates network embeddedness, the nature of relationships, links, and nodes within a research network, and the enhancement of the network’s knowledge. The contribution of this paper extends our understanding of establishing and maintaining effective collaborative research networks. The effects of network embeddedness are recognized in the literature as pertinent to innovation and the economy. Network theory literature claims that networks are essential to innovative clusters such as Silicon valley and innovation in high tech industries. This research provides evidence to support the impact collaborative research has on the disparate individuals toward their innovative contributions to their organisations and their own professional development. This study adopts a qualitative approach and uncovers some of the challenges of multi-disciplinary research through case study insights. The contribution of this paper recommends the establishment of scaffolding to accommodate cooperation in research networks, role appointment, and addressing contextual complexities early to avoid problem cultivation. Furthermore, it suggests recommendations in relation to network formation, intra-network challenges in relation to open data, competition, friendships, and competency enhancement. The network capability is enhanced by the adoption of the relevant theories; network theory, open innovation, and social exchange, with the understanding that the network structure has an impact on innovation and social exchange in research networks. The research concludes that there is an opportunity to deepen our understanding of the impact of network reuse and network hoping that provides scaffolding for the network members to enhance and build upon their knowledge using a progressive approach.Keywords: research networks, competency building, network theory, case study
Procedia PDF Downloads 1262368 Unsupervised Reciter Recognition Using Gaussian Mixture Models
Authors: Ahmad Alwosheel, Ahmed Alqaraawi
Abstract:
This work proposes an unsupervised text-independent probabilistic approach to recognize Quran reciter voice. It is an accurate approach that works on real time applications. This approach does not require a prior information about reciter models. It has two phases, where in the training phase the reciters' acoustical features are modeled using Gaussian Mixture Models, while in the testing phase, unlabeled reciter's acoustical features are examined among GMM models. Using this approach, a high accuracy results are achieved with efficient computation time process.Keywords: Quran, speaker recognition, reciter recognition, Gaussian Mixture Model
Procedia PDF Downloads 3802367 DenseNet and Autoencoder Architecture for COVID-19 Chest X-Ray Image Classification and Improved U-Net Lung X-Ray Segmentation
Authors: Jonathan Gong
Abstract:
Purpose AI-driven solutions are at the forefront of many pathology and medical imaging methods. Using algorithms designed to better the experience of medical professionals within their respective fields, the efficiency and accuracy of diagnosis can improve. In particular, X-rays are a fast and relatively inexpensive test that can diagnose diseases. In recent years, X-rays have not been widely used to detect and diagnose COVID-19. The under use of Xrays is mainly due to the low diagnostic accuracy and confounding with pneumonia, another respiratory disease. However, research in this field has expressed a possibility that artificial neural networks can successfully diagnose COVID-19 with high accuracy. Models and Data The dataset used is the COVID-19 Radiography Database. This dataset includes images and masks of chest X-rays under the labels of COVID-19, normal, and pneumonia. The classification model developed uses an autoencoder and a pre-trained convolutional neural network (DenseNet201) to provide transfer learning to the model. The model then uses a deep neural network to finalize the feature extraction and predict the diagnosis for the input image. This model was trained on 4035 images and validated on 807 separate images from the ones used for training. The images used to train the classification model include an important feature: the pictures are cropped beforehand to eliminate distractions when training the model. The image segmentation model uses an improved U-Net architecture. This model is used to extract the lung mask from the chest X-ray image. The model is trained on 8577 images and validated on a validation split of 20%. These models are calculated using the external dataset for validation. The models’ accuracy, precision, recall, f1-score, IOU, and loss are calculated. Results The classification model achieved an accuracy of 97.65% and a loss of 0.1234 when differentiating COVID19-infected, pneumonia-infected, and normal lung X-rays. The segmentation model achieved an accuracy of 97.31% and an IOU of 0.928. Conclusion The models proposed can detect COVID-19, pneumonia, and normal lungs with high accuracy and derive the lung mask from a chest X-ray with similarly high accuracy. The hope is for these models to elevate the experience of medical professionals and provide insight into the future of the methods used.Keywords: artificial intelligence, convolutional neural networks, deep learning, image processing, machine learning
Procedia PDF Downloads 1302366 Towards End-To-End Disease Prediction from Raw Metagenomic Data
Authors: Maxence Queyrel, Edi Prifti, Alexandre Templier, Jean-Daniel Zucker
Abstract:
Analysis of the human microbiome using metagenomic sequencing data has demonstrated high ability in discriminating various human diseases. Raw metagenomic sequencing data require multiple complex and computationally heavy bioinformatics steps prior to data analysis. Such data contain millions of short sequences read from the fragmented DNA sequences and stored as fastq files. Conventional processing pipelines consist in multiple steps including quality control, filtering, alignment of sequences against genomic catalogs (genes, species, taxonomic levels, functional pathways, etc.). These pipelines are complex to use, time consuming and rely on a large number of parameters that often provide variability and impact the estimation of the microbiome elements. Training Deep Neural Networks directly from raw sequencing data is a promising approach to bypass some of the challenges associated with mainstream bioinformatics pipelines. Most of these methods use the concept of word and sentence embeddings that create a meaningful and numerical representation of DNA sequences, while extracting features and reducing the dimensionality of the data. In this paper we present an end-to-end approach that classifies patients into disease groups directly from raw metagenomic reads: metagenome2vec. This approach is composed of four steps (i) generating a vocabulary of k-mers and learning their numerical embeddings; (ii) learning DNA sequence (read) embeddings; (iii) identifying the genome from which the sequence is most likely to come and (iv) training a multiple instance learning classifier which predicts the phenotype based on the vector representation of the raw data. An attention mechanism is applied in the network so that the model can be interpreted, assigning a weight to the influence of the prediction for each genome. Using two public real-life data-sets as well a simulated one, we demonstrated that this original approach reaches high performance, comparable with the state-of-the-art methods applied directly on processed data though mainstream bioinformatics workflows. These results are encouraging for this proof of concept work. We believe that with further dedication, the DNN models have the potential to surpass mainstream bioinformatics workflows in disease classification tasks.Keywords: deep learning, disease prediction, end-to-end machine learning, metagenomics, multiple instance learning, precision medicine
Procedia PDF Downloads 1252365 Prediction of Anticancer Potential of Curcumin Nanoparticles by Means of Quasi-Qsar Analysis Using Monte Carlo Method
Authors: Ruchika Goyal, Ashwani Kumar, Sandeep Jain
Abstract:
The experimental data for anticancer potential of curcumin nanoparticles was calculated by means of eclectic data. The optimal descriptors were examined using Monte Carlo method based CORAL SEA software. The statistical quality of the model is following: n = 14, R² = 0.6809, Q² = 0.5943, s = 0.175, MAE = 0.114, F = 26 (sub-training set), n =5, R²= 0.9529, Q² = 0.7982, s = 0.086, MAE = 0.068, F = 61, Av Rm² = 0.7601, ∆R²m = 0.0840, k = 0.9856 and kk = 1.0146 (test set) and n = 5, R² = 0.6075 (validation set). This data can be used to build predictive QSAR models for anticancer activity.Keywords: anticancer potential, curcumin, model, nanoparticles, optimal descriptors, QSAR
Procedia PDF Downloads 3182364 Developing an Intonation Labeled Dataset for Hindi
Authors: Esha Banerjee, Atul Kumar Ojha, Girish Nath Jha
Abstract:
This study aims to develop an intonation labeled database for Hindi. Although no single standard for prosody labeling exists in Hindi, researchers in the past have employed perceptual and statistical methods in literature to draw inferences about the behavior of prosody patterns in Hindi. Based on such existing research and largely agreed upon intonational theories in Hindi, this study attempts to develop a manually annotated prosodic corpus of Hindi speech data, which can be used for training speech models for natural-sounding speech in the future. 100 sentences ( 500 words) each for declarative and interrogative types have been labeled using Praat.Keywords: speech dataset, Hindi, intonation, labeled corpus
Procedia PDF Downloads 1972363 Recovery in Serious Mental Illness: Perception of Health Care Trainees in Morocco
Authors: Sophia El Ouazzani, Amer M. Burhan, Mary Wickenden
Abstract:
Background: Despite improvements in recent years, the Moroccan mental healthcare system still face disparity between available resources and the current population’sneeds. The societal stigma, and limited economic, political, and human resources are all factors in shaping the psychiatric system, exacerbating the discontinuity of services for users after discharged from the hospital. As a result, limited opportunities for social inclusion and meaningful community engagement undermines human rights and recovery potential for people with mental health problems, especially those with psychiatric disabilities from serious mental illness (SMI). Recovery-oriented practice, such as mental health rehabilitation, addresses the complex needs of patients with SMI and support their community inclusion. The cultural acceptability of recovery-oriented practice is an important notion to consider for a successful implementation. Exploring the extent to which recovery-oriented practices are used in Morocco is a necessary first step to assess the cultural relevance of such a practice model. Aims: This study aims to explore understanding and knowledge, perception, and perspective about core concepts in mental health rehabilitation, including psychiatric disability, recovery, and engagement in meaningful occupations for people with SMI in Morocco. Methods: A pilot qualitative study was undertaken. Data was collected via semi-structured interviews and focusgroup discussions with healthcare professional students. Questions were organised around the following themes: 1) students’ perceptions, understanding, and expectations around concepts such as SMI, mental health disability, and recovery, and 2) changes in their views and expectations after starting their professional training. Further analysis of students’ perspectives on the concept of ‘meaningful occupation’ and how is this viewed within the context of the research questions was done. The data was extracted using an inductive thematic analysis approach. This is a pilot stage of a doctoral project, further data will be collected and analysed until saturation is reached. Results: A total of eight students were included in this study which included occupational therapy and mental health nursing students receiving training in Morocco. The following themes emerged as influencing students’ perceptions and views around the main concepts: 1) Stigma and discrimination, 2) Fatalism and low expectations, 3) Gendered perceptions, 4) Religious causation, 5) Family involvement, 6) Professional background, 7) Inaccessibility of services and treatment. Discussion/Contribution: Preliminary analysis of the data suggests that students’ perceptions changed after gaining more clinical experiences and being exposed to people with psychiatric disabilities. Prior to their training, stigma shaped greatly how they viewed people with SMI. The fear, misunderstanding, and shame around SMI and their functional capacities may contribute to people with SMI being stigmatizedand marginalised from their family and their community. Religious causations associated to SMIsare understood as further deepening the social stigma around psychiatric disability. Perceptions are influenced by gender, with women being doubly discriminated against in relation to recovery opportunities. Therapeutic pessimism seems to persist amongst students and within the mental healthcare system in general and regarding the recovery potential and opportunities for people with SMI. The limited resources, fatalism, and stigma all contribute to the low expectations for recovery and community inclusion. Implications and future directions will be discussed.Keywords: disability, mental health rehabilitation, recovery, serious mental illness, transcultural psychiatry
Procedia PDF Downloads 1432362 The Effects of Integrating Knowledge Management and e-Learning: Productive Work and Learning Coverage
Authors: Ashraf Ibrahim Awad
Abstract:
It is important to formulate suitable learning environments ca-pable to be customized according to value perceptions of the university. In this paper, light is shed on the concepts of integration between knowledge management (KM), and e-learning (EL) in the higher education sector of the economy in Abu Dhabi Emirate, United Arab Emirates (UAE). A discussion on and how KM and EL can be integrated and leveraged for effective education and training is presented. The results are derived from the literature and interviews with 16 of the academics in eight universities in the Emirate. The conclusion is that KM and EL have much to offer each other, but this is not yet reflected at the implementation level, and their boundaries are not always clear. Interviews have shown that both concepts perceived to be closely related and, responsibilities for these initiatives are practiced by different departments or units.Keywords: knowledge management, e-learning, learning integration, universities, UAE
Procedia PDF Downloads 5072361 The Introduction of Modern Diagnostic Techniques and It Impact on Local Garages
Authors: Mustapha Majid
Abstract:
Gone were the days when technicians/mechanics will have to spend too much time trying to identify a mechanical fault and rectify the problem. Now the emphasis is on the use of Automobile diagnosing Equipment through the use of computers and special software. An investigation conducted at Tamale Metropolis and Accra in the Northern and Greater Accra regions of Ghana, respectively. Methodology for data gathering were; questionnaires, physical observation, interviews, and newspaper. The study revealed that majority of mechanics lack computer skills which can enable them use diagnosis tools such as Exhaust Gas Analyzer, Scan Tools, Electronic Wheel Balancing machine, etc.Keywords: diagnosing, local garages and modern garages, lack of knowledge of diagnosing posing an existential threat, training of local mechanics
Procedia PDF Downloads 1612360 Instructors Willingness, Self-Efficacy Beliefs, Attitudes and Knowledge about Provisions of Instructional Accommodations for Students with Disabilities: The Case Selected Universities in Ethiopia
Authors: Abdreheman Seid Abdella
Abstract:
This study examined instructors willingness, self-efficacy beliefs, attitudes and knowledge about provisions of instructional accommodations for students with disabilities in universities. Major concepts used in this study operationally defined and some models of disability were reviewed. Questionnaires were distributed to a total of 181 instructors from four universities and quantitative data was generated. Then to analyze the data, appropriate methods of data analysis were employed. The result indicated that on average instructors had positive willingness, strong self-efficacy beliefs and positive attitudes towards providing instructional accommodations. In addition, the result showed that the majority of participants had moderate level of knowledge about provision of instructional accommodations. Concerning the relationship between instructors background variables and dependent variables, the result revealed that location of university and awareness raising training about Inclusive Education showed statistically significant relationship with all dependent variables (willingness, self-efficacy beliefs, attitudes and knowledge). On the other hand, gender and college/faculty did not show a statistically significant relationship. In addition, it was found that among the inter-correlation of dependent variables, the correlation between attitudes and willingness to provide accommodations was the strongest. Furthermore, using multiple linear regression analysis, this study also indicated that predictor variables like self-efficacy beliefs, attitudes, knowledge and teaching methodology training made statistically significant contribution to predicting the criterion willingness. Predictor variables like willingness and attitudes made statistically significant contribution to predicting self-efficacy beliefs. Predictor variables like willingness, Special Needs Education course and self-efficacy beliefs made statistically significant contribution to predict attitudes. Predictor variables like Special Needs Education courses, the location of university and willingness made statistically significant contribution to predicting knowledge. Finally, using exploratory factor analysis, this study showed that there were four components or factors each that represent the underlying constructs of willingness and self-efficacy beliefs to provide instructional accommodations items, five components for attitudes towards providing accommodations items and three components represent the underlying constructs for knowledge about provisions of instructional accommodations items. Based on the findings, recommendations were made for improving the situation of instructional accommodations in Ethiopian universities.Keywords: willingness, self-efficacy belief, attitude, knowledge
Procedia PDF Downloads 2702359 Early Intervention for Preschool Children of Parents with Mental Illness: The Evaluation of a Resource for Service Providers
Authors: Stella Laletas, Andrea Reupert, Melinda Goodyear, Bradley Morgan
Abstract:
Background: Many people with a mental illness have young children. Research has shown that early childhood is a particularly vulnerable time for children whose parents have a mental illness. Moreover, repeated research has demonstrated the effectiveness of a multiagency approach to family focused practice for improving parental functioning and preventing adverse outcomes in children whose parents have a mental illness, particularly in the early years of a child’s life. However, there is a paucity of professional development resources for professionals who work with families where a parent has a mental illness and has young children. Significance of the study: This study will make a contribution to addressing knowledge gaps around resource development and workforce needs for early childhood and mental health professionals working with young children where a parent has a mental illness. Objective: This presentation describes a newly developed resource, 'Pathways of Care', specifically designed for early childhood educators and mental health workers, alongside pilot evaluation data regarding its effectiveness. ‘Pathways of Care’ aims to promote collaborative practice and present early identification and referral processes for workers in this sector. The resource was developed by the Children of Parents with a Mental Illness (COPMI) National Initiative which is funded by the Australian Government. Method: Using a mixed method design, the effectiveness of the training resource is also presented. Fifteen workers completed the Family Focus Mental Health Practice Questionnaire pre and post using the resource, to measure confidence and practice change; semi-structured interviews were also conducted with eight of these same workers to further explore the utility of the resource. Findings: The findings indicated the resource was effective in increasing knowledge and confidence, particularly for new and/or inexperienced staff. Examples of how the resource was used in practice by various professions emerged from the interview data. Conclusions: Collaborative practice, early identification and intervention in early childhood can potentially play a key role in altering the life trajectory of children who are at risk. This information has important implications for workforce development and staff training in both the early childhood and mental health sectors. Implications for policy and future research are discussed.Keywords: parents with mental ilnesses, early intervention, evaluation, preschool children
Procedia PDF Downloads 4522358 3D Biomechanics Analysis of Tennis Elbow Factors & Injury Prevention Using Computer Vision and AI
Authors: Aaron Yan
Abstract:
Tennis elbow has been a leading injury and problem among amateur and even professional players. Many factors contribute to tennis elbow. In this research, we apply state of the art sensor-less computer vision and AI technology to study the biomechanics of a player’s tennis movements during training and competition as they relate to the causes of tennis elbow. We provide a framework for the analysis of key biomechanical parameters and their correlations with specific tennis stroke and movements that can lead to tennis elbow or elbow injury. We also devise a method for using AI to automatically detect player’s forms that can lead to tennis elbow development for on-court injury prevention.Keywords: Tennis Elbow, Computer Vision, AI, 3DAT
Procedia PDF Downloads 462357 Part of Speech Tagging Using Statistical Approach for Nepali Text
Authors: Archit Yajnik
Abstract:
Part of Speech Tagging has always been a challenging task in the era of Natural Language Processing. This article presents POS tagging for Nepali text using Hidden Markov Model and Viterbi algorithm. From the Nepali text, annotated corpus training and testing data set are randomly separated. Both methods are employed on the data sets. Viterbi algorithm is found to be computationally faster and accurate as compared to HMM. The accuracy of 95.43% is achieved using Viterbi algorithm. Error analysis where the mismatches took place is elaborately discussed.Keywords: hidden markov model, natural language processing, POS tagging, viterbi algorithm
Procedia PDF Downloads 3272356 Occupational Safety and Health in the Wake of Drones
Authors: Hoda Rahmani, Gary Weckman
Abstract:
The body of research examining the integration of drones into various industries is expanding rapidly. Despite progress made in addressing the cybersecurity concerns for commercial drones, knowledge deficits remain in determining potential occupational hazards and risks of drone use to employees’ well-being and health in the workplace. This creates difficulty in identifying key approaches to risk mitigation strategies and thus reflects the need for raising awareness among employers, safety professionals, and policymakers about workplace drone-related accidents. The purpose of this study is to investigate the prevalence of and possible risk factors for drone-related mishaps by comparing the application of drones in construction with manufacturing industries. The chief reason for considering these specific sectors is to ascertain whether there exists any significant difference between indoor and outdoor flights since most construction sites use drones outside and vice versa. Therefore, the current research seeks to examine the causes and patterns of workplace drone-related mishaps and suggest possible ergonomic interventions through data collection. Potential ergonomic practices to mitigate hazards associated with flying drones could include providing operators with professional pieces of training, conducting a risk analysis, and promoting the use of personal protective equipment. For the purpose of data analysis, two data mining techniques, the random forest and association rule mining algorithms, will be performed to find meaningful associations and trends in data as well as influential features that have an impact on the occurrence of drone-related accidents in construction and manufacturing sectors. In addition, Spearman’s correlation and chi-square tests will be used to measure the possible correlation between different variables. Indeed, by recognizing risks and hazards, occupational safety stakeholders will be able to pursue data-driven and evidence-based policy change with the aim of reducing drone mishaps, increasing productivity, creating a safer work environment, and extending human performance in safe and fulfilling ways. This research study was supported by the National Institute for Occupational Safety and Health through the Pilot Research Project Training Program of the University of Cincinnati Education and Research Center Grant #T42OH008432.Keywords: commercial drones, ergonomic interventions, occupational safety, pattern recognition
Procedia PDF Downloads 2092355 How Is a Machine-Translated Literary Text Organized in Coherence? An Analysis Based upon Theme-Rheme Structure
Abstract:
With the ultimate goal to automatically generate translated texts with high quality, machine translation has made tremendous improvements. However, its translations of literary works are still plagued with problems in coherence, esp. the translation between distant language pairs. One of the causes of the problems is probably the lack of linguistic knowledge to be incorporated into the training of machine translation systems. In order to enable readers to better understand the problems of machine translation in coherence, to seek out the potential knowledge to be incorporated, and thus to improve the quality of machine translation products, this study applies Theme-Rheme structure to examine how a machine-translated literary text is organized and developed in terms of coherence. Theme-Rheme structure in Systemic Functional Linguistics is a useful tool for analysis of textual coherence. Theme is the departure point of a clause and Rheme is the rest of the clause. In a text, as Themes and Rhemes may be connected with each other in meaning, they form thematic and rhematic progressions throughout the text. Based on this structure, we can look into how a text is organized and developed in terms of coherence. Methodologically, we chose Chinese and English as the language pair to be studied. Specifically, we built a comparable corpus with two modes of English translations, viz. machine translation (MT) and human translation (HT) of one Chinese literary source text. The translated texts were annotated with Themes, Rhemes and their progressions throughout the texts. The annotated texts were analyzed from two respects, the different types of Themes functioning differently in achieving coherence, and the different types of thematic and rhematic progressions functioning differently in constructing texts. By analyzing and contrasting the two modes of translations, it is found that compared with the HT, 1) the MT features “pseudo-coherence”, with lots of ill-connected fragments of information using “and”; 2) the MT system produces a static and less interconnected text that reads like a list; these two points, in turn, lead to the less coherent organization and development of the MT than that of the HT; 3) novel to traditional and previous studies, Rhemes do contribute to textual connection and coherence though less than Themes do and thus are worthy of notice in further studies. Hence, the findings suggest that Theme-Rheme structure be applied to measuring and assessing the coherence of machine translation, to being incorporated into the training of the machine translation system, and Rheme be taken into account when studying the textual coherence of both MT and HT.Keywords: coherence, corpus-based, literary translation, machine translation, Theme-Rheme structure
Procedia PDF Downloads 2072354 The People's Tribunal: Empowerment by Survivors for Survivors of Child Abuse
Authors: Alan Collins
Abstract:
This study explains how The People’s Tribunal empowered survivors of child abuse. It examines how People’s tribunals can be effective mean of empowerment; the challenges of empowerment – expectation v. reality; the findings and how they reflect other inquiry findings; and the importance of listening and learning from survivors. UKCSAPT “The People’s Tribunal” was established by survivors of child sex abuse and members of civil society to investigate historic cases of institutional sex abuse. The independent inquiry, led by a panel of four judges, listened to evidence spanning four decades from survivors and experts. A common theme throughout these accounts showed that a series of institutional failures prevented abuse from being reported; and that there are clear links between children being rendered vulnerable by these failures and predatory abuse on an organised scale. It made a series of recommendations including the establishment of a permanent and open forum for victims to share experiences and give evidence, better links between mental health services and police investigations, and training for police and judiciary professionals on the effects of undisclosed sexual abuse. The main findings of the UKCSAPT report were:-There are clear links between children rendered vulnerable by institutional failures and predatory abuse on an organised scale, even if these links often remain obscure. -UK governmental institutions have failed to provide survivors with meaningful opportunities for either healing or justice. -The vital mental health needs of survivors are not being met and this undermines both their psychological recovery and access to justice. -Police and other authorities often lack the training to understand the complex reasons for the inability of survivors to immediately disclose a history of abuse. -Without far-reaching changes in institutional culture and practices, the sexual abuse of children will continue to be a significant scourge in the UK. The report also outlined a series of recommendations for improving reporting and mental health provision, and access to justice for victims were made, including: -A permanent, government-funded popular tribunal should be established to enable survivors to come forward and tell their stories. -Survivors giving evidence should be assigned an advocate to assist their access to justice. -Mental health services should be linked to police investigations to help victims disclose abuse. -Victims who fear reprisals should be provided with a channel though which to give evidence anonymously.Keywords: empowerment, survivors, sexual, abuse
Procedia PDF Downloads 2572353 Shoreline Variation with Construction of a Pair of Training Walls, Ponnani Inlet, Kerala, India
Authors: Jhoga Parth, T. Nasar, K. V. Anand
Abstract:
An idealized definition of shoreline is that it is the zone of coincidence of three spheres such as atmosphere, lithosphere, and hydrosphere. Despite its apparent simplicity, this definition in practice a challenge to apply. In reality, the shoreline location deviates continually through time, because of various dynamic factors such as wave characteristics, currents, coastal orientation and the bathymetry, which makes the shoreline volatile. This necessitates us to monitor the shoreline in a temporal basis. If shoreline’s nature is understood at particular coastal stretch, it need not be the same trend at the other location, though belonging to the same sea front. Shoreline change is hence a local phenomenon and has to be studied with great intensity considering as many factors involved as possible. Erosion and accretion of sediment are such natures of a shoreline, which needs to be quantified by comparing with its predeceasing variations and understood before implementing any coastal projects. In recent years, advent of Global Positioning System (GPS) and Geographic Information System (GIS) acts as an emerging tool to quantify the intra and inter annual sediment rate getting accreted or deposited compared to other conventional methods in regards with time was taken and man power. Remote sensing data, on the other hand, paves way to acquire historical sets of data where field data is unavailable with a higher resolution. Short term and long term period shoreline change can be accurately tracked and monitored using a software residing in GIS - Digital Shoreline Analysis System (DSAS) developed by United States Geological Survey (USGS). In the present study, using DSAS, End Point Rate (EPR) is calculated analyze the intra-annual changes, and Linear Rate Regression (LRR) is adopted to study inter annual changes of shoreline. The shoreline changes are quantified for the scenario during the construction of breakwater in Ponnani river inlet along Kerala coast, India. Ponnani is a major fishing and landing center located 10°47’12.81”N and 75°54’38.62”E in Malappuram district of Kerala, India. The rate of erosion and accretion is explored using satellite and field data. The full paper contains the rate of change of shoreline, and its analysis would provide us understanding the behavior of the inlet at the study area during the construction of the training walls.Keywords: DSAS, end point rate, field measurements, geo-informatics, shoreline variation
Procedia PDF Downloads 2572352 An Action Toolkit for Health Care Services Driving Disability Inclusion in Universal Health Coverage
Authors: Jill Hanass-Hancock, Bradley Carpenter, Samantha Willan, Kristin Dunkle
Abstract:
Access to quality health care for persons with disabilities is the litmus test in our strive toward universal health coverage. Persons with disabilities experience a variety of health disparities related to increased health risks, greater socioeconomic challenges, and persistent ableism in the provision of health care. In low- and middle-income countries, the support needed to address the diverse needs of persons with disabilities and close the gaps in inclusive and accessible health care can appear overwhelming to staff with little knowledge and tools available. An action-orientated disability inclusion toolkit for health facilities was developed through consensus-building consultations and field testing in South Africa. The co-creation of the toolkit followed a bottom-up approach with healthcare staff and persons with disabilities in two developmental cycles. In cycle one, a disability facility assessment tool was developed to increase awareness of disability accessibility and service delivery gaps in primary healthcare services in a simple and action-orientated way. In cycle two, an intervention menu was created, enabling staff to respond to identified gaps and improve accessibility and inclusion. Each cycle followed five distinct steps of development: a review of needs and existing tools, design of the draft tool, consensus discussion to adapt the tool, pilot-testing and adaptation of the tool, and identification of the next steps. The continued consultations, adaptations, and field-testing allowed the team to discuss and test several adaptations while co-creating a meaningful and feasible toolkit with healthcare staff and persons with disabilities. This approach led to a simplified tool design with ‘key elements’ needed to achieve universal health coverage: universal design of health facilities, reasonable accommodation, health care worker training, and care pathway linkages. The toolkit was adapted for paper or digital data entry, produces automated, instant facility reports, and has easy-to-use training guides and online modules. The cyclic approach enabled the team to respond to emerging needs. The pilot testing of the facility assessment tool revealed that healthcare workers took significant actions to change their facilities after an assessment. However, staff needed information on how to improve disability accessibility and inclusion, where to acquire accredited training, and how to improve disability data collection, referrals, and follow-up. Hence, intervention options were needed for each ‘key element’. In consultation with representatives from the health and disability sectors, tangible and feasible solutions/interventions were identified. This process included the development of immediate/low-cost and long-term solutions. The approach gained buy-in from both sectors, who called for including the toolkit in the standard quality assessments for South Africa’s health care services. Furthermore, the process identified tangible solutions for each ‘key element’ and highlighted where research and development are urgently needed. The cyclic and consultative approach enabled the development of a feasible facility assessment tool and a complementary intervention menu, moving facilities toward universal health coverage for and persons with disabilities in low- or better-resourced contexts while identifying gaps in the availability of interventions.Keywords: public health, disability, accessibility, inclusive health care, universal health coverage
Procedia PDF Downloads 772351 ‘Obuntu Bulamu’: Parental Peer to Peer Support for Inclusion of Children with Disabilities in Central Uganda
Authors: Ruth Nalugya, Claire Nimusiima, Elizabeth Kawesa, Harriet Nambejja, Geert van Hove, Janet Seeley, Femke Bannink Mbazzi
Abstract:
Background: ‘Obuntu bulamu’, an intervention for children, parents, and teachers to improve the participation and inclusion of children with disabilities (CwD) through peer-to-peer support, was developed and tested in central Uganda between 2017 and 2019. The intervention consisted of children, parents, and teachers' training sessions and peer to peer support activities directed at disability inclusion using an African disability framework. In this paper, we discuss parent participation in and parent evaluation of the ‘Obuntu bulamu’ intervention. Methods: This qualitative Afrocentric intervention study was implemented in 10 communities in the Wakiso district in Central Uganda. We purposely selected children aged 8 to 14 years with different impairments, their peers, and parents, with different levels of household income and familial support, who were enrolled in primary schools in the ten communities with on average three children with disabilities per community. Sixty four parents (33 parents of CwDs and 31 peers) participating in the ‘Obuntu bulamu’ study were interviewed at baseline and endline. Two focus group discussions were held with parents at the midline. Parents also participated in a consultative meeting about the intervention design at baseline, and two evaluation workshops held at midline and endline. Thematic data analysis of the interview and focus group data was conducted. Results: Findings showed parents found the group-based activities inspiring and said they built hope and confidence. Parents felt the intervention was acceptable, culturally appropriate, and supportive as it built on values and practices from their own traditions. Parents reported the intervention enhanced a sense of togetherness and belonging through the group meetings and follow-up activities. Parents also mentioned that the training helped them develop more positive attitudes towards CwD and disability inclusion. Parents felt that the invention increased a child’s participation and inclusion at home, school, and in communities. Conclusion: The Obuntu bulamu peer to peer support intervention is an acceptable, culturally appropriate intervention that has the potential to improve the inclusion of CwD. A larger randomized control trial is needed to evaluate the impact of the intervention model.Keywords: inclusion, participation, inclusive education, peer support, belonging, Ubuntu, ‘Obuntu bulamu’
Procedia PDF Downloads 1042350 E-learning: An Effective Approach for Enhancing Social and Behavior Change Communication Capacity in Bangladesh
Authors: Mohammad K. Abedin, Mohammad Shahjahan, Zeenat Sultana, Tawfique Jahan, Jesmin Akter
Abstract:
To strengthen social and behavior change communication (SBCC) capacity of Ministry of Health and Family Welfare (MoHFW) of the Government of Bangladesh, BCCP/BKMI developed two eLearning courses providing opportunities for professional development of SBCC Program Managers who have no access to training or refreshers training. The two eLearning courses – Message and Material Development (MMD) and Monitoring and Evaluation (MandE) of SBCC programs – went online in September 2015, where all users could register their participation so results could be monitored. Methodology: To assess the uses of these courses a randomly selected sample was collected to run a pre and post-test analyses and a phone survey were conducted. Systematic random sampling was used to select a sample of 75 MandE and 25 MMD course participants from a sampling frame of 179 and 51 respectively. Results: As of September 2016, more than 179 learners have completed the MandE course, and 49 learners have completed the MMD course. The users of these courses are program managers, university faculty members, and students. Encouraging results were revealed from the analysis of pre and post-test scores and a phone survey three months after course completion. Test scores suggested a substantial increase in knowledge. The pre-test scores findings suggested that about 19% learners scored high on the MandE. The post-test scores finding indicated a high score (92%) of the sample across 4 modules of MandE. For MMD course in pre-test scoring, 30% of the learners scored high, and 100% scored high at the post-test. It was found that all the learners in the phone survey have discussed the courses. Most of the sharing occurred with colleagues and friends, usually through face to face (70%) interaction. The learners reported that they did recommend the two courses to concerned people. About 67% MandE and 76% MMD learners stated that the concepts that they had to learn during the course were put into practice in their work settings. The respondents for both MandE and MMD courses have provided a valuable set of suggestions that would further strengthen the courses. Conclusions: The study showed that the initiative offered ample opportunities to build capacity in various ways in which the eLearning courses were used. It also highlighted the importance of scaling up these efforts to further strengthen the outcomes.Keywords: e-learning course, message & material development, monitoring & evaluation, social and behavior change communication
Procedia PDF Downloads 2962349 Evaluating Textbooks for Brazilian Air Traffic Controllers’ English Language Training: A Checklist Proposal
Authors: Elida M. R. Bonifacio
Abstract:
English language proficiency has become an essential issue in aviation communication after aviation incidents, and accidents happened. Lack of proficiency or inappropriate use of the English language has been found as one of the factors that cause most of those incidents or accidents. Therefore, the International Civil Aviation Organization (ICAO) established the requirements for minimum English language proficiency of aviation personnel, especially pilots and air traffic controllers in the 192 member states. In Brazil, the discussions about this topic became patent after an accident that occurred in 2006, which was a mid-air collision and costed the life of 154 passengers and crew members. Thus, the number of schools and private practitioners willing to teach English for aviation purposes started to increase. Although the number of teaching materials internationally used for general purposes is relatively large, it would be inappropriate to adopt the same materials in classes that focus on communication in aviation contexts. On the contrary, the options of aviation English materials are scarce; moreover, they are internationally used and may not fulfill the linguistic needs of all their users around the world. In order to diminish the problems that Brazilian practitioners may encounter in the adoption of materials that demand a great level of adaptation to meet their students’ needs, a checklist was thought to evaluate textbooks. The aim of this paper is to propose a checklist that evaluates textbooks used in English language training of Brazilian air traffic controllers. The criteria used to compound the checklist are based on materials development literature, as well as on linguistic requirements established by ICAO on its publications, on English for Specific Purposes (ESP) principles, and on Brazilian aviation English language proficiency test format. The checklist has as main indicators the language learning tenets under which the book was written, graphical features, lexical, grammatical and functional competencies required for minimum proficiency, similarities to official testing format, and support materials, totaling 117 items marked as YES, NO or PARTIALLY. In order to verify if the use of the checklist is effective, an aviation English textbook was evaluated. From this evaluation, it is possible to measure quantitatively how much the material meets the students’ needs and to offer a tool to help professionals engaged in aviation English teaching around the world to choose the most appropriate textbook according to their audience. From the results, practitioners are able to verify which items the material does not fulfill and to make proper adaptations since the perfect material will be difficult to find.Keywords: aviation English, ICAO, materials development, English language proficiency
Procedia PDF Downloads 1362348 Machine Learning Model to Predict TB Bacteria-Resistant Drugs from TB Isolates
Authors: Rosa Tsegaye Aga, Xuan Jiang, Pavel Vazquez Faci, Siqing Liu, Simon Rayner, Endalkachew Alemu, Markos Abebe
Abstract:
Tuberculosis (TB) is a major cause of disease globally. In most cases, TB is treatable and curable, but only with the proper treatment. There is a time when drug-resistant TB occurs when bacteria become resistant to the drugs that are used to treat TB. Current strategies to identify drug-resistant TB bacteria are laboratory-based, and it takes a longer time to identify the drug-resistant bacteria and treat the patient accordingly. But machine learning (ML) and data science approaches can offer new approaches to the problem. In this study, we propose to develop an ML-based model to predict the antibiotic resistance phenotypes of TB isolates in minutes and give the right treatment to the patient immediately. The study has been using the whole genome sequence (WGS) of TB isolates as training data that have been extracted from the NCBI repository and contain different countries’ samples to build the ML models. The reason that different countries’ samples have been included is to generalize the large group of TB isolates from different regions in the world. This supports the model to train different behaviors of the TB bacteria and makes the model robust. The model training has been considering three pieces of information that have been extracted from the WGS data to train the model. These are all variants that have been found within the candidate genes (F1), predetermined resistance-associated variants (F2), and only resistance-associated gene information for the particular drug. Two major datasets have been constructed using these three information. F1 and F2 information have been considered as two independent datasets, and the third information is used as a class to label the two datasets. Five machine learning algorithms have been considered to train the model. These are Support Vector Machine (SVM), Random forest (RF), Logistic regression (LR), Gradient Boosting, and Ada boost algorithms. The models have been trained on the datasets F1, F2, and F1F2 that is the F1 and the F2 dataset merged. Additionally, an ensemble approach has been used to train the model. The ensemble approach has been considered to run F1 and F2 datasets on gradient boosting algorithm and use the output as one dataset that is called F1F2 ensemble dataset and train a model using this dataset on the five algorithms. As the experiment shows, the ensemble approach model that has been trained on the Gradient Boosting algorithm outperformed the rest of the models. In conclusion, this study suggests the ensemble approach, that is, the RF + Gradient boosting model, to predict the antibiotic resistance phenotypes of TB isolates by outperforming the rest of the models.Keywords: machine learning, MTB, WGS, drug resistant TB
Procedia PDF Downloads 522347 Evaluation of Triage Performance: Nurse Practice and Problem Classifications
Authors: Atefeh Abdollahi, Maryam Bahreini, Babak Choobi Anzali, Fatemeh Rasooli
Abstract:
Introduction: Triage becomes the main part of organization of care in Emergency department (ED)s. It is used to describe the sorting of patients for treatment priority in ED. The accurate triage of injured patients has reduced fatalities and improved resource usage. Besides, the nurses’ knowledge and skill are important factors in triage decision-making. The ability to define an appropriate triage level and their need for intervention is crucial to guide to a safe and effective emergency care. Methods: This is a prospective cross-sectional study designed for emergency nurses working in four public university hospitals. Five triage workshops have been conducted every three months for emergency nurses based on a standard triage Emergency Severity Index (ESI) IV slide set - approved by Iranian Ministry of Health. Most influential items on triage performance were discussed through brainstorming in workshops which then, were peer reviewed by five emergency physicians and two head registered nurses expert panel. These factors that might distract nurse’ attention from proper decisions included patients’ past medical diseases, the natural tricks of triage and system failure. After permission had been taken, emergency nurses participated in the study and were given the structured questionnaire. Data were analysed by SPSS 21.0. Results: 92 emergency nurses enrolled in the study. 30 % of nurses reported the past history of chronic disease as the most influential confounding factor to ascertain triage level, other important factors were the history of prior admission, past history of myocardial infarction and heart failure to be 20, 17 and 11 %, respectively. Regarding the concept of difficulties in triage practice, 54.3 % reported that the discussion with patients and family members was difficult and 8.7 % declared that it is hard to stay in a single triage room whole day. Among the participants, 45.7 and 26.1 % evaluated the triage workshops as moderately and highly effective, respectively. 56.5 % reported overcrowding as the most important system-based difficulty. Nurses were mainly doubtful to differentiate between the triage levels 2 and 3 according to the ESI VI system. No significant correlation was found between the work record of nurses in triage and the uncertainty in determining the triage level and difficulties. Conclusion: The work record of nurses hardly seemed to be effective on the triage problems and issues. To correct the deficits, training workshops should be carried out, followed by continuous refresher training and supportive supervision.Keywords: assessment, education, nurse, triage
Procedia PDF Downloads 2322346 Seafarers Safety, Watch-Keeping and Navigation
Authors: Sunday Moses Ojelabi
Abstract:
Safety is the protection of the crew, passenger and equipment itself, as well as those living and working near bodies of water, from hazardous situations. To assure safety, watch keeping is paramount because neglecting your watchkeeping can lead to hazardous situations. Navigation is the assignment of a sailor to a specific route on a vessel to operate. Navigation is the process of planning, managing, and directing a vessel safely to the desired destination with the aid of intense and efficient watch keeping. Safety, i,e, all measures done to preserve the welfare of marine life, maritime infrastructure, facilities, ships, offshore installations, crew, and passengers, as well as the preservation of navigation and the ease of maritime trade, are referred to as safety measures;. When it comes to health, the absence of a proper first aid kit will affect injured sailors and passengers. Not using goggles while shipping, ear muffs, etc., in the course of maintenance can be hazardous. Watchkeeping: i.e the specific dutiies assigned to a personnel in a vessel to see to its continous smooth functionality. Your lookout or watch officer [officer on navigational duty] must be active at all times in the course of duty. Navigation refers to the technique of precisely determining a craft or vehicle's position and directing its motion along a particular course. The seafarers are not being put through regular seminars, training, and orientations. In parts of West Africa, sailors go to school without being able to secure jobs until their papers expire. For that, they won’t go for another Standard Trainning Certification and Watch keeping for Seafarers to upgrade their certificate. In light of this, they are not familiar with the new vessels in the country, and for this, they can`t meet the safety, watch keeping, and navigation standards. Also, shipping companies and ship owners are being selfish by not putting the proper things needed onboard regarding safety, watchkeeping, and navigational equipment. The questions raised in these presentations are the breakdown of the safety activities, watch keeping effectiveness, and navigational accuracy. All safety and watch keeping regulations should be applied efficiently. The problem identified includes a lack of safety instruments onboard vessels in African waters. Also, inadequate proper watchkeeping due to the excess workload on the seafarers can lead to an improper lookout, which gives room to collision, hijacking, and piracy. The impact of this research is to inform African seafarers, shipping companies, and ship owners of the necessary information concerning the safety of their lives and that of their passengers, cargo, and equipment.Keywords: standard of training, certification, watch keeping for seafarers, navigation, safety, watchkeeping
Procedia PDF Downloads 76