Search results for: stove design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12493

Search results for: stove design

10963 Visualisation in Health Communication: Taking Weibo Interaction in COVD19 as the Example

Authors: Zicheng Zhang, Linli Zhang

Abstract:

As China's biggest social media platform, Weibo has taken on essential health communication responsibilities during the pandemic. This research takes 105 posters in 15 health-related official Weibo accounts as the analysis objects to explore COVID19 health information communication and visualisation. First, the interaction between the audiences and Weibo, including forwarding, comments, and likes, is statistically analysed. The comments about the information design are extracted manually, and then the sentiment analysis is carried out to verdict audiences' views about the poster's design. The forwarding and comments are quantified as the attention index for a reference to the degree of likes. In addition, this study also designed an evaluation scale based on the standards of Health Literacy Resource by the Centers for Medicare& Medicaid Services (US). Then designers scored all selected posters one by one. Finally, combining the data of the two parts, concluded that: 1. To a certain extent, people think that the posters do not deliver substantive and practical information; 2. Non-knowledge posters(i.e., cartoon posters) gained more Forwarding and Likes, such as Go, Wuhan poster; 3. The analysis of COVID posters is still mainly picture-oriented, mainly about encouraging people to overcome difficulties; 4. Posters for pandemic prevention usually contain more text and fewer illustrations and do not clearly show cultural differences. In conclusion, health communication usually involves a lot of professional knowledge, so visualising that knowledge in an accessible way for the general public is challenging. The relevant posters still have the problems of lack of effective communication, superficial design, and insufficient content accessibility.

Keywords: weibo, visualisation, covid posters, poster design

Procedia PDF Downloads 127
10962 MIMO PID Controller of a Power Plant Boiler–Turbine Unit

Authors: N. Ben-Mahmoud, M. Elfandi, A. Shallof

Abstract:

This paper presents a methodology to design multivariable PID controllers for multi-input and multi-output systems. The proposed control strategy, which is centralized, combines of PID controllers. The proportional gains in the P controllers act as tuning parameters of (SISO) in order to modify the behavior of the loops almost independently. The design procedure consists of three steps: first, an ideal decoupler including integral action is determined. Second, the decoupler is approximated with PID controllers. Third, the proportional gains are tuned to achieve the specified performance. The proposed method is applied to representative processes.

Keywords: boiler turbine, MIMO, PID controller, control by decoupling, anti wind-up techniques

Procedia PDF Downloads 326
10961 Stability Analysis and Controller Design of Further Development of Miniaturized Mössbauer Spectrometer II for Space Applications with Focus on the Extended Lyapunov Method – Part I –

Authors: Mohammad Beyki, Justus Pawlak, Robert Patzke, Franz Renz

Abstract:

In the context of planetary exploration, the MIMOS II (miniaturized Mössbauer spectrometer) serves as a proven and reliable measuring instrument. The transmission behaviour of the electronics in the Mössbauer spectroscopy is newly developed and optimized. For this purpose, the overall electronics is split into three parts. This elaboration deals exclusively with the first part of the signal chain for the evaluation of photons in experiments with gamma radiation. Parallel to the analysis of the electronics, a new method for the stability consideration of linear and non-linear systems is presented: The extended method of Lyapunov’s stability criteria. The design helps to weigh advantages and disadvantages against other simulated circuits in order to optimize the MIMOS II for the terestric and extraterestric measurment. Finally, after stability analysis, the controller design according to Ackermann is performed, achieving the best possible optimization of the output variable through a skillful pole assignment.

Keywords: Mössbauer spectroscopy, electronic signal amplifier, light processing technology, photocurrent, trans-impedance amplifier, extended Lyapunov method

Procedia PDF Downloads 99
10960 Design and Performance Comparison of Metamaterial Based Antenna for 4G/5G Mobile Devices

Authors: Jalal Khan, Daniyal Ali Sehrai, Shakeel Ahmad

Abstract:

This paper presents the design and performance evaluation of multiband metamaterial based antenna operating in the 3.6 GHz (4G), 14.33 GHz, and 28.86 GHz (5G) frequency bands, for future mobile and handheld devices. The radiating element of the proposed design is made up of a conductive material supported by a 1.524 mm thicker Rogers-4003 substrate, having a relative dielectric constant and loss tangent of 3.55 and 0.0027, respectively. The substrate is backed by truncated ground plane. The future mobile communication system is based on higher frequencies, which are highly affected by the atmospheric conditions. Therefore, to overcome the path loss problem, essential enhancements and improvements must be made in the overall performance of the antenna. The traditional ground plane does not provide the in-phase reflection and surface wave suppression due to which side and back lobes are produced. This will affect the antenna performance in terms of gain and efficiency. To enhance the overall performance of the antenna, a metamaterial acting as a high impedance surface (HIS) is used as a reflector in the proposed design. The simulated gain of the metamaterial based antenna is enhanced from {2.76-6.47, 4.83-6.71 and 7.52-7.73} dB at 3.6, 14.33 and 28.89 GHz, respectively relative to the gain of the antenna backed by a traditional ground plane. The proposed antenna radiated efficiently with a radiated efficiency (>85 %) in all the three frequency bands with and without metamaterial surface. The total volume of the antenna is (L x W x h=45 x 40 x 1.524) mm3. The antenna can be potentially used for wireless handheld devices and mobile terminal. All the simulations have been performed using the Computer Simulation Technology (CST) software.

Keywords: CST MWS, fourth generation/fifth generation, 4G/5G, high gain, multiband, metamaterial

Procedia PDF Downloads 160
10959 Analysis and Evaluation of Both AC and DC Standalone Photovoltaic Supply to Ethio-Telecom Access Layer Devices: The Case of Multi-Service Access Gateway in Adama

Authors: Frie Ayalew, Seada Hussen

Abstract:

Ethio-telecom holds a variety of telecom devices that needs a consistent power source to be operational. The company got this power mainly from the national grid and used this power source alone or with a generator and/or batteries as a backup. In addition, for off-grid or remote areas, the company commonly uses generators and batteries. But unstable diesel prices, huge expenses of fuel and transportation, and high carbon emissions are the main problems associated with fuel energy. So, the design of solar power with battery backup is a highly recommended and advantageous source for the next coming years. This project designs the AC and DC standalone photovoltaic supply to Ethio-telecom access layer devices for the case of multi-service access gateway in Adama. The design is done by using Homer software for both AC and DC loads. The project shows that the design of a solar based microgrid is the best option for the designed area.

Keywords: solar power, battery, inverter, Ethio-telecom, solar radiation

Procedia PDF Downloads 82
10958 Modified Side Plate Design to Suppress Lateral Torsional Buckling of H-Beam for Seismic Application

Authors: Erwin, Cheng-Cheng Chen, Charles J. Salim

Abstract:

One of the method to solve the lateral torsional buckling (LTB) problem is by using side plates to increased the buckling resistance of the beam. Some modifications in designing the side plates are made in this study to simplify the construction in the field and reduce the cost. At certain region, side plates are not added: (1) At the beam end to preserve some spaces for bolt installation, but the beam is strengthened by adding cover plate at both flanges and (2) at the middle span of the beam where the moment is smaller. Three small scale full span beam specimens are tested under cyclic loading to investigate the LTB resistant and the ductility of the proposed design method. Test results show that the LTB deformation can be effectively suppressed and very high ductility level can be achieved. Following the test, a finite element analysis (FEA) model is established and is verified using the test results. An intensive parametric study is conducted using the established FEA model. The analysis reveals that the length of side plates is the most important parameter determining the performance of the beam and the required side plates length is determined by some parameters which are (1) beam depth to flange width ratio, (2) beam slenderness ratio (3) strength and thickness of the side plates, (4) compactness of beam web and flange, and (5) beam yield strength. At the end of the paper, a design formula to calculate the required side plate length is suggested.

Keywords: cover plate, earthquake resistant design, lateral torsional buckling, side plate, steel structure

Procedia PDF Downloads 175
10957 Trends in Practical Research on Universal Design for Learning (UDL) in Japanese Elementary Schools

Authors: Zolzaya Badmaavanchig, Shoko Miyamoto

Abstract:

In recent years, universal design for learning (hereinafter referred to as "UDL"), which aims to establish an inclusive education system and to make all children, regardless of their disabilities, experts in learning, has been attracting attention, and there have been some attempts to incorporate it into regular classrooms where children with developmental disabilities and those who show such tendencies are enrolled. The purpose of this study was to examine the effectiveness and challenges of implementing UDL in Japanese elementary schools based on the previous literature. As a method, we first searched for articles on UDL for learning and UDL in the classroom from 2010 to 2022. In addition, we selected practice studies that targeted children with special educational support needs and the classroom as a whole. In response to the extracted literature, this bridge examined the following five perspectives: (1) subjects and grades in which UDL was practiced, (2) methods to grasp the actual conditions of the children, (3) consideration for children with special needs during class, (4) form of class, and (5) effects of the practice. Based on the results, we would like to present issues related to future UDL efforts in Japanese elementary schools.

Keywords: universal design for learning, regular elementary school class, children with special education needs, special educational support

Procedia PDF Downloads 62
10956 Design of a Pulse Generator Based on a Programmable System-on-Chip (PSoC) for Ultrasonic Applications

Authors: Pedro Acevedo, Carlos Díaz, Mónica Vázquez, Joel Durán

Abstract:

This paper describes the design of a pulse generator based on the Programmable System-on-Chip (PSoC) module. In this module, using programmable logic is possible to implement different pulses which are required for ultrasonic applications, either in a single channel or multiple channels. This module can operate with programmable frequencies from 3-74 MHz; its programming may be versatile covering a wide range of ultrasonic applications. It is ideal for low-power ultrasonic applications where PZT or PVDF transducers are used.

Keywords: PSoC, pulse generator, PVDF, ultrasonic transducer

Procedia PDF Downloads 292
10955 Research on Adaptable Development Strategy of Medical Architecture Based on the Background of Current Era

Authors: Jiani Gao, Qingping Luo, Xinlei Fang

Abstract:

In order to try to achieve better rights and interests for both doctors and patients in the new medical environment, the paper will focus on the renewal and development of medical buildings. In today's highly developed society, many factors have a profound guiding significance for the development of medical buildings. By doing social research, the paper has found that these factors come from all aspects. These factors include the optimization of traditional medical model, rapid alternation of medical technology and equipment, the reform of the social, medical security system, changes in the age structure of the population, the birth of intelligent medical care under the Internet, and the deepening of the concept of green sustainable building development, etc. The purpose of this paper is to capture sensitively these various factors that may affect the evolution of medical buildings in the context of the current era, and to put forward, by using an adaptable development strategy, some feasible suggestions on the design of medical buildings when facing these changes and challenges. Specifically speaking, the adaptable development strategy includes some basic principles and methods, such as using modular design, adopting scalable streamline, selecting a long-span structural system and using replaceable materials and components, etc.

Keywords: medical architecture, adaptable development, medical model, space design

Procedia PDF Downloads 157
10954 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base

Procedia PDF Downloads 522
10953 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field

Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang

Abstract:

Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.

Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes

Procedia PDF Downloads 290
10952 The Modern Significance of Chinese Traditional Gardens for the Development of Modern Eco-Garden Cities

Authors: Liang Zhang

Abstract:

Chinese traditional gardens are the historical and cultural treasures of the whole mankind, among which the excellent parts still have important guiding significance for modern urban design. Based on the background of eco-garden city and reality, through the analysis of various design elements of classical gardens, combined with the needs of today's urban development, starting from the three needs of landscape, energy saving and environmental protection. To explore how Chinese traditional gardens can be revitalized in modern urban planning.

Keywords: Chinese traditional gardens, eco-garden city, modern urban planning, urban development

Procedia PDF Downloads 176
10951 Reliability Assessment Using Full Probabilistic Modelling for Carbonation and Chloride Exposures, Including Initiation and Propagation Periods

Authors: Frank Papworth, Inam Khan

Abstract:

Fib’s model code 2020 has four approaches for design life verification. Historically ‘deemed to satisfy provisions have been the principal approach, but this has limited options for materials and covers. The use of an equation in fib’s model code for service life design to predict time to corrosion initiation has become increasingly popular to justify further options, but in some cases, the analysis approaches are incorrect. Even when the equations are computed using full probabilistic analysis, there are common mistakes. This paper reviews the work of recent fib commissions on implementing the service life model to assess the reliability of durability designs, including initiation and propagation periods. The paper goes on to consider the assessment of deemed to satisfy requirements in national codes and considers the influence of various options, including different steel types, various cement systems, quality of concrete and cover, on reliability achieved. As modelling is based on achieving agreed target reliability, consideration is given to how a project might determine appropriate target reliability.

Keywords: chlorides, marine, exposure, design life, reliability, modelling

Procedia PDF Downloads 235
10950 Insulation and Architectural Design to Have Sustainable Buildings in Iran

Authors: Ali Bayati, Jamileh Azarnoush

Abstract:

Nowadays according to increasing the population all around the world, consuming of fossil fuels increased dramatically. Many believe that most of the atmospheric pollution comes by using fossil fuels. The process of natural sources entering cities shows one of the large challenges in consumption sources management. Nowadays, everyone considered about the consumption of fossil fuels and also Reduction of consumption civil energy in megacities that play a key role in solving serious problems such as air pollution, producing greenhouse gasses, global warming and damage ozone layer. In the construction industry, we should use the materials with the lowest need to energy for making and carrying them, and also the materials which need the lowest energy and expenses to recycling. In this way, the kind of usage material, the way of processing, regional materials and the adaptation with the environment is critical. Otherwise, the isolation should be use and mention in the long term. Accordingly, in this article we investigates the new ways in order to reduce environmental pollution and save more energy by using materials that are not harmful to the environment, fully insulated materials in buildings, sustainable and diversified buildings, suitable urban design and using solar energy more efficiently in order to reduce energy consumption.

Keywords: building design, construction masonry, insulation, sustainable construction

Procedia PDF Downloads 540
10949 Design of Two-Channel Quincunx Quadrature Mirror Filter Banks Using Digital All-Pass Lattice Filters

Authors: Ju-Hong Lee, Chong-Jia Ciou

Abstract:

This paper deals with the problem of two-dimensional (2-D) recursive two-channel quincunx quadrature mirror filter (QQMF) banks design. The analysis and synthesis filters of the 2-D recursive QQMF bank are composed of 2-D recursive digital allpass lattice filters (DALFs) with symmetric half-plane (SHP) support regions. Using the 2-D doubly complementary half-band (DC-HB) property possessed by the analysis and synthesis filters, we facilitate the design of the proposed QQMF bank. For finding the coefficients of the 2-D recursive SHP DALFs, we present a structure of 2-D recursive digital allpass filters by using 2-D SHP recursive digital all-pass lattice filters (DALFs). The novelty of using 2-D SHP recursive DALFs to construct a 2-D recursive QQMF bank is that the resulting 2-D recursive QQMF bank provides better performance than the existing 2-D recursive QQMF banks. Simulation results are also presented for illustration and comparison.

Keywords: all-pass digital filter, lattice structure, quincunx QMF bank, symmetric half-plane digital filter

Procedia PDF Downloads 359
10948 A Computational Framework for Decoding Hierarchical Interlocking Structures with SL Blocks

Authors: Yuxi Liu, Boris Belousov, Mehrzad Esmaeili Charkhab, Oliver Tessmann

Abstract:

This paper presents a computational solution for designing reconfigurable interlocking structures that are fully assembled with SL Blocks. Formed by S-shaped and L-shaped tetracubes, SL Block is a specific type of interlocking puzzle. Analogous to molecular self-assembly, the aggregation of SL blocks will build a reversible hierarchical and discrete system where a single module can be numerously replicated to compose semi-interlocking components that further align, wrap, and braid around each other to form complex high-order aggregations. These aggregations can be disassembled and reassembled, responding dynamically to design inputs and changes with a unique capacity for reconfiguration. To use these aggregations as architectural structures, we developed computational tools that automate the configuration of SL blocks based on architectural design objectives. There are three critical phases in our work. First, we revisit the hierarchy of the SL block system and devise a top-down-type design strategy. From this, we propose two key questions: 1) How to translate 3D polyominoes into SL block assembly? 2) How to decompose the desired voxelized shapes into a set of 3D polyominoes with interlocking joints? These two questions can be considered the Hamiltonian path problem and the 3D polyomino tiling problem. Then, we derive our solution to each of them based on two methods. The first method is to construct the optimal closed path from an undirected graph built from the voxelized shape and translate the node sequence of the resulting path into the assembly sequence of SL blocks. The second approach describes interlocking relationships of 3D polyominoes as a joint connection graph. Lastly, we formulate the desired shapes and leverage our methods to achieve their reconfiguration within different levels. We show that our computational strategy will facilitate the efficient design of hierarchical interlocking structures with a self-replicating geometric module.

Keywords: computational design, SL-blocks, 3D polyomino puzzle, combinatorial problem

Procedia PDF Downloads 129
10947 Thermal Management of a Compact Electronic Device Subjected to Different Harsh Operating Conditions

Authors: Murat Parlak, Muhammed Çağlar Malyemez

Abstract:

In a harsh environment, it is crucialtoinvestigatethethermal problem systematically implement a reliableandeffectivecoolingtechniqueformilitaryequipment. In this study, an electronicaldevice has been designed to fit different boundary conditions. Manyfinalternatives can be possiblesolutionsforthethermal problem. Therefore, it is an important step to define an easyproduciblefindesignand a low power fan selection for the optimum unit-design satisfying IP68. The equipment is planned to serve at 71C environment conditions and it also can be screwedto a cold plate at +85C. In both conditions, it is intendedtousethesamechassiswithoutanymodifications. To optimize such a ruggeddevice, all CFD analysis has been done withAnsysFluent 2021®. Afterstudyingpinfins, it is seenthatthesurfacearea is not enough, hencethefin-type is changed to a straightrectangulartypewithforcedconvectioncooling. Finally, a verycompactproductthat can serve in a harsh environment is obtained.

Keywords: electronic cooling, harsh environment, forced convection, compact design

Procedia PDF Downloads 179
10946 Further Development of Offshore Floating Solar and Its Design Requirements

Authors: Madjid Karimirad

Abstract:

Floating solar was not very well-known in the renewable energy field a decade ago; however, there has been tremendous growth internationally with a Compound Annual Growth Rate (CAGR) of nearly 30% in recent years. To reach the goal of global net-zero emission by 2050, all renewable energy sources including solar should be used. Considering that 40% of the world’s population lives within 100 kilometres of the coasts, floating solar in coastal waters is an obvious energy solution. However, this requires more robust floating solar solutions. This paper tries to enlighten the fundamental requirements in the design of floating solar for offshore installations from the hydrodynamic and offshore engineering points of view. In this regard, a closer look at dynamic characteristics, stochastic behaviour and nonlinear phenomena appearing in this kind of structure is a major focus of the current article. Floating solar structures are alternative and very attractive green energy installations with (a) Less strain on land usage for densely populated areas; (b) Natural cooling effect with efficiency gain; and (c) Increased irradiance from the reflectivity of water. Also, floating solar in conjunction with the hydroelectric plants can optimise energy efficiency and improve system reliability. The co-locating of floating solar units with other types such as offshore wind, wave energy, tidal turbines as well as aquaculture (fish farming) can result in better ocean space usage and increase the synergies. Floating solar technology has seen considerable developments in installed capacities in the past decade. Development of design standards and codes of practice for floating solar technologies deployed on both inland water-bodies and offshore is required to ensure robust and reliable systems that do not have detrimental impacts on the hosting water body. Floating solar will account for 17% of all PV energy produced worldwide by 2030. To enhance the development, further research in this area is needed. This paper aims to discuss the main critical design aspects in light of the load and load effects that the floating solar platforms are subjected to. The key considerations in hydrodynamics, aerodynamics and simultaneous effects from the wind and wave load actions will be discussed. The link of dynamic nonlinear loading, limit states and design space considering the environmental conditions is set to enable a better understanding of the design requirements of fast-evolving floating solar technology.

Keywords: floating solar, offshore renewable energy, wind and wave loading, design space

Procedia PDF Downloads 79
10945 Exploration of Spatial Design Strategies on Conservation of Mobile Vending in Chinese Shantytowns Renovation Planning

Authors: Tianchen Dai

Abstract:

Shantytowns are special historical products in china, possessing strong particularity and typicality, the theoretical value and the practical significance of which are deemed to hold great importance in the modern development of residential areas in China. The renovation planning of shantytowns can be very challenging in terms of cultural inheritance. The traditional lifestyle, one of the key elements building up residents’ perception of affiliation, should be carried forward in the renovation planning of shantytowns. Mobile vending can be considered as a rare business model survived within modern commercial environment, thanks to the unique spatial characteristics of Chinese shantytowns. This article mainly investigates the unique phenomenon of mobile vending in shantytowns, discussing the operating mechanism and rationality behind this commercial phenomenon. For humanistic concern, the innovative conservation of mobile vending, as a means to preserve the vivacious traditional lifestyle of local residents, can be realized through substantial urban design strategies, including spatial design of public space, height control of the facades, and traffic management around and inside shantytowns.

Keywords: cultural inheritance, mobile vending, renovation planning, shantytowns

Procedia PDF Downloads 470
10944 Thermoelectric Blanket for Aiding the Treatment of Cerebral Hypoxia and Other Related Conditions

Authors: Sarayu Vanga, Jorge Galeano-Cabral, Kaya Wei

Abstract:

Cerebral hypoxia refers to a condition in which there is a decrease in oxygen supply to the brain. Patients suffering from this condition experience a decrease in their body temperature. While there isn't any cure to treat cerebral hypoxia as of date, certain procedures are utilized to help aid in the treatment of the condition. Regulating the body temperature is an example of one of those procedures. Hypoxia is well known to reduce the body temperature of mammals, although the neural origins of this response remain uncertain. In order to speed recovery from this condition, it is necessary to maintain a stable body temperature. In this study, we present an approach to regulating body temperature for patients who suffer from cerebral hypoxia or other similar conditions. After a thorough literature study, we propose the use of thermoelectric blankets, which are temperature-controlled thermal blankets based on thermoelectric devices. These blankets are capable of heating up and cooling down the patient to stabilize body temperature. This feature is possible through the reversible effect that thermoelectric devices offer while behaving as a thermal sensor, and it is an effective way to stabilize temperature. Thermoelectricity is the direct conversion of thermal to electrical energy and vice versa. This effect is now known as the Seebeck effect, and it is characterized by the Seebeck coefficient. In such a configuration, the device has cooling and heating sides with temperatures that can be interchanged by simply switching the direction of the current input in the system. This design integrates various aspects, including a humidifier, ventilation machine, IV-administered medication, air conditioning, circulation device, and a body temperature regulation system. The proposed design includes thermocouples that will trigger the blanket to increase or decrease a set temperature through a medical temperature sensor. Additionally, the proposed design allows an efficient way to control fluctuations in body temperature while being cost-friendly, with an expected cost of 150 dollars. We are currently working on developing a prototype of the design to collect thermal and electrical data under different conditions and also intend to perform an optimization analysis to improve the design even further. While this proposal was developed for treating cerebral hypoxia, it can also aid in the treatment of other related conditions, as fluctuations in body temperature appear to be a common symptom that patients have for many illnesses.

Keywords: body temperature regulation, cerebral hypoxia, thermoelectric, blanket design

Procedia PDF Downloads 159
10943 Involving Participants at the Methodological Design Stage: The Group Repertory Grid Approach

Authors: Art Tsang

Abstract:

In educational research, the scope of investigations has almost always been determined by researchers. As learners are at the forefront of education, it is essential to balance researchers’ and learners’ voices in educational studies. In this paper, a data collection method that helps partly address the dearth of learners’ voices in research design is introduced. Inspired by the repertory grid approach (RGA), the group RGA approach, created by the author and his doctoral student, was successfully piloted with learners in Hong Kong. This method will very likely be of interest and use to many researchers, teachers, and postgraduate students in the field of education and beyond.

Keywords: education, learners, repertory grids, research methods

Procedia PDF Downloads 59
10942 Transition from Linear to Circular Business Models with Service Design Methodology

Authors: Minna-Maari Harmaala, Hanna Harilainen

Abstract:

Estimates of the economic value of transitioning to circular economy models vary but it has been estimated to represent $1 trillion worth of new business into the global economy. In Europe alone, estimates claim that adopting circular-economy principles could not only have environmental and social benefits but also generate a net economic benefit of €1.8 trillion by 2030. Proponents of a circular economy argue that it offers a major opportunity to increase resource productivity, decrease resource dependence and waste, and increase employment and growth. A circular system could improve competitiveness and unleash innovation. Yet, most companies are not capturing these opportunities and thus the even abundant circular opportunities remain uncaptured even though they would seem inherently profitable. Service design in broad terms relates to developing an existing or a new service or service concept with emphasis and focus on the customer experience from the onset of the development process. Service design may even mean starting from scratch and co-creating the service concept entirely with the help of customer involvement. Service design methodologies provide a structured way of incorporating customer understanding and involvement in the process of designing better services with better resonance to customer needs. A business model is a depiction of how the company creates, delivers, and captures value; i.e. how it organizes its business. The process of business model development and adjustment or modification is also called business model innovation. Innovating business models has become a part of business strategy. Our hypothesis is that in addition to linear models still being easier to adopt and often with lower threshold costs, companies lack an understanding of how circular models can be adopted into their business and how customers will be willing and ready to adopt the new circular business models. In our research, we use robust service design methodology to develop circular economy solutions with two case study companies. The aim of the process is to not only develop the service concepts and portfolio, but to demonstrate the willingness to adopt circular solutions exists in the customer base. In addition to service design, we employ business model innovation methods to develop, test, and validate the new circular business models further. The results clearly indicate that amongst the customer groups there are specific customer personas that are willing to adopt and in fact are expecting the companies to take a leading role in the transition towards a circular economy. At the same time, there is a group of indifferents, to whom the idea of circularity provides no added value. In addition, the case studies clearly show what changes adoption of circular economy principles brings to the existing business model and how they can be integrated.

Keywords: business model innovation, circular economy, circular economy business models, service design

Procedia PDF Downloads 135
10941 Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft

Authors: S. Kaymakçı, D. Gündoğdu, H. Özçelik

Abstract:

The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed.

Keywords: basal reinforcement, geogrid, reinforced soil raft, reinforced soil wall, soil reinforcement

Procedia PDF Downloads 302
10940 Optimization of Process Parameters using Response Surface Methodology for the Removal of Zinc(II) by Solvent Extraction

Authors: B. Guezzen, M.A. Didi, B. Medjahed

Abstract:

A factorial design of experiments and a response surface methodology were implemented to investigate the liquid-liquid extraction process of zinc (II) from acetate medium using the 1-Butyl-imidazolium di(2-ethylhexyl) phosphate [BIm+][D2EHP-]. The optimization process of extraction parameters such as the initial pH effect (2.5, 4.5, and 6.6), ionic liquid concentration (1, 5.5, and 10 mM) and salt effect (0.01, 5, and 10 mM) was carried out using a three-level full factorial design (33). The results of the factorial design demonstrate that all these factors are statistically significant, including the square effects of pH and ionic liquid concentration. The results showed that the order of significance: IL concentration > salt effect > initial pH. Analysis of variance (ANOVA) showing high coefficient of determination (R2 = 0.91) and low probability values (P < 0.05) signifies the validity of the predicted second-order quadratic model for Zn (II) extraction. The optimum conditions for the extraction of zinc (II) at the constant temperature (20 °C), initial Zn (II) concentration (1mM) and A/O ratio of unity were: initial pH (4.8), extractant concentration (9.9 mM), and NaCl concentration (8.2 mM). At the optimized condition, the metal ion could be quantitatively extracted.

Keywords: ionic liquid, response surface methodology, solvent extraction, zinc acetate

Procedia PDF Downloads 374
10939 Synthetic Classicism: A Machine Learning Approach to the Recognition and Design of Circular Pavilions

Authors: Federico Garrido, Mostafa El Hayani, Ahmed Shams

Abstract:

The exploration of the potential of artificial intelligence (AI) in architecture is still embryonic, however, its latent capacity to change design disciplines is significant. 'Synthetic Classism' is a research project that questions the underlying aspects of classically organized architecture not just in aesthetic terms but also from a geometrical and morphological point of view, intending to generate new architectural information using historical examples as source material. The main aim of this paper is to explore the uses of artificial intelligence and machine learning algorithms in architectural design while creating a coherent narrative to be contained within a design process. The purpose is twofold: on one hand, to develop and train machine learning algorithms to produce architectural information of small pavilions and on the other, to synthesize new information from previous architectural drawings. These algorithms intend to 'interpret' graphical information from each pavilion and then generate new information from it. The procedure, once these algorithms are trained, is the following: parting from a line profile, a synthetic 'front view' of a pavilion is generated, then using it as a source material, an isometric view is created from it, and finally, a top view is produced. Thanks to GAN algorithms, it is also possible to generate Front and Isometric views without any graphical input as well. The final intention of the research is to produce isometric views out of historical information, such as the pavilions from Sebastiano Serlio, James Gibbs, or John Soane. The idea is to create and interpret new information not just in terms of historical reconstruction but also to explore AI as a novel tool in the narrative of a creative design process. This research also challenges the idea of the role of algorithmic design associated with efficiency or fitness while embracing the possibility of a creative collaboration between artificial intelligence and a human designer. Hence the double feature of this research, both analytical and creative, first by synthesizing images based on a given dataset and then by generating new architectural information from historical references. We find that the possibility of creatively understand and manipulate historic (and synthetic) information will be a key feature in future innovative design processes. Finally, the main question that we propose is whether an AI could be used not just to create an original and innovative group of simple buildings but also to explore the possibility of fostering a novel architectural sensibility grounded on the specificities on the architectural dataset, either historic, human-made or synthetic.

Keywords: architecture, central pavilions, classicism, machine learning

Procedia PDF Downloads 140
10938 Building Collapse: Factors and Resisting Mechanisms: A Review of Case Studies

Authors: Genevieve D. Fernandes, Nisha P. Naik

Abstract:

All through the ages in all human civilizations, men have been engaged in construction activity, not only to build their dwellings and house their activities, but also roads, bridges to facilitate means of transport, and communication etc. The main concern in this activity was to ensure safety and reduce the collapse of the buildings and other structures. But even after taking all precautions, it is impossible to guarantee safety and collapse because of several unforeseen reasons like faulty constructions, design errors, overloading, soil liquefaction, gas explosion, material degradation, terrorist attacks and economic factors also contributing to the collapse. It is also uneconomical to design the structure for unforeseen events unless they have a reasonable chance of occurrence. In order to ensure safety and prevent collapse, many guidelines have been framed by local bodies and government authorities in many countries like the United States Department of Defence (DOD), United States General Service Administration (GSA) and Euro-Codes in European Nations. Some other practices are followed to incorporate redundancies in the structure like detailing, ductile designs, tying of elements at particular locations, and provision of hinges and interconnections. It is also to be admitted that a full-proof safe design structure for accidental events cannot be prepared and implemented as it is uneconomical and the chances of such occurrences are less. This paper reviews past case studies of the collapse of structures with the aim of developing an understanding of the collapse mechanism. This study will definitely help to bring about a detailed improvement in the design to maximise the quality of the construction at a minimal cost.

Keywords: unforeseen factors, progressive collapse, collapse resisting mechanisms, column removal scenario

Procedia PDF Downloads 137
10937 Machine learning Assisted Selective Emitter design for Solar Thermophotovoltaic System

Authors: Ambali Alade Odebowale, Andargachew Mekonnen Berhe, Haroldo T. Hattori, Andrey E. Miroshnichenko

Abstract:

Solar thermophotovoltaic systems (STPV) have emerged as a promising solution to overcome the Shockley-Queisser limit, a significant impediment in the direct conversion of solar radiation into electricity using conventional solar cells. The STPV system comprises essential components such as an optical concentrator, selective emitter, and a thermophotovoltaic (TPV) cell. The pivotal element in achieving high efficiency in an STPV system lies in the design of a spectrally selective emitter or absorber. Traditional methods for designing and optimizing selective emitters are often time-consuming and may not yield highly selective emitters, posing a challenge to the overall system performance. In recent years, the application of machine learning techniques in various scientific disciplines has demonstrated significant advantages. This paper proposes a novel nanostructure composed of four-layered materials (SiC/W/SiO2/W) to function as a selective emitter in the energy conversion process of an STPV system. Unlike conventional approaches widely adopted by researchers, this study employs a machine learning-based approach for the design and optimization of the selective emitter. Specifically, a random forest algorithm (RFA) is employed for the design of the selective emitter, while the optimization process is executed using genetic algorithms. This innovative methodology holds promise in addressing the challenges posed by traditional methods, offering a more efficient and streamlined approach to selective emitter design. The utilization of a machine learning approach brings several advantages to the design and optimization of a selective emitter within the STPV system. Machine learning algorithms, such as the random forest algorithm, have the capability to analyze complex datasets and identify intricate patterns that may not be apparent through traditional methods. This allows for a more comprehensive exploration of the design space, potentially leading to highly efficient emitter configurations. Moreover, the application of genetic algorithms in the optimization process enhances the adaptability and efficiency of the overall system. Genetic algorithms mimic the principles of natural selection, enabling the exploration of a diverse range of emitter configurations and facilitating the identification of optimal solutions. This not only accelerates the design and optimization process but also increases the likelihood of discovering configurations that exhibit superior performance compared to traditional methods. In conclusion, the integration of machine learning techniques in the design and optimization of a selective emitter for solar thermophotovoltaic systems represents a groundbreaking approach. This innovative methodology not only addresses the limitations of traditional methods but also holds the potential to significantly improve the overall performance of STPV systems, paving the way for enhanced solar energy conversion efficiency.

Keywords: emitter, genetic algorithm, radiation, random forest, thermophotovoltaic

Procedia PDF Downloads 61
10936 A Study of Blockchain Oracles

Authors: Abdeljalil Beniiche

Abstract:

The limitation with smart contracts is that they cannot access external data that might be required to control the execution of business logic. Oracles can be used to provide external data to smart contracts. An oracle is an interface that delivers data from external data outside the blockchain to a smart contract to consume. Oracle can deliver different types of data depending on the industry and requirements. In this paper, we study and describe the widely used blockchain oracles. Then, we elaborate on his potential role, technical architecture, and design patterns. Finally, we discuss the human oracle and its key role in solving the truth problem by reaching a consensus about a certain inquiry and tasks.

Keywords: blockchain, oracles, oracles design, human oracles

Procedia PDF Downloads 135
10935 Design Standardization in Aramco: Strategic Analysis

Authors: Mujahid S. Alharbi

Abstract:

The construction of process plants in oil and gas-producing countries, such as Saudi Arabia, necessitates substantial investment in design and building. Each new plant, while unique, includes common building types, suggesting an opportunity for design standardization. This study investigates the adoption of standardized Issue For Construction (IFC) packages for non-process buildings in Saudi Aramco. A SWOT analysis presents the strengths, weaknesses, opportunities, and threats of this approach. The approach's benefits are illustrated using the Hawiyah Unayzah Gas Reservoir Storage Program (HUGRSP) as a case study. Standardization not only offers significant cost savings and operational efficiencies but also expedites project timelines, reduces the potential for change orders, and fosters local economic growth by allocating building tasks to local contractors. Standardization also improves project management by easing interface constraints between different contractors and promoting adaptability to future industry changes. This research underscores the standardization of non-process buildings as a powerful strategy for cost optimization, efficiency enhancement, and local economic development in process plant construction within the oil and gas sector.

Keywords: building, construction, management, project, standardization

Procedia PDF Downloads 64
10934 A Model-Reference Sliding Mode for Dual-Stage Actuator Servo Control in HDD

Authors: S. Sonkham, U. Pinsopon, W. Chatlatanagulchai

Abstract:

This paper presents a method of sliding mode control (SMC) designing and developing for the servo system in a dual-stage actuator (DSA) hard disk drive. Mathematical modelling of hard disk drive actuators is obtained, extracted from measuring frequency response of the voice-coil motor (VCM) and PZT micro-actuator separately. Matlab software tools are used for mathematical model estimation and also for controller design and simulation. A model-reference approach for tracking requirement is selected as a proposed technique. The simulation results show that performance of a model-reference SMC controller design in DSA servo control can be satisfied in the tracking error, as well as keeping the positioning of the head within the boundary of +/-5% of track width under the presence of internal and external disturbance. The overall results of model-reference SMC design in DSA are met per requirement specifications and significant reduction in %off track is found when compared to the single-state actuator (SSA).

Keywords: hard disk drive, dual-stage actuator, track following, hdd servo control, sliding mode control, model-reference, tracking control

Procedia PDF Downloads 365