Search results for: spatial learning
7933 Bridging the Divide: Mixed-Method Analysis of Student Engagement and Outcomes in Diverse Postgraduate Cohorts
Authors: A.Knox
Abstract:
Student diversity in postgraduate classes puts major challenges on educators seeking to encourage student engagement and desired to learn outcomes. This paper outlines the impact of a set of teaching initiatives aimed at addressing challenges associated with teaching and learning in an environment characterized by diversity in the student cohort. The study examines postgraduate students completing the core capstone unit within a specialized business degree. Although relatively small, the student cohort is highly diverse in terms of cultural backgrounds represented, prior learning and/or qualifications, as well as duration and type of work experience relevant to the degree, is completed. The wide range of cultures, existing knowledge and experience create enormous challenges with respect to students’ learning needs and outcomes. Subsequently, a suite of teaching innovations has been adopted to enhance curriculum content/delivery and the design of assessments. This paper explores the impact of these specific teaching and learning practices, examining the ways they have supported students’ diverse needs and enhanced students’ learning outcomes. Data from surveys and focus groups are used to assess the effectiveness of these practices. The results highlight the effectiveness of peer-assisted learning, cultural competence-building, and advanced assessment options in addressing diverse student needs and enhancing student engagement and learning outcomes. These findings suggest that such practices would benefit students’ learning in environments marked by diversity in the student cohort. Specific recommendations are offered for other educators working with diverse classes.Keywords: assessment design, curriculum content, curriculum delivery, student diversity
Procedia PDF Downloads 1107932 Inclusive Educational Technology for Students in Rural Areas in Nigeria: Experimenting Micro-Learning and Gamification in Basic Technology Classes
Authors: Efuwape Bamidele Michael, Efuwape Oluwabunmi Asake
Abstract:
Nigeria has some deep rural environments that seem secluded from most of the technological amenities for convenient living and learning. Most schools in such environments are yet to be captured in the educational applications of technological facilities. The study explores the facilitation of basic technology instructions with micro-learning and gamification among students in rural Junior Secondary Schools in the Ipokia Local Government Area (LGA) of Ogun state. The study employed a quasi-experimental design, specifically the pre-test and post-test control group design. The study population comprised all Junior Secondary School students in the LGA. Four Junior Secondary Schools in the LGA were randomly selected for the study and classified into two experimental and two control groups. A total sample of 156 students participated in the study. Basic Technology Achievement Test and Junior School Students’ Attitudinal Scale were instruments used for data collection in the study with reliability coefficients of 0.87 and 0.83, respectively. Five hypotheses guided the study and were tested using Analysis of covariance (ANCOVA) at a 0.05 level of significance. Findings from the study established significant marginal differences in students’ academic performance (F = 644.301; p = .000), learning retention (F = 583.335; p = .000), and attitude towards learning basic technology (F = 491.226; p = .000) between the two groups in favour of the experimental group exposed to micro-learning and gamification. As a recommendation, adequate provisions for inclusive educational practices with technological applications should be ensured for all children irrespective of location within the country, especially to encourage effective learning in rural schools.Keywords: inclusive education, educational technology, basic technology students, rural areas in Nigeria, micro-learning, gamification
Procedia PDF Downloads 887931 Geographic Information System (GIS) for Structural Typology of Buildings
Authors: Néstor Iván Rojas, Wilson Medina Sierra
Abstract:
Managing spatial information is described through a Geographic Information System (GIS), for some neighborhoods in the city of Tunja, in relation to the structural typology of the buildings. The use of GIS provides tools that facilitate the capture, processing, analysis and dissemination of cartographic information, product quality evaluation of the classification of buildings. Allows the development of a method that unifies and standardizes processes information. The project aims to generate a geographic database that is useful to the entities responsible for planning and disaster prevention and care for vulnerable populations, also seeks to be a basis for seismic vulnerability studies that can contribute in a study of urban seismic microzonation. The methodology consists in capturing the plat including road naming, neighborhoods, blocks and buildings, to which were added as attributes, the product of the evaluation of each of the housing data such as the number of inhabitants and classification, year of construction, the predominant structural systems, the type of mezzanine board and state of favorability, the presence of geo-technical problems, the type of cover, the use of each building, damage to structural and non-structural elements . The above data are tabulated in a spreadsheet that includes cadastral number, through which are systematically included in the respective building that also has that attribute. Geo-referenced data base is obtained, from which graphical outputs are generated, producing thematic maps for each evaluated data, which clearly show the spatial distribution of the information obtained. Using GIS offers important advantages for spatial information management and facilitates consultation and update. Usefulness of the project is recognized as a basis for studies on issues of planning and prevention.Keywords: microzonation, buildings, geo-processing, cadastral number
Procedia PDF Downloads 3347930 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil
Authors: M. Seguini, D. Nedjar
Abstract:
An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability
Procedia PDF Downloads 4147929 Methodology of the Turkey’s National Geographic Information System Integration Project
Authors: Buse A. Ataç, Doğan K. Cenan, Arda Çetinkaya, Naz D. Şahin, Köksal Sanlı, Zeynep Koç, Akın Kısa
Abstract:
With its spatial data reliability, interpretation and questioning capabilities, Geographical Information Systems make significant contributions to scientists, planners and practitioners. Geographic information systems have received great attention in today's digital world, growing rapidly, and increasing the efficiency of use. Access to and use of current and accurate geographical data, which are the most important components of the Geographical Information System, has become a necessity rather than a need for sustainable and economic development. This project aims to enable sharing of data collected by public institutions and organizations on a web-based platform. Within the scope of the project, INSPIRE (Infrastructure for Spatial Information in the European Community) data specifications are considered as a road-map. In this context, Turkey's National Geographic Information System (TUCBS) Integration Project supports sharing spatial data within 61 pilot public institutions as complied with defined national standards. In this paper, which is prepared by the project team members in the TUCBS Integration Project, the technical process with a detailed methodology is explained. In this context, the main technical processes of the Project consist of Geographic Data Analysis, Geographic Data Harmonization (Standardization), Web Service Creation (WMS, WFS) and Metadata Creation-Publication. In this paper, the integration process carried out to provide the data produced by 61 institutions to be shared from the National Geographic Data Portal (GEOPORTAL), have been trying to be conveyed with a detailed methodology.Keywords: data specification, geoportal, GIS, INSPIRE, Turkish National Geographic Information System, TUCBS, Turkey's national geographic information system
Procedia PDF Downloads 1447928 High-Frequency Cryptocurrency Portfolio Management Using Multi-Agent System Based on Federated Reinforcement Learning
Authors: Sirapop Nuannimnoi, Hojjat Baghban, Ching-Yao Huang
Abstract:
Over the past decade, with the fast development of blockchain technology since the birth of Bitcoin, there has been a massive increase in the usage of Cryptocurrencies. Cryptocurrencies are not seen as an investment opportunity due to the market’s erratic behavior and high price volatility. With the recent success of deep reinforcement learning (DRL), portfolio management can be modeled and automated. In this paper, we propose a novel DRL-based multi-agent system to automatically make proper trading decisions on multiple cryptocurrencies and gain profits in the highly volatile cryptocurrency market. We also extend this multi-agent system with horizontal federated transfer learning for better adapting to the inclusion of new cryptocurrencies in our portfolio; therefore, we can, through the concept of diversification, maximize our profits and minimize the trading risks. Experimental results through multiple simulation scenarios reveal that this proposed algorithmic trading system can offer three promising key advantages over other systems, including maximized profits, minimized risks, and adaptability.Keywords: cryptocurrency portfolio management, algorithmic trading, federated learning, multi-agent reinforcement learning
Procedia PDF Downloads 1197927 Internal and External Factors Affecting Teachers’ Adoption of Formative Assessment to Support Learning
Authors: Kemal Izci
Abstract:
Assessment forms an important part of instruction. Assessment that aims to support learning is known as formative assessment and it contributes student’s learning gain and motivation. However, teachers rarely use assessment formatively to aid their students’ learning. Thus, reviewing the factors that limit or support teachers’ practices of formative assessment will be crucial for guiding educators to support prospective teachers in using formative assessment and also eliminate limiting factors to let practicing teachers to engage in formative assessment practices during their instruction. The study, by using teacher’s change environment framework, reviews literature on formative assessment and presents a tentative model that illustrates the factors impacting teachers’ adoption of formative assessment in their teaching. The results showed that there are four main factors consisting personal, contextual, resource-related and external factors that influence teachers’ practices of formative assessment.Keywords: assessment practices, formative assessment, teacher education, factors for use of formative assessment
Procedia PDF Downloads 3767926 Identity Struggle of Young Muslim Women in the Spatial Context in Turki̇ye
Authors: Ayça Çavdar
Abstract:
In this study, the ‘Kadınlar Camilerde (Women in Mosques)’ movement in Turkey will be investigated. Specifically, this paper focuses on the identity struggle of young Muslim women in Turkey in a spatial context. Kadınlar Camilerde is composed of a group of Muslim women who constantly use mosques, come together in mosques, communicate via social media, talk about the situation of women in mosques, and seek solutions for the conditions they find "unequal". This paper’s objective is to understand the relationship between women’s participation in the public sphere (work-education) and their spatial demands, the relationship between the support they receive from their close and distant environment and their ability to take unconventional actions, the relationship between religiosity and the ability to engage in unconventional actions, and also to understand how the social and cultural meanings of mosque spaces differ for women. To find answers to the research questions, an online survey will be conducted. Participants of this survey will be Muslim women who are supporters and non-supporters of ‘Kadınlar Camilerde.’ Although the aim is to investigate supporters of Kadınlar Camilerde, there will be a need for the participants to the non-supporters to see their revealed differences in thoughts and behaviors. In addition to the aforementioned research questions, the paper will seek to find out how supporters and non-supporters Muslim women differ. It is expected to find out that younger women tend to participate in Kadınlar Camilerde. It is also hypothesized that the more women get involved in the public sphere, the more space they demand from society. The paper hypothesizes that the women encouraged by their family, husband, and friends are eager to participate in unconventional actions. It is finally hypothesized that there is no relation between religiosity and the choice of unconventional actions.Keywords: women, mosques, resistance, türkiye
Procedia PDF Downloads 677925 Research of the Three-Dimensional Visualization Geological Modeling of Mine Based on Surpac
Authors: Honggang Qu, Yong Xu, Rongmei Liu, Zhenji Gao, Bin Wang
Abstract:
Today's mining industry is advancing gradually toward digital and visual direction. The three-dimensional visualization geological modeling of mine is the digital characterization of mineral deposits and is one of the key technology of digital mining. Three-dimensional geological modeling is a technology that combines geological spatial information management, geological interpretation, geological spatial analysis and prediction, geostatistical analysis, entity content analysis and graphic visualization in a three-dimensional environment with computer technology and is used in geological analysis. In this paper, the three-dimensional geological modeling of an iron mine through the use of Surpac is constructed, and the weight difference of the estimation methods between the distance power inverse ratio method and ordinary kriging is studied, and the ore body volume and reserves are simulated and calculated by using these two methods. Compared with the actual mine reserves, its result is relatively accurate, so it provides scientific bases for mine resource assessment, reserve calculation, mining design and so on.Keywords: three-dimensional geological modeling, geological database, geostatistics, block model
Procedia PDF Downloads 777924 Latitudinal Impact on Spatial and Temporal Variability of 7Be Activity Concentrations in Surface Air along Europe
Authors: M. A. Hernández-Ceballos, M. Marín-Ferrer, G. Cinelli, L. De Felice, T. Tollefsen, E. Nweke, P. V. Tognoli, S. Vanzo, M. De Cort
Abstract:
This study analyses the latitudinal impact of the spatial and temporal distribution on the cosmogenic isotope 7Be in surface air along Europe. The long-term database of the 6 sampling sites (Ivalo, Helsinki, Berlin, Freiburg, Sevilla and La Laguna), that regularly provide data to the Radioactivity Environmental Monitoring (REM) network managed by the Joint Research Centre (JRC) in Ispra, were used. The selection of the stations was performed attending to different factors, such as 1) heterogeneity in terms of latitude and altitude, and 2) long database coverage. The combination of these two parameters ensures a high degree of representativeness of the results. In the later, the temporal coverage varies between stations, being used in the present study sampling stations with a database more or less continuously from 1984 to 2011. The mean values of 7Be activity concentration presented a spatial distribution value ranging from 2.0 ± 0.9 mBq/m3 (Ivalo, north) to 4.8 ± 1.5 mBq/m3 (La Laguna, south). An increasing gradient with latitude was observed from the north to the south, 0.06 mBq/m3. However, there was no correlation with altitude, since all stations are sited within the atmospheric boundary layer. The analyses of the data indicated a dynamic range of 7Be activity for solar cycle and phase (maximum or minimum), having been observed different impact on stations according to their location. The results indicated a significant seasonal behavior, with the maximum concentrations occurring in the summer and minimum in the winter, although with differences in the values reached and in the month registered. Due to the large heterogeneity in the temporal pattern with which the individual radionuclide analyses were performed in each station, the 7Be monthly index was calculated to normalize the measurements and perform the direct comparison of monthly evolution among stations. Different intensity and evolution of the mean monthly index were observed. The knowledge of the spatial and temporal distribution of this natural radionuclide in the atmosphere is a key parameter for modeling studies of atmospheric processes, which are important phenomena to be taken into account in the case of a nuclear accident.Keywords: Berilium-7, latitudinal impact in Europe, seasonal and monthly variability, solar cycle
Procedia PDF Downloads 3377923 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering
Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal
Abstract:
The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease
Procedia PDF Downloads 2037922 Interactive and Innovative Environments for Modeling Digital Educational Games and Animations
Authors: Ida Srdić, Luka Mandić, LidijaMandić
Abstract:
Digitization and intensive use of tablets, smartphones, the internet, mobile, and web applications have massively disrupted our habits, and the way audiences (especially youth) consume content. To introduce educational content in games and animations, and at the same time to keep it interesting and compelling for kids, is a challenge. In our work, we are comparing the different possibilities and potentials that digital games could provide to successfully mitigate direct connection with education. We analyze the main directions and educational methods in game-based learning and the possibilities of interactive modeling through questionnaires for user experience and requirements. A pre and post-quantitative survey will be conducted in order to measure levels of objective knowledge as well as the games perception. This approach enables quantitative and objective evaluation of the impact the game has on participants. Also, we will discuss the main barriers to the use of games in education and how games can be best used for learning.Keywords: Bloom’s taxonomy, epistemic games, learning objectives, virtual learning environments
Procedia PDF Downloads 987921 Navigating the Assessment Landscape in English Language Teaching: Strategies, Challengies and Best Practices
Authors: Saman Khairani
Abstract:
Assessment is a pivotal component of the teaching and learning process, serving as a critical tool for evaluating student progress, diagnosing learning needs, and informing instructional decisions. In the context of English Language Teaching (ELT), effective assessment practices are essential to promote meaningful learning experiences and foster continuous improvement in language proficiency. This paper delves into various assessment strategies, explores associated challenges, and highlights best practices for assessing student learning in ELT. The paper begins by examining the diverse forms of assessment, including formative assessments that provide timely feedback during the learning process and summative assessments that evaluate overall achievement. Additionally, alternative methods such as portfolios, self-assessment, and peer assessment play a significant role in capturing various aspects of language learning. Aligning assessments with learning objectives is crucial. Educators must ensure that assessment tasks reflect the desired language skills, communicative competence, and cultural awareness. Validity, reliability, and fairness are essential considerations in assessment design. Challenges in assessing language skills—such as speaking, listening, reading, and writing—are discussed, along with practical solutions. Constructive feedback, tailored to individual learners, guides their language development. In conclusion, this paper synthesizes research findings and practical insights, equipping ELT practitioners with the knowledge and tools necessary to design, implement, and evaluate effective assessment practices. By fostering meaningful learning experiences, educators contribute significantly to learners’ language proficiency and overall success.Keywords: ELT, formative, summative, fairness, validity, reliability
Procedia PDF Downloads 567920 Aspects of Diglossia in Arabic Language Learning
Authors: Adil Ishag
Abstract:
Diglossia emerges in a situation where two distinctive varieties of a language are used alongside within a certain community. In this case, one is considered as a high or standard variety and the second one as a low or colloquial variety. Arabic is an extreme example of a highly diglossic language. This diglossity is due to the fact that Arabic is one of the most spoken languages and spread over 22 Countries in two continents as a mother tongue, and it is also widely spoken in many other Islamic countries as a second language or simply the language of Quran. The geographical variation between the countries where the language is spoken and the duality of the classical Arabic and daily spoken dialects in the Arab world on the other hand; makes the Arabic language one of the most diglossic languages. This paper tries to investigate this phenomena and its relation to learning Arabic as a first and second language.Keywords: Arabic language, diglossia, first and second language, language learning
Procedia PDF Downloads 5647919 Machine Learning Algorithms for Rocket Propulsion
Authors: Rômulo Eustáquio Martins de Souza, Paulo Alexandre Rodrigues de Vasconcelos Figueiredo
Abstract:
In recent years, there has been a surge in interest in applying artificial intelligence techniques, particularly machine learning algorithms. Machine learning is a data-analysis technique that automates the creation of analytical models, making it especially useful for designing complex situations. As a result, this technology aids in reducing human intervention while producing accurate results. This methodology is also extensively used in aerospace engineering since this is a field that encompasses several high-complexity operations, such as rocket propulsion. Rocket propulsion is a high-risk operation in which engine failure could result in the loss of life. As a result, it is critical to use computational methods capable of precisely representing the spacecraft's analytical model to guarantee its security and operation. Thus, this paper describes the use of machine learning algorithms for rocket propulsion to aid the realization that this technique is an efficient way to deal with challenging and restrictive aerospace engineering activities. The paper focuses on three machine-learning-aided rocket propulsion applications: set-point control of an expander-bleed rocket engine, supersonic retro-propulsion of a small-scale rocket, and leak detection and isolation on rocket engine data. This paper describes the data-driven methods used for each implementation in depth and presents the obtained results.Keywords: data analysis, modeling, machine learning, aerospace, rocket propulsion
Procedia PDF Downloads 1157918 Crossing Multi-Source Climate Data to Estimate the Effects of Climate Change on Evapotranspiration Data: Application to the French Central Region
Authors: Bensaid A., Mostephaoui T., Nedjai R.
Abstract:
Climatic factors are the subject of considerable research, both methodologically and instrumentally. Under the effect of climate change, the approach to climate parameters with precision remains one of the main objectives of the scientific community. This is from the perspective of assessing climate change and its repercussions on humans and the environment. However, many regions of the world suffer from a severe lack of reliable instruments that can make up for this deficit. Alternatively, the use of empirical methods becomes the only way to assess certain parameters that can act as climate indicators. Several scientific methods are used for the evaluation of evapotranspiration which leads to its evaluation either directly at the level of the climatic stations or by empirical methods. All these methods make a point approach and, in no case, allow the spatial variation of this parameter. We, therefore, propose in this paper the use of three sources of information (network of weather stations of Meteo France, World Databases, and Moodis satellite images) to evaluate spatial evapotranspiration (ETP) using the Turc method. This first step will reflect the degree of relevance of the indirect (satellite) methods and their generalization to sites without stations. The spatial variation representation of this parameter using the geographical information system (GIS) accounts for the heterogeneity of the behaviour of this parameter. This heterogeneity is due to the influence of site morphological factors and will make it possible to appreciate the role of certain topographic and hydrological parameters. A phase of predicting the evolution over the medium and long term of evapotranspiration under the effect of climate change by the application of the Intergovernmental Panel on Climate Change (IPCC) scenarios gives a realistic overview as to the contribution of aquatic systems to the scale of the region.Keywords: climate change, ETP, MODIS, GIEC scenarios
Procedia PDF Downloads 1007917 Empowering Learners: From Augmented Reality to Shared Leadership
Authors: Vilma Zydziunaite, Monika Kelpsiene
Abstract:
In early childhood and preschool education, play has an important role in learning and cognitive processes. In the context of a changing world, personal autonomy and the use of technology are becoming increasingly important for the development of a wide range of learner competencies. By integrating technology into learning environments, the educational reality is changed, promoting unusual learning experiences for children through play-based activities. Alongside this, teachers are challenged to develop encouragement and motivation strategies that empower children to act independently. The aim of the study was to reveal the changes in the roles and experiences of teachers in the application of AR technology for the enrichment of the learning process. A quantitative research approach was used to conduct the study. The data was collected through an electronic questionnaire. Participants: 319 teachers of 5-6-year-old children using AR technology tools in their educational process. Methods of data analysis: Cronbach alpha, descriptive statistical analysis, normal distribution analysis, correlation analysis, regression analysis (SPSS software). Results. The results of the study show a significant relationship between children's learning and the educational process modeled by the teacher. The strongest predictor of child learning was found to be related to the role of the educator. Other predictors, such as pedagogical strategies, the concept of AR technology, and areas of children's education, have no significant relationship with child learning. The role of the educator was found to be a strong determinant of the child's learning process. Conclusions. The greatest potential for integrating AR technology into the teaching-learning process is revealed in collaborative learning. Teachers identified that when integrating AR technology into the educational process, they encourage children to learn from each other, develop problem-solving skills, and create inclusive learning contexts. A significant relationship has emerged - how the changing role of the teacher relates to the child's learning style and the aspiration for personal leadership and responsibility for their learning. Teachers identified the following key roles: observer of the learning process, proactive moderator, and creator of the educational context. All these roles enable the learner to become an autonomous and active participant in the learning process. This provides a better understanding and explanation of why it becomes crucial to empower the learner to experiment, explore, discover, actively create, and foster collaborative learning in the design and implementation of the educational content, also for teachers to integrate AR technologies and the application of the principles of shared leadership. No statistically significant relationship was found between the understanding of the definition of AR technology and the teacher’s choice of role in the learning process. However, teachers reported that their understanding of the definition of AR technology influences their choice of role, which has an impact on children's learning.Keywords: teacher, learner, augmented reality, collaboration, shared leadership, preschool education
Procedia PDF Downloads 407916 Variogram Fitting Based on the Wilcoxon Norm
Authors: Hazem Al-Mofleh, John Daniels, Joseph McKean
Abstract:
Within geostatistics research, effective estimation of the variogram points has been examined, particularly in developing robust alternatives. The parametric fit of these variogram points which eventually defines the kriging weights, however, has not received the same attention from a robust perspective. This paper proposes the use of the non-linear Wilcoxon norm over weighted non-linear least squares as a robust variogram fitting alternative. First, we introduce the concept of variogram estimation and fitting. Then, as an alternative to non-linear weighted least squares, we discuss the non-linear Wilcoxon estimator. Next, the robustness properties of the non-linear Wilcoxon are demonstrated using a contaminated spatial data set. Finally, under simulated conditions, increasing levels of contaminated spatial processes have their variograms points estimated and fit. In the fitting of these variogram points, both non-linear Weighted Least Squares and non-linear Wilcoxon fits are examined for efficiency. At all levels of contamination (including 0%), using a robust estimation and robust fitting procedure, the non-weighted Wilcoxon outperforms weighted Least Squares.Keywords: non-linear wilcoxon, robust estimation, variogram estimation, wilcoxon norm
Procedia PDF Downloads 4587915 Concept Mapping of Teachers Regarding Conflict Management
Authors: Tahir Mehmood, Mumtaz Akhter
Abstract:
The global need for conflict management is greater now in the early 21st century than ever before. According to UNESCO, half of the world’s 195 countries will have to expand their stock of educationist significantly, some by tens of thousands, if the goal development targets are desired to achieve. Socioeconomic inequities, political instability, demographic changes and crises such as the HIV/AIDs epidemic have engendered huge shortfalls in teacher supply and low teacher quality in many developing countries. Education serves as back bone in development process. Open learning and distance education programs are serving as pivotal part of development process. It is now clear that ‘bricks and mortar’ approaches to expanding teacher education may not be adequate if the current and projected shortfalls in teacher supply and low teacher quality are to be properly addressed. The study is designed to measure the perceptions of teaching learning community about conflict management with special reference to open and distance learning. It was descriptive study which targeted teachers, students, community members and experts. Data analysis was carried out by using statistical techniques served by SPSS. Findings reflected that audience perceives open and distance learning as change agent and as development tool. It is noticed that target audience has driven prominent performance by using facility of open and distance learning.Keywords: conflict management, open and distance learning, teachers, students
Procedia PDF Downloads 4117914 Using Machine Learning as an Alternative for Predicting Exchange Rates
Authors: Pedro Paulo Galindo Francisco, Eli Dhadad Junior
Abstract:
This study addresses the Meese-Rogoff Puzzle by introducing the latest machine learning techniques as alternatives for predicting the exchange rates. Using RMSE as a comparison metric, Meese and Rogoff discovered that economic models are unable to outperform the random walk model as short-term exchange rate predictors. Decades after this study, no statistical prediction technique has proven effective in overcoming this obstacle; although there were positive results, they did not apply to all currencies and defined periods. Recent advancements in artificial intelligence technologies have paved the way for a new approach to exchange rate prediction. Leveraging this technology, we applied five machine learning techniques to attempt to overcome the Meese-Rogoff puzzle. We considered daily data for the real, yen, British pound, euro, and Chinese yuan against the US dollar over a time horizon from 2010 to 2023. Our results showed that none of the presented techniques were able to produce an RMSE lower than the Random Walk model. However, the performance of some models, particularly LSTM and N-BEATS were able to outperform the ARIMA model. The results also suggest that machine learning models have untapped potential and could represent an effective long-term possibility for overcoming the Meese-Rogoff puzzle.Keywords: exchage rate, prediction, machine learning, deep learning
Procedia PDF Downloads 317913 Lessons-Learned in a Post-Alliance Framework
Authors: Olubukola Olumuyiwa Tokede, Dominic D. Ahiaga-Dagbui, John Morrison
Abstract:
The project environment in construction has been widely criticised for its inability to learn from experience effectively. As each project is bespoke, learning is ephemeral, as it is often confined within its bounds and seldom assimilated with others that are being delivered in the project environment. To engender learning across construction projects, collaborative contractual arrangements, such as alliancing and partnering, have been embraced to aid the transferability of lessons across projects. These cooperative arrangements, however, tend to be costly, and hence construction organisations could revert to less expensive traditional procurement approaches after successful collaborative project delivery. This research, therefore, seeks to assess the lessons-learned in a post-alliance contractual framework. Using a case-study approach, we examine the experiences of a public sector authority who engaged a project facilitator to foster learning during the delivery of a significant piece of critical infrastructure. It was found that the facilitator enabled optimal learning outcomes in post-alliance contractual frameworks by attenuating the otherwise adversarial relationship between clients and contractors. Further research will seek to assess the effectiveness of different knowledge-brokering agencies in construction projects.Keywords: facilitation, knowledge-brokering, learning, projects
Procedia PDF Downloads 1367912 E-learning resources for radiology training: Is an ideal program available?
Authors: Eric Fang, Robert Chen, Ghim Song Chia, Bien Soo Tan
Abstract:
Objective and Rationale: Training of radiology residents hinges on practical, on-the-job training in all facets and modalities of diagnostic radiology. Although residency is structured to be comprehensive, clinical exposure depends on the case mix available locally and during the posting period. To supplement clinical training, there are several e-learning resources available to allow for greater exposure to radiological cases. The objective of this study was to survey residents and faculty on the usefulness of these e-learning resources. Methods: E-learning resources were shortlisted with input from radiology residents, Google search and online discussion groups, and screened by their purported focus. Twelve e-learning resources were found to meet the criteria. Both radiology residents and experienced radiology faculty were then surveyed electronically. The e-survey asked for ratings on breadth, depth, testing capability and user-friendliness for each resource, as well as for rankings for the top 3 resources. Statistical analysis was performed using SAS 9.4. Results: Seventeen residents and fifteen faculties completed an e-survey. Mean response rate was 54% ± 8% (Range: 14- 96%). Ratings and rankings were statistically identical between residents and faculty. On a 5-point rating scale, breadth was 3.68 ± 0.18, depth was 3.95 ± 0.14, testing capability was 2.64 ± 0.16 and user-friendliness was 3.39 ± 0.13. Top-ranked resources were STATdx (first), Radiopaedia (second) and Radiology Assistant (third). 9% of responders singled out R-ITI as potentially good but ‘prohibitively costly’. Statistically significant predictive factors for higher rankings are familiarity with the resource (p = 0.001) and user-friendliness (p = 0.006). Conclusion: A good e-learning system will complement on-the-job training with a broad case base, deep discussion and quality trainee evaluation. Based on our study on twelve e-learning resources, no single program fulfilled all requirements. The perception and use of radiology e-learning resources depended more on familiarity and user-friendliness than on content differences and testing capability.Keywords: e-learning, medicine, radiology, survey
Procedia PDF Downloads 3337911 The Impact of Project-Based Learning under Representative Minorities Students
Authors: Shwadhin Sharma
Abstract:
As there has been increasing focus on the shorter attention span of the millennials students, there is a relative absence of instructional tools on behavioral assessments in learning information technology skills within the information systems field and textbooks. This study uses project-based learning in which students gain knowledge and skills related to information technology by working on an extended project that allows students to find a real business problem design information systems based on information collected from the company and develop an information system that solves the problem of the company. Eighty students from two sections of the same course engage in the project from the first week of the class till the sixteenth week of the class to deliver a small business information system that allows them to employ all the skills and knowledge that they learned in the class into the systems they are creating. Computer Information Systems related courses are often difficult to understand and process especially for the Under Representative Minorities students who have limited computer or information systems related (academic) experiences. Project-based learning demands constant attention of the students and forces them to apply knowledge learned in the class to a project that helps retaining knowledge. To make sure our assumption is correct, we started with a pre-test and post-test to test the students learning (of skills) based on the project. Our test showed that almost 90% of the students from the two sections scored higher in post-test as compared to pre-test. Based on this premise, we conducted a further survey that measured student’s job-search preparation, knowledge of data analysis, involved with the course, satisfaction with the course, student’s overall reaction the course and students' ability to meet the traditional learning goals related to the course.Keywords: project-based learning, job-search preparation, satisfaction with course, traditional learning goals
Procedia PDF Downloads 2067910 Math Rally Proposal for the Teaching-Learning of Algebra
Authors: Liliana O. Martínez, Juan E. González, Manuel Ramírez-Aranda, Ana Cervantes-Herrera
Abstract:
In this work, the use of a collection of mathematical challenges and puzzles aimed at students who are starting in algebra is proposed. The selected challenges and puzzles are intended to arouse students' interest in this area of mathematics, in addition to facilitating the teaching-learning process through challenges such as riddles, crossword puzzles, and board games, all in everyday situations that allow them to build themselves the learning. For this, it is proposed to carry out a "Math Rally: algebra" divided into four sections: mathematical reasoning, a hierarchy of operations, fractions, and algebraic equations.Keywords: algebra, algebraic challenge, algebraic puzzle, math rally
Procedia PDF Downloads 1687909 Machine Learning Application in Shovel Maintenance
Authors: Amir Taghizadeh Vahed, Adithya Thaduri
Abstract:
Shovels are the main components in the mining transportation system. The productivity of the mines depends on the availability of shovels due to its high capital and operating costs. The unplanned failure/shutdowns of a shovel results in higher repair costs, increase in downtime, as well as increasing indirect cost (i.e. loss of production and company’s reputation). In order to mitigate these failures, predictive maintenance can be useful approach using failure prediction. The modern mining machinery or shovels collect huge datasets automatically; it consists of reliability and maintenance data. However, the gathered datasets are useless until the information and knowledge of data are extracted. Machine learning as well as data mining, which has a major role in recent studies, has been used for the knowledge discovery process. In this study, data mining and machine learning approaches are implemented to detect not only anomalies but also patterns from a dataset and further detection of failures.Keywords: maintenance, machine learning, shovel, conditional based monitoring
Procedia PDF Downloads 2187908 Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products) for Higher Education
Authors: J. Miranda, D. Chavarría-Barrientos, M. Ramírez-Cadena, M. E. Macías, P. Ponce, J. Noguez, R. Pérez-Rodríguez, P. K. Wright, A. Molina
Abstract:
Higher education methods need to evolve because the new generations of students are learning in different ways. One way is by adopting emergent technologies, new learning methods and promoting the maker movement. As a result, Tecnologico de Monterrey is developing Open Innovation Laboratories as an immediate response to educational challenges of the world. This paper presents an Open Innovation Laboratory for Rapid Realization of Sensing, Smart and Sustainable Products (S3 Products). The Open Innovation Laboratory is composed of a set of specific resources where students and teachers use them to provide solutions to current problems of priority sectors through the development of a new generation of products. This new generation of products considers the concepts Sensing, Smart, and Sustainable. The Open Innovation Laboratory has been implemented in different courses in the context of New Product Development (NPD) and Integrated Manufacturing Systems (IMS) at Tecnologico de Monterrey. The implementation consists of adapting this Open Innovation Laboratory within the course’s syllabus in combination with the implementation of specific methodologies for product development, learning methods (Active Learning and Blended Learning using Massive Open Online Courses MOOCs) and rapid product realization platforms. Using the concepts proposed it is possible to demonstrate that students can propose innovative and sustainable products, and demonstrate how the learning process could be improved using technological resources applied in the higher educational sector. Finally, examples of innovative S3 products developed at Tecnologico de Monterrey are presented.Keywords: active learning, blended learning, maker movement, new product development, open innovation laboratory
Procedia PDF Downloads 3957907 An Exploratory Sequential Design: A Mixed Methods Model for the Statistics Learning Assessment with a Bayesian Network Representation
Authors: Zhidong Zhang
Abstract:
This study established a mixed method model in assessing statistics learning with Bayesian network models. There are three variants in exploratory sequential designs. There are three linked steps in one of the designs: qualitative data collection and analysis, quantitative measure, instrument, intervention, and quantitative data collection analysis. The study used a scoring model of analysis of variance (ANOVA) as a content domain. The research study is to examine students’ learning in both semantic and performance aspects at fine grain level. The ANOVA score model, y = α+ βx1 + γx1+ ε, as a cognitive task to collect data during the student learning process. When the learning processes were decomposed into multiple steps in both semantic and performance aspects, a hierarchical Bayesian network was established. This is a theory-driven process. The hierarchical structure was gained based on qualitative cognitive analysis. The data from students’ ANOVA score model learning was used to give evidence to the hierarchical Bayesian network model from the evidential variables. Finally, the assessment results of students’ ANOVA score model learning were reported. Briefly, this was a mixed method research design applied to statistics learning assessment. The mixed methods designs expanded more possibilities for researchers to establish advanced quantitative models initially with a theory-driven qualitative mode.Keywords: exploratory sequential design, ANOVA score model, Bayesian network model, mixed methods research design, cognitive analysis
Procedia PDF Downloads 1787906 Using Personalized Spiking Neural Networks, Distinct Techniques for Self-Governing
Authors: Brwa Abdulrahman Abubaker
Abstract:
Recently, there has been a lot of interest in the difficult task of applying reinforcement learning to autonomous mobile robots. Conventional reinforcement learning (TRL) techniques have many drawbacks, such as lengthy computation times, intricate control frameworks, a great deal of trial and error searching, and sluggish convergence. In this paper, a modified Spiking Neural Network (SNN) is used to offer a distinct method for autonomous mobile robot learning and control in unexpected surroundings. As a learning algorithm, the suggested model combines dopamine modulation with spike-timing-dependent plasticity (STDP). In order to create more computationally efficient, biologically inspired control systems that are adaptable to changing settings, this work uses the effective and physiologically credible Izhikevich neuron model. This study is primarily focused on creating an algorithm for target tracking in the presence of obstacles. Results show that the SNN trained with three obstacles yielded an impressive 96% success rate for our proposal, with collisions happening in about 4% of the 214 simulated seconds.Keywords: spiking neural network, spike-timing-dependent plasticity, dopamine modulation, reinforcement learning
Procedia PDF Downloads 217905 Deep Learning for Recommender System: Principles, Methods and Evaluation
Authors: Basiliyos Tilahun Betru, Charles Awono Onana, Bernabe Batchakui
Abstract:
Recommender systems have become increasingly popular in recent years, and are utilized in numerous areas. Nowadays many web services provide several information for users and recommender systems have been developed as critical element of these web applications to predict choice of preference and provide significant recommendations. With the help of the advantage of deep learning in modeling different types of data and due to the dynamic change of user preference, building a deep model can better understand users demand and further improve quality of recommendation. In this paper, deep neural network models for recommender system are evaluated. Most of deep neural network models in recommender system focus on the classical collaborative filtering user-item setting. Deep learning models demonstrated high level features of complex data can be learned instead of using metadata which can significantly improve accuracy of recommendation. Even though deep learning poses a great impact in various areas, applying the model to a recommender system have not been fully exploited and still a lot of improvements can be done both in collaborative and content-based approach while considering different contextual factors.Keywords: big data, decision making, deep learning, recommender system
Procedia PDF Downloads 4787904 Applying Augmented Reality Technology for an E-Learning System
Authors: Fetoon K. Algarawi, Wejdan A. Alslamah, Ahlam A. Alhabib, Afnan S. Alfehaid, Dina M. Ibrahim
Abstract:
Over the past 20 years, technology was rapidly developed and no one expected what will come next. Advancements in technology open new opportunities for immersive learning environments. There is a need to transmit education to a level that makes it more effective for the student. Augmented reality is one of the most popular technologies these days. This paper is an experience of applying Augmented Reality (AR) technology using a marker-based approach in E-learning system to transmitting virtual objects into the real-world scenes. We present a marker-based approach for transmitting virtual objects into real-world scenes to explain information in a better way after we developed a mobile phone application. The mobile phone application was then tested on students to determine the extent to which it encouraged them to learn and understand the subjects. In this paper, we talk about how the beginnings of AR, the fields using AR, how AR is effective in education, the spread of AR these days and the architecture of our work. Therefore, the aim of this paper is to prove how creating an interactive e-learning system using AR technology will encourage students to learn more.Keywords: augmented reality, e-learning, marker-based, monitor-based
Procedia PDF Downloads 223