Search results for: terrain detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3732

Search results for: terrain detection

2202 Modeling Soil Erosion and Sediment Yield in Geba Catchment, Ethiopia

Authors: Gebremedhin Kiros, Amba Shetty, Lakshman Nandagiri

Abstract:

Soil erosion is a major threat to the sustainability of land and water resources in the catchment and there is a need to identify critical areas of erosion so that suitable conservation measures may be adopted. The present study was taken up to understand the temporal and spatial distribution of soil erosion and daily sediment yield in Geba catchment (5137 km2) located in the Northern Highlands of Ethiopia. Soil and Water Assessment Tool (SWAT) was applied to the Geba catchment using data pertaining to rainfall, climate, soils, topography and land use/land cover (LU/LC) for the historical period 2000-2013. LU/LC distribution in the catchment was characterized using LANDSAT satellite imagery and the GIS-based ArcSWAT version of the model. The model was calibrated and validated using sediment concentration measurements made at the catchment outlet. The catchment was divided into 13 sub-basins and based on estimated soil erosion, these were prioritized on the basis of susceptibility to soil erosion. Model results indicated that the average sediment yield estimated of the catchment was 12.23 tons/ha/yr. The generated soil loss map indicated that a large portion of the catchment has high erosion rates resulting in significantly large sediment yield at the outlet. Steep and unstable terrain, the occurrence of highly erodible soils and low vegetation cover appeared to favor high soil erosion. Results obtained from this study prove useful in adopting in targeted soil and water conservation measures and promote sustainable management of natural resources in the Geba and similar catchments in the region.

Keywords: Ethiopia, Geba catchment, MUSLE, sediment yield, SWAT Model

Procedia PDF Downloads 318
2201 Agarose Amplification Based Sequencing (AG-seq) Characterization Cell-free RNA in Preimplantation Spent Embryo Medium

Authors: Huajuan Shi

Abstract:

Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.

Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection

Procedia PDF Downloads 96
2200 SEAWIZARD-Multiplex AI-Enabled Graphene Based Lab-On-Chip Sensing Platform for Heavy Metal Ions Monitoring on Marine Water

Authors: M. Moreno, M. Alique, D. Otero, C. Delgado, P. Lacharmoise, L. Gracia, L. Pires, A. Moya

Abstract:

Marine environments are increasingly threatened by heavy metal contamination, including mercury (Hg), lead (Pb), and cadmium (Cd), posing significant risks to ecosystems and human health. Traditional monitoring techniques often fail to provide the spatial and temporal resolution needed for real-time detection of these contaminants, especially in remote or harsh environments. SEAWIZARD addresses these challenges by leveraging the flexibility, adaptability, and cost-effectiveness of printed electronics, with the integration of microfluidics to develop a compact, portable, and reusable sensor platform designed specifically for real-time monitoring of heavy metal ions in seawater. The SEAWIZARD sensor is a multiparametric Lab-on-Chip (LoC) device, a miniaturized system that integrates several laboratory functions into a single chip, drastically reducing sample volumes and improving adaptability. This platform integrates three printed graphene electrodes for the simultaneous detection of Hg, Cd and Pb via square wave voltammetry. These electrodes share the reference and the counter electrodes to improve space efficiency. Additionally, it integrates printed pH and temperature sensors to correct environmental interferences that may impact the accuracy of metal detection. The pH sensor is based on a carbon electrode with iridium oxide electrodeposited while the temperature sensor is graphene based. A protective dielectric layer is printed on top of the sensor to safeguard it in harsh marine conditions. The use of flexible polyethylene terephthalate (PET) as the substrate enables the sensor to conform to various surfaces and operate in challenging environments. One of the key innovations of SEAWIZARD is its integrated microfluidic layer, fabricated from cyclic olefin copolymer (COC). This microfluidic component allows a controlled flow of seawater over the sensing area, allowing for significant improved detection limits compared to direct water sampling. The system’s dual-channel design separates the detection of heavy metals from the measurement of pH and temperature, ensuring that each parameter is measured under optimal conditions. In addition, the temperature sensor is finely tuned with a serpentine-shaped microfluidic channel to ensure precise thermal measurements. SEAWIZARD also incorporates custom electronics that allow for wireless data transmission via Bluetooth, facilitating rapid data collection and user interface integration. Embedded artificial intelligence further enhances the platform by providing an automated alarm system, capable of detecting predefined metal concentration thresholds and issuing warnings when limits are exceeded. This predictive feature enables early warnings of potential environmental disasters, such as industrial spills or toxic levels of heavy metal pollutants, making SEAWIZARD not just a detection tool, but a comprehensive monitoring and early intervention system. In conclusion, SEAWIZARD represents a significant advancement in printed electronics applied to environmental sensing. By combining flexible, low-cost materials with advanced microfluidics, custom electronics, and AI-driven intelligence, SEAWIZARD offers a highly adaptable and scalable solution for real-time, high-resolution monitoring of heavy metals in marine environments. Its compact and portable design makes it an accessible, user-friendly tool with the potential to transform water quality monitoring practices and provide critical data to protect marine ecosystems from contamination-related risks.

Keywords: lab-on-chip, printed electronics, real-time monitoring, microfluidics, heavy metal contamination

Procedia PDF Downloads 42
2199 Fiber Stiffness Detection of GFRP Using Combined ABAQUS and Genetic Algorithms

Authors: Gyu-Dong Kim, Wuk-Jae Yoo, Sang-Youl Lee

Abstract:

Composite structures offer numerous advantages over conventional structural systems in the form of higher specific stiffness and strength, lower life-cycle costs, and benefits such as easy installation and improved safety. Recently, there has been a considerable increase in the use of composites in engineering applications and as wraps for seismic upgrading and repairs. However, these composites deteriorate with time because of outdated materials, excessive use, repetitive loading, climatic conditions, manufacturing errors, and deficiencies in inspection methods. In particular, damaged fibers in a composite result in significant degradation of structural performance. In order to reduce the failure probability of composites in service, techniques to assess the condition of the composites to prevent continual growth of fiber damage are required. Condition assessment technology and nondestructive evaluation (NDE) techniques have provided various solutions for the safety of structures by means of detecting damage or defects from static or dynamic responses induced by external loading. A variety of techniques based on detecting the changes in static or dynamic behavior of isotropic structures has been developed in the last two decades. These methods, based on analytical approaches, are limited in their capabilities in dealing with complex systems, primarily because of their limitations in handling different loading and boundary conditions. Recently, investigators have introduced direct search methods based on metaheuristics techniques and artificial intelligence, such as genetic algorithms (GA), simulated annealing (SA) methods, and neural networks (NN), and have promisingly applied these methods to the field of structural identification. Among them, GAs attract our attention because they do not require a considerable amount of data in advance in dealing with complex problems and can make a global solution search possible as opposed to classical gradient-based optimization techniques. In this study, we propose an alternative damage-detection technique that can determine the degraded stiffness distribution of vibrating laminated composites made of Glass Fiber-reinforced Polymer (GFRP). The proposed method uses a modified form of the bivariate Gaussian distribution function to detect degraded stiffness characteristics. In addition, this study presents a method to detect the fiber property variation of laminated composite plates from the micromechanical point of view. The finite element model is used to study free vibrations of laminated composite plates for fiber stiffness degradation. In order to solve the inverse problem using the combined method, this study uses only first mode shapes in a structure for the measured frequency data. In particular, this study focuses on the effect of the interaction among various parameters, such as fiber angles, layup sequences, and damage distributions, on fiber-stiffness damage detection.

Keywords: stiffness detection, fiber damage, genetic algorithm, layup sequences

Procedia PDF Downloads 282
2198 Numerical Studies on 2D and 3D Boundary Layer Blockage and External Flow Choking at Wing in Ground Effect

Authors: K. Dhanalakshmi, N. Deepak, E. Manikandan, S. Kanagaraj, M. Sulthan Ariff Rahman, P. Chilambarasan C. Abhimanyu, C. A. Akaash Emmanuel Raj, V. R. Sanal Kumar

Abstract:

In this paper using a validated double precision, density-based implicit standard k-ε model, the detailed 2D and 3D numerical studies have been carried out to examine the external flow choking at wing-in-ground (WIG) effect craft. The CFD code is calibrated using the exact solution based on the Sanal flow choking condition for adiabatic flows. We observed that at the identical WIG effect conditions the numerically predicted 2D boundary layer blockage is significantly higher than the 3D case and as a result, the airfoil exhibited an early external flow choking than the corresponding wing, which is corroborated with the exact solution. We concluded that, in lieu of the conventional 2D numerical simulation, it is invariably beneficial to go for a realistic 3D simulation of the wing in ground effect, which is analogous and would have the aspects of a real-time parametric flow. We inferred that under the identical flying conditions the chances of external flow choking at WIG effect is higher for conventional aircraft than an aircraft facilitating a divergent channel effect at the bottom surface of the fuselage as proposed herein. We concluded that the fuselage and wings integrated geometry optimization can improve the overall aerodynamic performance of WIG craft. This study is a pointer to the designers and/or pilots for perceiving the zone of danger a priori due to the anticipated external flow choking at WIG effect craft for safe flying at the close proximity of the terrain and the dynamic surface of the marine.

Keywords: boundary layer blockage, chord dominated ground effect, external flow choking, WIG effect

Procedia PDF Downloads 274
2197 Use of Galileo Advanced Features in Maritime Domain

Authors: Olivier Chaigneau, Damianos Oikonomidis, Marie-Cecile Delmas

Abstract:

GAMBAS (Galileo Advanced features for the Maritime domain: Breakthrough Applications for Safety and security) is a project funded by the European Space Program Agency (EUSPA) aiming at identifying the search-and-rescue and ship security alert system needs for maritime users (including operators and fishing stakeholders) and developing operational concepts to answer these needs. The general objective of the GAMBAS project is to support the deployment of Galileo exclusive features in the maritime domain in order to improve safety and security at sea, detection of illegal activities and associated surveillance means, resilience to natural and human-induced emergency situations, and develop, integrate, demonstrate, standardize and disseminate these new associated capabilities. The project aims to demonstrate: improvement of the SAR (Search And Rescue) and SSAS (Ship Security Alert System) detection and response to maritime distress through the integration of new features into the beacon for SSAS in terms of cost optimization, user-friendly aspects, integration of Galileo and OS NMA (Open Service Navigation Message Authentication) reception for improved authenticated localization performance and reliability, and at sea triggering capabilities, optimization of the responsiveness of RCCs (Rescue Co-ordination Centre) towards the distress situations affecting vessels, the adaptation of the MCCs (Mission Control Center) and MEOLUT (Medium Earth Orbit Local User Terminal) to the data distribution of SSAS alerts.

Keywords: Galileo new advanced features, maritime, safety, security

Procedia PDF Downloads 96
2196 Rapid Building Detection in Population-Dense Regions with Overfitted Machine Learning Models

Authors: V. Mantey, N. Findlay, I. Maddox

Abstract:

The quality and quantity of global satellite data have been increasing exponentially in recent years as spaceborne systems become more affordable and the sensors themselves become more sophisticated. This is a valuable resource for many applications, including disaster management and relief. However, while more information can be valuable, the volume of data available is impossible to manually examine. Therefore, the question becomes how to extract as much information as possible from the data with limited manpower. Buildings are a key feature of interest in satellite imagery with applications including telecommunications, population models, and disaster relief. Machine learning tools are fast becoming one of the key resources to solve this problem, and models have been developed to detect buildings in optical satellite imagery. However, by and large, most models focus on affluent regions where buildings are generally larger and constructed further apart. This work is focused on the more difficult problem of detection in populated regions. The primary challenge with detecting small buildings in densely populated regions is both the spatial and spectral resolution of the optical sensor. Densely packed buildings with similar construction materials will be difficult to separate due to a similarity in color and because the physical separation between structures is either non-existent or smaller than the spatial resolution. This study finds that training models until they are overfitting the input sample can perform better in these areas than a more robust, generalized model. An overfitted model takes less time to fine-tune from a generalized pre-trained model and requires fewer input data. The model developed for this study has also been fine-tuned using existing, open-source, building vector datasets. This is particularly valuable in the context of disaster relief, where information is required in a very short time span. Leveraging existing datasets means that little to no manpower or time is required to collect data in the region of interest. The training period itself is also shorter for smaller datasets. Requiring less data means that only a few quality areas are necessary, and so any weaknesses or underpopulated regions in the data can be skipped over in favor of areas with higher quality vectors. In this study, a landcover classification model was developed in conjunction with the building detection tool to provide a secondary source to quality check the detected buildings. This has greatly reduced the false positive rate. The proposed methodologies have been implemented and integrated into a configurable production environment and have been employed for a number of large-scale commercial projects, including continent-wide DEM production, where the extracted building footprints are being used to enhance digital elevation models. Overfitted machine learning models are often considered too specific to have any predictive capacity. However, this study demonstrates that, in cases where input data is scarce, overfitted models can be judiciously applied to solve time-sensitive problems.

Keywords: building detection, disaster relief, mask-RCNN, satellite mapping

Procedia PDF Downloads 174
2195 A Comprehensive Characterization of Cell-free RNA in Spent Blastocyst Medium and Quality Prediction for Blastocyst

Authors: Huajuan Shi

Abstract:

Background: The biopsy of the preimplantation embryo may increase the potential risk and concern of embryo viability. Clinically discarded spent embryo medium (SEM) has entered the view of researchers, sparking an interest in noninvasive embryo screening. However, one of the major restrictions is the extremelty low quantity of cf-RNA, which is difficult to efficiently and unbiased amplify cf-RNA using traditional methods. Hence, there is urgently need to an efficient and low bias amplification method which can comprehensively and accurately obtain cf-RNA information to truly reveal the state of SEM cf-RNA. Result: In this present study, we established an agarose PCR amplification system, and has significantly improved the amplification sensitivity and efficiency by ~90 fold and 9.29 %, respectively. We applied agarose to sequencing library preparation (named AG-seq) to quantify and characterize cf-RNA in SEM. The number of detected cf-RNAs (3533 vs 598) and coverage of 3' end were significantly increased, and the noise of low abundance gene detection was reduced. The increasing percentage 5' end adenine and alternative splicing (AS) events of short fragments (< 400 bp) were discovered by AG-seq. Further, the profiles and characterizations of cf-RNA in spent cleavage medium (SCM) and spent blastocyst medium (SBM) indicated that 4‐mer end motifs of cf-RNA fragments could remarkably differentiate different embryo development stages. Significance: This study established an efficient and low-cost SEM amplification and library preparation method. Not only that, we successfully described the characterizations of SEM cf-RNA of preimplantation embryo by using AG-seq, including abundance features fragment lengths. AG-seq facilitates the study of cf-RNA as a noninvasive embryo screening biomarker and opens up potential clinical utilities of trace samples.

Keywords: cell-free RNA, agarose, spent embryo medium, RNA sequencing, non-invasive detection

Procedia PDF Downloads 66
2194 Error Detection and Correction for Onboard Satellite Computers Using Hamming Code

Authors: Rafsan Al Mamun, Md. Motaharul Islam, Rabana Tajrin, Nabiha Noor, Shafinaz Qader

Abstract:

In an attempt to enrich the lives of billions of people by providing proper information, security and a way of communicating with others, the need for efficient and improved satellites is constantly growing. Thus, there is an increasing demand for better error detection and correction (EDAC) schemes, which are capable of protecting the data onboard the satellites. The paper is aimed towards detecting and correcting such errors using a special algorithm called the Hamming Code, which uses the concept of parity and parity bits to prevent single-bit errors onboard a satellite in Low Earth Orbit. This paper focuses on the study of Low Earth Orbit satellites and the process of generating the Hamming Code matrix to be used for EDAC using computer programs. The most effective version of Hamming Code generated was the Hamming (16, 11, 4) version using MATLAB, and the paper compares this particular scheme with other EDAC mechanisms, including other versions of Hamming Codes and Cyclic Redundancy Check (CRC), and the limitations of this scheme. This particular version of the Hamming Code guarantees single-bit error corrections as well as double-bit error detections. Furthermore, this version of Hamming Code has proved to be fast with a checking time of 5.669 nanoseconds, that has a relatively higher code rate and lower bit overhead compared to the other versions and can detect a greater percentage of errors per length of code than other EDAC schemes with similar capabilities. In conclusion, with the proper implementation of the system, it is quite possible to ensure a relatively uncorrupted satellite storage system.

Keywords: bit-flips, Hamming code, low earth orbit, parity bits, satellite, single error upset

Procedia PDF Downloads 133
2193 A Microwave and Millimeter-Wave Transmit/Receive Switch Subsystem for Communication Systems

Authors: Donghyun Lee, Cam Nguyen

Abstract:

Multi-band systems offer a great deal of benefit in modern communication and radar systems. In particular, multi-band antenna-array radar systems with their extended frequency diversity provide numerous advantages in detection, identification, locating and tracking a wide range of targets, including enhanced detection coverage, accurate target location, reduced survey time and cost, increased resolution, improved reliability and target information. An accurate calibration is a critical issue in antenna array systems. The amplitude and phase errors in multi-band and multi-polarization antenna array transceivers result in inaccurate target detection, deteriorated resolution and reduced reliability. Furthermore, the digital beam former without the RF domain phase-shifting is less immune to unfiltered interference signals, which can lead to receiver saturation in array systems. Therefore, implementing integrated front-end architecture, which can support calibration function with low insertion and filtering function from the farthest end of an array transceiver is of great interest. We report a dual K/Ka-band T/R/Calibration switch module with quasi-elliptic dual-bandpass filtering function implementing a Q-enhanced metamaterial transmission line. A unique dual-band frequency response is incorporated in the reception and calibration path of the proposed switch module utilizing the composite right/left-handed meta material transmission line coupled with a Colpitts-style negative generation circuit. The fabricated fully integrated T/R/Calibration switch module in 0.18-μm BiCMOS technology exhibits insertion loss of 4.9-12.3 dB and isolation of more than 45 dB in the reception, transmission and calibration mode of operation. In the reception and calibration mode, the dual-band frequency response centered at 24.5 and 35 GHz exhibits out-of-band rejection of more than 30 dB compared to the pass bands below 10.5 GHz and above 59.5 GHz. The rejection between the pass bands reaches more than 50 dB. In all modes of operation, the IP1-dB is between 4 and 11 dBm. Acknowledgement: This paper was made possible by NPRP grant # 6-241-2-102 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Keywords: microwaves, millimeter waves, T/R switch, wireless communications, wireless communications

Procedia PDF Downloads 162
2192 Thresholding Approach for Automatic Detection of Pseudomonas aeruginosa Biofilms from Fluorescence in situ Hybridization Images

Authors: Zonglin Yang, Tatsuya Akiyama, Kerry S. Williamson, Michael J. Franklin, Thiruvarangan Ramaraj

Abstract:

Pseudomonas aeruginosa is an opportunistic pathogen that forms surface-associated microbial communities (biofilms) on artificial implant devices and on human tissue. Biofilm infections are difficult to treat with antibiotics, in part, because the bacteria in biofilms are physiologically heterogeneous. One measure of biological heterogeneity in a population of cells is to quantify the cellular concentrations of ribosomes, which can be probed with fluorescently labeled nucleic acids. The fluorescent signal intensity following fluorescence in situ hybridization (FISH) analysis correlates to the cellular level of ribosomes. The goals here are to provide computationally and statistically robust approaches to automatically quantify cellular heterogeneity in biofilms from a large library of epifluorescent microscopy FISH images. In this work, the initial steps were developed toward these goals by developing an automated biofilm detection approach for use with FISH images. The approach allows rapid identification of biofilm regions from FISH images that are counterstained with fluorescent dyes. This methodology provides advances over other computational methods, allowing subtraction of spurious signals and non-biological fluorescent substrata. This method will be a robust and user-friendly approach which will enable users to semi-automatically detect biofilm boundaries and extract intensity values from fluorescent images for quantitative analysis of biofilm heterogeneity.

Keywords: image informatics, Pseudomonas aeruginosa, biofilm, FISH, computer vision, data visualization

Procedia PDF Downloads 141
2191 Evaluating Traffic Congestion Using the Bayesian Dirichlet Process Mixture of Generalized Linear Models

Authors: Ren Moses, Emmanuel Kidando, Eren Ozguven, Yassir Abdelrazig

Abstract:

This study applied traffic speed and occupancy to develop clustering models that identify different traffic conditions. Particularly, these models are based on the Dirichlet Process Mixture of Generalized Linear regression (DML) and change-point regression (CR). The model frameworks were implemented using 2015 historical traffic data aggregated at a 15-minute interval from an Interstate 295 freeway in Jacksonville, Florida. Using the deviance information criterion (DIC) to identify the appropriate number of mixture components, three traffic states were identified as free-flow, transitional, and congested condition. Results of the DML revealed that traffic occupancy is statistically significant in influencing the reduction of traffic speed in each of the identified states. Influence on the free-flow and the congested state was estimated to be higher than the transitional flow condition in both evening and morning peak periods. Estimation of the critical speed threshold using CR revealed that 47 mph and 48 mph are speed thresholds for congested and transitional traffic condition during the morning peak hours and evening peak hours, respectively. Free-flow speed thresholds for morning and evening peak hours were estimated at 64 mph and 66 mph, respectively. The proposed approaches will facilitate accurate detection and prediction of traffic congestion for developing effective countermeasures.

Keywords: traffic congestion, multistate speed distribution, traffic occupancy, Dirichlet process mixtures of generalized linear model, Bayesian change-point detection

Procedia PDF Downloads 295
2190 Building User Behavioral Models by Processing Web Logs and Clustering Mechanisms

Authors: Madhuka G. P. D. Udantha, Gihan V. Dias, Surangika Ranathunga

Abstract:

Today Websites contain very interesting applications. But there are only few methodologies to analyze User navigations through the Websites and formulating if the Website is put to correct use. The web logs are only used if some major attack or malfunctioning occurs. Web Logs contain lot interesting dealings on users in the system. Analyzing web logs has become a challenge due to the huge log volume. Finding interesting patterns is not as easy as it is due to size, distribution and importance of minor details of each log. Web logs contain very important data of user and site which are not been put to good use. Retrieving interesting information from logs gives an idea of what the users need, group users according to their various needs and improve site to build an effective and efficient site. The model we built is able to detect attacks or malfunctioning of the system and anomaly detection. Logs will be more complex as volume of traffic and the size and complexity of web site grows. Unsupervised techniques are used in this solution which is fully automated. Expert knowledge is only used in validation. In our approach first clean and purify the logs to bring them to a common platform with a standard format and structure. After cleaning module web session builder is executed. It outputs two files, Web Sessions file and Indexed URLs file. The Indexed URLs file contains the list of URLs accessed and their indices. Web Sessions file lists down the indices of each web session. Then DBSCAN and EM Algorithms are used iteratively and recursively to get the best clustering results of the web sessions. Using homogeneity, completeness, V-measure, intra and inter cluster distance and silhouette coefficient as parameters these algorithms self-evaluate themselves to input better parametric values to run the algorithms. If a cluster is found to be too large then micro-clustering is used. Using Cluster Signature Module the clusters are annotated with a unique signature called finger-print. In this module each cluster is fed to Associative Rule Learning Module. If it outputs confidence and support as value 1 for an access sequence it would be a potential signature for the cluster. Then the access sequence occurrences are checked in other clusters. If it is found to be unique for the cluster considered then the cluster is annotated with the signature. These signatures are used in anomaly detection, prevent cyber attacks, real-time dashboards that visualize users, accessing web pages, predict actions of users and various other applications in Finance, University Websites, News and Media Websites etc.

Keywords: anomaly detection, clustering, pattern recognition, web sessions

Procedia PDF Downloads 289
2189 Design and Simulation of a Radiation Spectrometer Using Scintillation Detectors

Authors: Waleed K. Saib, Abdulsalam M. Alhawsawi, Essam Banoqitah

Abstract:

The idea of this research is to design a radiation spectrometer using LSO scintillation detector coupled to a C series of SiPM (silicon photomultiplier). The device can be used to detects gamma and X-ray radiation. This device is also designed to estimates the activity of the source contamination. The SiPM will detect light in the visible range above the threshold and read them as counts. Three gamma sources were used for these experiments Cs-137, Am-241 and Co-60 with various activities. These sources are applied for four experiments operating the SiPM as a spectrometer, energy resolution, pile-up set and efficiency. The SiPM is connected to a MCA to perform as a spectrometer. Cerium doped Lutetium Silicate (Lu₂SiO₅) with light yield 26000 photons/Mev coupled with the SiPM. As a result, all the main features of the Cs-137, Am-241 and Co-60 are identified in MCA. The experiment shows how photon energy and probability of interaction are inversely related. Total attenuation reduces as photon energy increases. An analytical calculation was made to obtain the FWHM resolution for each gamma source. The FWHM resolution for Am-241 (59 keV) is 28.75 %, for Cs-137 (662 keV) is 7.85 %, for Co-60 (1173 keV) is 4.46 % and for Co-60 (1332 keV) is 3.70%. Moreover, the experiment shows that the dead time and counts number decreased when the pile-up rejection was disabled and the FWHM decreased when the pile-up was enabled. The efficiencies were calculated at four different distances from the detector 2, 4, 8 and 16 cm. The detection efficiency was observed to declined exponentially with increasing distance from the detector face. Conclusively, the SiPM board operated with an LSO scintillator crystal as a spectrometer. The SiPM energy resolution for the three gamma sources used was a decent comparison to other PMTs.

Keywords: PMT, radiation, radiation detection, scintillation detectors, silicon photomultiplier, spectrometer

Procedia PDF Downloads 157
2188 Model-Based Fault Diagnosis in Carbon Fiber Reinforced Composites Using Particle Filtering

Authors: Hong Yu, Ion Matei

Abstract:

Carbon fiber reinforced composites (CFRP) used as aircraft structure are subject to lightning strike, putting structural integrity under risk. Indirect damage may occur after a lightning strike where the internal structure can be damaged due to excessive heat induced by lightning current, while the surface of the structures remains intact. Three damage modes may be observed after a lightning strike: fiber breakage, inter-ply delamination and intra-ply cracks. The assessment of internal damage states in composite is challenging due to complicated microstructure, inherent uncertainties, and existence of multiple damage modes. In this work, a model based approach is adopted to diagnose faults in carbon composites after lighting strikes. A resistor network model is implemented to relate the overall electrical and thermal conduction behavior under simulated lightning current waveform to the intrinsic temperature dependent material properties, microstructure and degradation of materials. A fault detection and identification (FDI) module utilizes the physics based model and a particle filtering algorithm to identify damage mode as well as calculate the probability of structural failure. Extensive simulation results are provided to substantiate the proposed fault diagnosis methodology with both single fault and multiple faults cases. The approach is also demonstrated on transient resistance data collected from a IM7/Epoxy laminate under simulated lightning strike.

Keywords: carbon composite, fault detection, fault identification, particle filter

Procedia PDF Downloads 198
2187 Advanced Magnetic Resonance Imaging in Differentiation of Neurocysticercosis and Tuberculoma

Authors: Rajendra N. Ghosh, Paramjeet Singh, Niranjan Khandelwal, Sameer Vyas, Pratibha Singhi, Naveen Sankhyan

Abstract:

Background: Tuberculoma and neurocysticercosis (NCC) are two most common intracranial infections in developing country. They often simulate on neuroimaging and in absence of typical imaging features cause significant diagnostic dilemmas. Differentiation is extremely important to avoid empirical exposure to antitubercular medications or nonspecific treatment causing disease progression. Purpose: Better characterization and differentiation of CNS tuberculoma and NCC by using morphological and multiple advanced functional MRI. Material and Methods: Total fifty untreated patients (20 tuberculoma and 30 NCC) were evaluated by using conventional and advanced sequences like CISS, SWI, DWI, DTI, Magnetization transfer (MT), T2Relaxometry (T2R), Perfusion and Spectroscopy. rCBV,ADC,FA,T2R,MTR values and metabolite ratios were calculated from lesion and normal parenchyma. Diagnosis was confirmed by typical biochemical, histopathological and imaging features. Results: CISS was most useful sequence for scolex detection (90% on CISS vs 73% on routine sequences). SWI showed higher scolex detection ability. Mean values of ADC, FA,T2R from core and rCBV from wall of lesion were significantly different in tuberculoma and NCC (P < 0.05). Mean values of rCBV, ADC, T2R and FA for tuberculoma and NCC were (3.36 vs1.3), (1.09x10⁻³vs 1.4x10⁻³), (0.13 x10⁻³ vs 0.09 x10⁻³) and (88.65 ms vs 272.3 ms) respectively. Tuberculomas showed high lipid peak, more choline and lower creatinine with Ch/Cr ratio > 1. T2R value was most significant parameter for differentiation. Cut off values for each significant parameters have proposed. Conclusion: Quantitative MRI in combination with conventional sequences can better characterize and differentiate similar appearing tuberculoma and NCC and may be incorporated in routine protocol which may avoid brain biopsy and empirical therapy.

Keywords: advanced functional MRI, differentiation, neurcysticercosis, tuberculoma

Procedia PDF Downloads 572
2186 Automatic Detection of Traffic Stop Locations Using GPS Data

Authors: Areej Salaymeh, Loren Schwiebert, Stephen Remias, Jonathan Waddell

Abstract:

Extracting information from new data sources has emerged as a crucial task in many traffic planning processes, such as identifying traffic patterns, route planning, traffic forecasting, and locating infrastructure improvements. Given the advanced technologies used to collect Global Positioning System (GPS) data from dedicated GPS devices, GPS equipped phones, and navigation tools, intelligent data analysis methodologies are necessary to mine this raw data. In this research, an automatic detection framework is proposed to help identify and classify the locations of stopped GPS waypoints into two main categories: signalized intersections or highway congestion. The Delaunay triangulation is used to perform this assessment in the clustering phase. While most of the existing clustering algorithms need assumptions about the data distribution, the effectiveness of the Delaunay triangulation relies on triangulating geographical data points without such assumptions. Our proposed method starts by cleaning noise from the data and normalizing it. Next, the framework will identify stoppage points by calculating the traveled distance. The last step is to use clustering to form groups of waypoints for signalized traffic and highway congestion. Next, a binary classifier was applied to find distinguish highway congestion from signalized stop points. The binary classifier uses the length of the cluster to find congestion. The proposed framework shows high accuracy for identifying the stop positions and congestion points in around 99.2% of trials. We show that it is possible, using limited GPS data, to distinguish with high accuracy.

Keywords: Delaunay triangulation, clustering, intelligent transportation systems, GPS data

Procedia PDF Downloads 280
2185 Deep Learning-Based Classification of 3D CT Scans with Real Clinical Data; Impact of Image format

Authors: Maryam Fallahpoor, Biswajeet Pradhan

Abstract:

Background: Artificial intelligence (AI) serves as a valuable tool in mitigating the scarcity of human resources required for the evaluation and categorization of vast quantities of medical imaging data. When AI operates with optimal precision, it minimizes the demand for human interpretations and, thereby, reduces the burden on radiologists. Among various AI approaches, deep learning (DL) stands out as it obviates the need for feature extraction, a process that can impede classification, especially with intricate datasets. The advent of DL models has ushered in a new era in medical imaging, particularly in the context of COVID-19 detection. Traditional 2D imaging techniques exhibit limitations when applied to volumetric data, such as Computed Tomography (CT) scans. Medical images predominantly exist in one of two formats: neuroimaging informatics technology initiative (NIfTI) and digital imaging and communications in medicine (DICOM). Purpose: This study aims to employ DL for the classification of COVID-19-infected pulmonary patients and normal cases based on 3D CT scans while investigating the impact of image format. Material and Methods: The dataset used for model training and testing consisted of 1245 patients from IranMehr Hospital. All scans shared a matrix size of 512 × 512, although they exhibited varying slice numbers. Consequently, after loading the DICOM CT scans, image resampling and interpolation were performed to standardize the slice count. All images underwent cropping and resampling, resulting in uniform dimensions of 128 × 128 × 60. Resolution uniformity was achieved through resampling to 1 mm × 1 mm × 1 mm, and image intensities were confined to the range of (−1000, 400) Hounsfield units (HU). For classification purposes, positive pulmonary COVID-19 involvement was designated as 1, while normal images were assigned a value of 0. Subsequently, a U-net-based lung segmentation module was applied to obtain 3D segmented lung regions. The pre-processing stage included normalization, zero-centering, and shuffling. Four distinct 3D CNN models (ResNet152, ResNet50, DensNet169, and DensNet201) were employed in this study. Results: The findings revealed that the segmentation technique yielded superior results for DICOM images, which could be attributed to the potential loss of information during the conversion of original DICOM images to NIFTI format. Notably, ResNet152 and ResNet50 exhibited the highest accuracy at 90.0%, and the same models achieved the best F1 score at 87%. ResNet152 also secured the highest Area under the Curve (AUC) at 0.932. Regarding sensitivity and specificity, DensNet201 achieved the highest values at 93% and 96%, respectively. Conclusion: This study underscores the capacity of deep learning to classify COVID-19 pulmonary involvement using real 3D hospital data. The results underscore the significance of employing DICOM format 3D CT images alongside appropriate pre-processing techniques when training DL models for COVID-19 detection. This approach enhances the accuracy and reliability of diagnostic systems for COVID-19 detection.

Keywords: deep learning, COVID-19 detection, NIFTI format, DICOM format

Procedia PDF Downloads 94
2184 New Derivatives 7-(diethylamino)quinolin-2-(1H)-one Based Chalcone Colorimetric Probes for Detection of Bisulfite Anion in Cationic Micellar Media

Authors: Guillermo E. Quintero, Edwin G. Perez, Oriel Sanchez, Christian Espinosa-Bustos, Denis Fuentealba, Margarita E. Aliaga

Abstract:

Bisulfite ion (HSO3-) has been used as a preservative in food, drinks, and medication. However, it is well-known that HSO3- can cause health problems like asthma and allergic reactions in people. Due to the above, the development of analytical methods for detecting this ion has gained great interest. In line with the above, the current use of colorimetric and/or fluorescent probes as a detection technique has acquired great relevance due to their high sensitivity and accuracy. In this context, 2-quinolinone derivatives have been found to possess promising activity as antiviral agents, sensitizers in solar cells, antifungals, antioxidants, and sensors. In particular, 7-(diethylamino)-2-quinolinone derivatives have attracted attention in recent years since their suitable photophysical properties become promising fluorescent probes. In Addition, there is evidence that photophysical properties and reactivity can be affected by the study medium, such as micellar media. Based on the above background, 7-(diethylamino)-2-quinolinone derivatives based chalcone will be able to be incorporated into a cationic micellar environment (Cetyltrimethylammonium bromide, CTAB). Furthermore, the supramolecular control induced by the micellar environment will increase the reactivity of these derivatives towards nucleophilic analytes such as HSO3- (Michael-type addition reaction), leading to the generation of new colorimetric and/or fluorescent probes. In the present study, two derivatives of 7-(diethylamino)-2-quinolinone based chalcone DQD1-2 were synthesized according to the method reported by the literature. These derivatives were structurally characterized by 1H, 13C NMR, and HRMS-ESI. In addition, UV-VIS and fluorescence studies determined absorption bands near 450 nm, emission bands near 600 nm, fluorescence quantum yields near 0.01, and fluorescence lifetimes of 5 ps. In line with the foregoing, these photophysical properties aforementioned were improved in the presence of a cationic micellar medium using CTAB thanks to the formation of adducts presenting association constants of the order of 2,5x105 M-1, increasing the quantum yields to 0.12 and the fluorescence lifetimes corresponding to two lifetimes near to 120 and 400 ps for DQD1 and DQD2. Besides, thanks to the presence of the micellar medium, the reactivity of these derivatives with nucleophilic analytes, such as HSO3-, was increased. This was achieved through kinetic studies, which demonstrated an increase in the bimolecular rate constants in the presence of a micellar medium. Finally, probe DQD1 was chosen as the best sensor since it was assessed to detect HSO3- with excellent results.

Keywords: bisulfite detection, cationic micelle, colorimetric probes, quinolinone derivatives

Procedia PDF Downloads 98
2183 Analysis of Rockfall Hazard along Himalayan Road Cut Slopes

Authors: Sarada Prasad Pradhan, Vikram Vishal, Tariq Siddique

Abstract:

With a vast area of India comprising of hilly terrain and road cut slopes, landslides and rockfalls are a common phenomenon. However, while landslide studies have received much attention in the past in India, very little literature and analysis is available regarding rockfall hazard of many rockfall prone areas, specifically in Uttarakhand Himalaya, India. The subsequent lack of knowledge and understanding of the rockfall phenomenon as well as frequent incidences of rockfall led fatalities urge the necessity of conducting site-specific rockfall studies to highlight the importance of addressing this issue as well as to provide data for safe design of preventive structures. The present study has been conducted across 10 rockfall prone road cut slopes for a distance of 15 km starting from Devprayag, India along National Highway 58 (NH-58). In order to make a qualitative assessment of Rockfall Hazard posed by these slopes, Rockfall Hazard Rating using standards for Indian Rockmass has been conducted at 10 locations under different slope conditions. Moreover, to accurately predict the characteristics of the possible rockfall phenomenon, numerical simulation was carried out to calculate the maximum bounce heights, total kinetic energies, translational velocities and trajectories of the falling rockmass blocks when simulated on each of these slopes according to real-life conditions. As it was observed that varying slope geometry had more fatal impacts on Rockfall hazard than size of rock masses, several optimizations have been suggested for each slope regarding location of barriers and modification of slope geometries in order to minimize damage by falling rocks. This study can be extremely useful in emphasizing the significance of rockfall studies and construction of mitigative barriers and structures along NH-58 around Devprayag.

Keywords: rockfall, slope stability, rockmass, hazard

Procedia PDF Downloads 212
2182 Multiaxial Fatigue Analysis of a High Performance Nickel-Based Superalloy

Authors: P. Selva, B. Lorraina, J. Alexis, A. Seror, A. Longuet, C. Mary, F. Denard

Abstract:

Over the past four decades, the fatigue behavior of nickel-based alloys has been widely studied. However, in recent years, significant advances in the fabrication process leading to grain size reduction have been made in order to improve fatigue properties of aircraft turbine discs. Indeed, a change in particle size affects the initiation mode of fatigue cracks as well as the fatigue life of the material. The present study aims to investigate the fatigue behavior of a newly developed nickel-based superalloy under biaxial-planar loading. Low Cycle Fatigue (LCF) tests are performed at different stress ratios so as to study the influence of the multiaxial stress state on the fatigue life of the material. Full-field displacement and strain measurements as well as crack initiation detection are obtained using Digital Image Correlation (DIC) techniques. The aim of this presentation is first to provide an in-depth description of both the experimental set-up and protocol: the multiaxial testing machine, the specific design of the cruciform specimen and performances of the DIC code are introduced. Second, results for sixteen specimens related to different load ratios are presented. Crack detection, strain amplitude and number of cycles to crack initiation vs. triaxial stress ratio for each loading case are given. Third, from fractographic investigations by scanning electron microscopy it is found that the mechanism of fatigue crack initiation does not depend on the triaxial stress ratio and that most fatigue cracks initiate from subsurface carbides.

Keywords: cruciform specimen, multiaxial fatigue, nickel-based superalloy

Procedia PDF Downloads 299
2181 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings

Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti

Abstract:

Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.

Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety

Procedia PDF Downloads 502
2180 Liquid Chromatography Microfluidics for Detection and Quantification of Urine Albumin Using Linear Regression Method

Authors: Patricia B. Cruz, Catrina Jean G. Valenzuela, Analyn N. Yumang

Abstract:

Nearly a hundred per million of the Filipino population is diagnosed with Chronic Kidney Disease (CKD). The early stage of CKD has no symptoms and can only be discovered once the patient undergoes urinalysis. Over the years, different methods were discovered and used for the quantification of the urinary albumin such as the immunochemical assays where most of these methods require large machinery that has a high cost in maintenance and resources, and a dipstick test which is yet to be proven and is still debated as a reliable method in detecting early stages of microalbuminuria. This research study involves the use of the liquid chromatography concept in microfluidic instruments with biosensor as a means of separation and detection respectively, and linear regression to quantify human urinary albumin. The researchers’ main objective was to create a miniature system that quantifies and detect patients’ urinary albumin while reducing the amount of volume used per five test samples. For this study, 30 urine samples of unknown albumin concentrations were tested using VITROS Analyzer and the microfluidic system for comparison. Based on the data shared by both methods, the actual vs. predicted regression were able to create a positive linear relationship with an R2 of 0.9995 and a linear equation of y = 1.09x + 0.07, indicating that the predicted values and actual values are approximately equal. Furthermore, the microfluidic instrument uses 75% less in total volume – sample and reagents combined, compared to the VITROS Analyzer per five test samples.

Keywords: Chronic Kidney Disease, Linear Regression, Microfluidics, Urinary Albumin

Procedia PDF Downloads 139
2179 The Fabrication of Stress Sensing Based on Artificial Antibodies to Cortisol by Molecular Imprinted Polymer

Authors: Supannika Klangphukhiew, Roongnapa Srichana, Rina Patramanon

Abstract:

Cortisol has been used as a well-known commercial stress biomarker. A homeostasis response to psychological stress is indicated by an increased level of cortisol produced in hypothalamus-pituitary-adrenal (HPA) axis. Chronic psychological stress contributing to the high level of cortisol relates to several health problems. In this study, the cortisol biosensor was fabricated that mimicked the natural receptors. The artificial antibodies were prepared using molecular imprinted polymer technique that can imitate the performance of natural anti-cortisol antibody with high stability. Cortisol-molecular imprinted polymer (cortisol-MIP) was obtained using the multi-step swelling and polymerization protocol with cortisol as a target molecule combining methacrylic acid:acrylamide (2:1) with bisacryloyl-1,2-dihydroxy-1,2-ethylenediamine and ethylenedioxy-N-methylamphetamine as cross-linkers. Cortisol-MIP was integrated to the sensor. It was coated on the disposable screen-printed carbon electrode (SPCE) for portable electrochemical analysis. The physical properties of Cortisol-MIP were characterized by means of electron microscope techniques. The binding characteristics were evaluated via covalent patterns changing in FTIR spectra which were related to voltammetry response. The performance of cortisol-MIP modified SPCE was investigated in terms of detection range, high selectivity with a detection limit of 1.28 ng/ml. The disposable cortisol biosensor represented an application of MIP technique to recognize steroids according to their structures with feasibility and cost-effectiveness that can be developed to use in point-of-care.

Keywords: stress biomarker, cortisol, molecular imprinted polymer, screen-printed carbon electrode

Procedia PDF Downloads 275
2178 Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-Infected Patients

Authors: Yagahira E. Castro-Sesquen, Robert H. Gilman, Carolina Mejia, Daniel E. Clark, Jeong Choi, Melissa J. Reimer-Mcatee, Rocio Castro, Jorge Flores, Edward Valencia-Ayala, Faustino Torrico, Ricardo Castillo-Neyra, Lance Liotta, Caryn Bern, Alessandra Luchini

Abstract:

Early diagnosis of reactivation of Chagas disease in HIV patients could be lifesaving; however, in Latin American the diagnosis is performed by detection of parasitemia by microscopy which lacks sensitivity. To evaluate if levels of T. cruzi antigens in urine determined by Chunap (Chagas urine nanoparticle test) are correlated with parasitemia levels in T. cruzi/HIV co-infected patients. T. cruzi antigens in urine of HIV patients (N=55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. The percentage of Chagas positive patients determined by Chunap compared to blood microscopy, qPCR, and ELISA was 100% (6/6), 95% (18/19) and 74% (23/31), respectively. Chunap specificity was 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels (determined by qPCR) and urine T. cruzi antigen concentrations (p<0.001). A cut-off of > 105 pg was chosen to determine patients with reactivation of Chagas disease (6/6). Urine antigen concentration was significantly higher among patients with CD4+ lymphocyte counts below 200/mL (p=0.045). Chunap shows potential for early detection of reactivation and with appropriate adaptation can be used for monitoring Chagas disease status in T. cruzi/HIV co-infected patients.

Keywords: antigenuria, Chagas disease, Chunap, nanoparticles, parasitemia, poly N-isopropylacrylamide (NIPAm)/trypan blue particles (polyNIPAm/TB), reactivation of Chagas disease.

Procedia PDF Downloads 381
2177 Development of a Direct Immunoassay for Human Ferritin Using Diffraction-Based Sensing Method

Authors: Joel Ballesteros, Harriet Jane Caleja, Florian Del Mundo, Cherrie Pascual

Abstract:

Diffraction-based sensing was utilized in the quantification of human ferritin in blood serum to provide an alternative to label-based immunoassays currently used in clinical diagnostics and researches. The diffraction intensity was measured by the diffractive optics technology or dotLab™ system. Two methods were evaluated in this study: direct immunoassay and direct sandwich immunoassay. In the direct immunoassay, human ferritin was captured by human ferritin antibodies immobilized on an avidin-coated sensor while the direct sandwich immunoassay had an additional step for the binding of a detector human ferritin antibody on the analyte complex. Both methods were repeatable with coefficient of variation values below 15%. The direct sandwich immunoassay had a linear response from 10 to 500 ng/mL which is wider than the 100-500 ng/mL of the direct immunoassay. The direct sandwich immunoassay also has a higher calibration sensitivity with value 0.002 Diffractive Intensity (ng mL-1)-1) compared to the 0.004 Diffractive Intensity (ng mL-1)-1 of the direct immunoassay. The limit of detection and limit of quantification values of the direct immunoassay were found to be 29 ng/mL and 98 ng/mL, respectively, while the direct sandwich immunoassay has a limit of detection (LOD) of 2.5 ng/mL and a limit of quantification (LOQ) of 8.2 ng/mL. In terms of accuracy, the direct immunoassay had a percent recovery of 88.8-93.0% in PBS while the direct sandwich immunoassay had 94.1 to 97.2%. Based on the results, the direct sandwich immunoassay is a better diffraction-based immunoassay in terms of accuracy, LOD, LOQ, linear range, and sensitivity. The direct sandwich immunoassay was utilized in the determination of human ferritin in blood serum and the results are validated by Chemiluminescent Magnetic Immunoassay (CMIA). The calculated Pearson correlation coefficient was 0.995 and the p-values of the paired-sample t-test were less than 0.5 which show that the results of the direct sandwich immunoassay was comparable to that of CMIA and could be utilized as an alternative analytical method.

Keywords: biosensor, diffraction, ferritin, immunoassay

Procedia PDF Downloads 356
2176 Security in Cyberspace: A Comprehensive Review of COVID-19 Continued Effects on Security Threats and Solutions in 2021 and the Trajectory of Cybersecurity Going into 2022

Authors: Mojtaba Fayaz, Richard Hallal

Abstract:

This study examines the various types of dangers that our virtual environment is vulnerable to, including how it can be attacked and how to avoid/secure our data. The terrain of cyberspace is never completely safe, and Covid- 19 has added to the confusion, necessitating daily periodic checks and evaluations. Cybercriminals have been able to enact with greater skill and undertake more conspicuous and sophisticated attacks while keeping a higher level of finesse by operating from home. Different types of cyberattacks, such as operation-based attacks, authentication-based attacks, and software-based attacks, are constantly evolving, but research suggests that software-based threats, such as Ransomware, are becoming more popular, with attacks expected to increase by 93 percent by 2020. The effectiveness of cyber frameworks has shifted dramatically as the pandemic has forced work and private life to become intertwined, destabilising security overall and creating a new front of cyber protection for security analysis and personal. The high-rise formats in which cybercrimes are carried out, as well as the types of cybercrimes that exist, such as phishing, identity theft, malware, and DDoS attacks, have created a new front of cyber protection for security analysis and personal safety. The overall strategy for 2022 will be the introduction of frameworks that address many of the issues associated with offsite working, as well as education that provides better information about commercialised software that does not provide the highest level of security for home users, allowing businesses to plan better security around their systems.

Keywords: cyber security, authentication, software, hardware, malware, COVID-19, threat actors, awareness, home users, confidentiality, integrity, availability, attacks

Procedia PDF Downloads 123
2175 Modern Information Security Management and Digital Technologies: A Comprehensive Approach to Data Protection

Authors: Mahshid Arabi

Abstract:

With the rapid expansion of digital technologies and the internet, information security has become a critical priority for organizations and individuals. The widespread use of digital tools such as smartphones and internet networks facilitates the storage of vast amounts of data, but simultaneously, vulnerabilities and security threats have significantly increased. The aim of this study is to examine and analyze modern methods of information security management and to develop a comprehensive model to counteract threats and information misuse. This study employs a mixed-methods approach, including both qualitative and quantitative analyses. Initially, a systematic review of previous articles and research in the field of information security was conducted. Then, using the Delphi method, interviews with 30 information security experts were conducted to gather their insights on security challenges and solutions. Based on the results of these interviews, a comprehensive model for information security management was developed. The proposed model includes advanced encryption techniques, machine learning-based intrusion detection systems, and network security protocols. AES and RSA encryption algorithms were used for data protection, and machine learning models such as Random Forest and Neural Networks were utilized for intrusion detection. Statistical analyses were performed using SPSS software. To evaluate the effectiveness of the proposed model, T-Test and ANOVA statistical tests were employed, and results were measured using accuracy, sensitivity, and specificity indicators of the models. Additionally, multiple regression analysis was conducted to examine the impact of various variables on information security. The findings of this study indicate that the comprehensive proposed model reduced cyber-attacks by an average of 85%. Statistical analysis showed that the combined use of encryption techniques and intrusion detection systems significantly improves information security. Based on the obtained results, it is recommended that organizations continuously update their information security systems and use a combination of multiple security methods to protect their data. Additionally, educating employees and raising public awareness about information security can serve as an effective tool in reducing security risks. This research demonstrates that effective and up-to-date information security management requires a comprehensive and coordinated approach, including the development and implementation of advanced techniques and continuous training of human resources.

Keywords: data protection, digital technologies, information security, modern management

Procedia PDF Downloads 41
2174 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 209
2173 Contactless Electromagnetic Detection of Stress Fluctuations in Steel Elements

Authors: M. A. García, J. Vinolas, A. Hernando

Abstract:

Steel is nowadays one of the most important structural materials because of its outstanding mechanical properties. Therefore, in order to look for a sustainable economic model and to optimize the use of extensive resources, new methods to monitor and prevent failure of steel-based facilities are required. The classical mechanical tests, as for instance building tasting, are invasive and destructive. Moreover, for facilities where the steel element is embedded, (as reinforced concrete) these techniques are directly non applicable. Hence, non-invasive monitoring techniques to prevent failure, without altering the structural properties of the elements are required. Among them, electromagnetic methods are particularly suitable for non-invasive inspection of the mechanical state of steel-based elements. The magnetoelastic coupling effects induce a modification of the electromagnetic properties of an element upon applied stress. Since most steels are ferromagnetic because of their large Fe content, it is possible to inspect their structure and state in a non-invasive way. We present here a distinct electromagnetic method for contactless evaluation of internal stress in steel-based elements. In particular, this method relies on measuring the magnetic induction between two coils with the steel specimen in between them. We found that the alteration of electromagnetic properties of the steel specimen induced by applied stress-induced changes in the induction allowed us to detect stress well below half of the elastic limit of the material. Hence, it represents an outstanding non-invasive method to prevent failure in steel-based facilities. We here describe the theoretical model, present experimental results to validate it and finally we show a practical application for detection of stress and inhomogeneities in train railways.

Keywords: magnetoelastic, magnetic induction, mechanical stress, steel

Procedia PDF Downloads 53