Search results for: sociocultural dynamics
1514 An Investigation on Designing and Enhancing the Performance of H-Darrieus Wind Turbine of 10KW at the Medium Range of Wind Speed in Vietnam
Authors: Ich Long Ngo, Dinh Tai Dang, Ngoc Tu Nguyen, Minh Duc Nguyen
Abstract:
This paper describes an investigation on designing and enhancing the performance of H-Darrieus wind turbine (HDWT) of 10kW at the medium wind speed. The aerodynamic characteristics of this turbine were investigated by both theoretical and numerical approaches. The optimal design procedure was first proposed to enhance the power coefficient under various effects, such as airfoil type, number of blades, solidity, aspect ratio, and tip speed ratio. As a result, the overall design of the 10kW HDWT was well achieved, and the power characteristic of this turbine was found by numerical approach. Additionally, the maximum power coefficient predicted is up to 0.41 at the tip speed ratio of 3.7 and wind speed of 8 m/s. Particularly, a generalized correlation of power coefficient with tip speed ratio and wind speed is first proposed. These results obtained are very useful for enhancing the performance of the HDWTs placed in a country with high wind power potential like Vietnam.Keywords: computational fluid dynamics, double multiple stream tube, h-darrieus wind turbine, renewable energy
Procedia PDF Downloads 1191513 Self-Supervised Pretraining on Sequences of Functional Magnetic Resonance Imaging Data for Transfer Learning to Brain Decoding Tasks
Authors: Sean Paulsen, Michael Casey
Abstract:
In this work we present a self-supervised pretraining framework for transformers on functional Magnetic Resonance Imaging (fMRI) data. First, we pretrain our architecture on two self-supervised tasks simultaneously to teach the model a general understanding of the temporal and spatial dynamics of human auditory cortex during music listening. Our pretraining results are the first to suggest a synergistic effect of multitask training on fMRI data. Second, we finetune the pretrained models and train additional fresh models on a supervised fMRI classification task. We observe significantly improved accuracy on held-out runs with the finetuned models, which demonstrates the ability of our pretraining tasks to facilitate transfer learning. This work contributes to the growing body of literature on transformer architectures for pretraining and transfer learning with fMRI data, and serves as a proof of concept for our pretraining tasks and multitask pretraining on fMRI data.Keywords: transfer learning, fMRI, self-supervised, brain decoding, transformer, multitask training
Procedia PDF Downloads 901512 Research on the Aero-Heating Prediction Based on Hybrid Meshes and Hybrid Schemes
Authors: Qiming Zhang, Youda Ye, Qinxue Jiang
Abstract:
Accurate prediction of external flowfield and aero-heating at the wall of hypersonic vehicle is very crucial for the design of aircrafts. Unstructured/hybrid meshes have more powerful advantages than structured meshes in terms of pre-processing, parallel computing and mesh adaptation, so it is imperative to develop high-resolution numerical methods for the calculation of aerothermal environment on unstructured/hybrid meshes. The inviscid flux scheme is one of the most important factors affecting the accuracy of unstructured/ hybrid mesh heat flux calculation. Here, a new hybrid flux scheme is developed and the approach of interface type selection is proposed: i.e. 1) using the exact Riemann scheme solution to calculate the flux on the faces parallel to the wall; 2) employing Sterger-Warming (S-W) scheme to improve the stability of the numerical scheme in other interfaces. The results of the heat flux fit the one observed experimentally and have little dependence on grids, which show great application prospect in unstructured/ hybrid mesh.Keywords: aero-heating prediction, computational fluid dynamics, hybrid meshes, hybrid schemes
Procedia PDF Downloads 2491511 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model
Authors: Tory Erickson
Abstract:
The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics
Procedia PDF Downloads 861510 Three Dimensional Simulation of the Transient Modeling and Simulation of Different Gas Flows Velocity and Flow Distribution in Catalytic Converter with Porous Media
Authors: Amir Reza Radmanesh, Sina Farajzadeh Khosroshahi, Hani Sadr
Abstract:
The transient catalytic converter performance is governed by complex interactions between exhaust gas flow and the monolithic structure of the catalytic converter. Stringent emission regulations around the world necessitate the use of highly-efficient catalytic converters in vehicle exhaust systems. Computational fluid dynamics (CFD) is a powerful tool for calculating the flow field inside the catalytic converter. Radial velocity profiles, obtained by a commercial CFD code, present very good agreement with respective experimental results published in the literature. However the applicability of CFD for transient simulations is limited by the high CPU demands. In the present work, Geometric modeling ceramic monolith substrate is done with square shaped channel type of Catalytic converter and it is coated platinum and palladium. This example illustrates the effect of flow distribution on thermal response of a catalytic converter and different gas flow velocities, during the critical phase of catalytic converter warm up.Keywords: catalytic converter, computational fluid dynamic, porous media, velocity distribution
Procedia PDF Downloads 8581509 Enhancing Organizational Performance through Adaptive Learning: A Case Study of ASML
Authors: Ramin Shadani
Abstract:
This study introduces adaptive performance as a key organizational performance dimension and explores the relationship between the dimensions of a learning organization and adaptive performance. A survey was therefore conducted using the dimensions of the Learning Organization Questionnaire (DLOQ), followed by factor analysis and structural equation modeling in order to investigate the dynamics between learning organization practices and adaptive performance. Results confirm that adaptive performance is indeed one important dimension of organizational performance. The study also shows that perceived knowledge and adaptive performance mediate the positive relationship between the practices of a learning organization with perceived financial performance. We extend existing DLOQ research by demonstrating that adaptive performance, as a nonfinancial organizational learning outcome, has a significant impact on financial performance. Our study also provides additional validation of the measures of DLOQ's performance. Indeed, organizations need to take a glance at how the activities of learning and development can provide better overall improvement in performance, especially in enhancing adaptive capability. The study has provided requisite empirical support that activities of learning and development within organizations allow much-improved intangible performance outcomes, especially through adaptive performance.Keywords: adaptive performance, continuous learning, financial performance, leadership style, organizational learning, organizational performance
Procedia PDF Downloads 291508 Hydrodynamic Analysis on the Body of a Solar Autonomous Underwater Vehicle by Numerical Method
Authors: Mohammad Moonesun, Ehsan Asadi Asrami, Julia Bodnarchuk
Abstract:
In the case of Solar Autonomous Underwater Vehicle, which uses photovoltaic panels to provide its required power, due to limitation of energy, accurate estimation of resistance and energy has major sensitivity. In this work, hydrodynamic calculations by numerical method for a solar autonomous underwater vehicle equipped by two 50 W photovoltaic panels has been studied. To evaluate the required power and energy, hull hydrodynamic resistance in several velocities should be taken into account. To do this assessment, the ANSYS FLUENT 18 applied as Computational Fluid Dynamics (CFD) tool that solves Reynolds Average Navier Stokes (RANS) equations around AUV hull, and K-ω SST is used as turbulence model. To validate of solution method and modeling approach, the model of Myring submarine that it’s experimental data was available, is simulated. There is good agreement between numerical and experimental results. Also, these results showed that the K-ω SST Turbulence model is an ideal method to simulate the AUV motion in low velocities.Keywords: underwater vehicle, hydrodynamic resistance, numerical modelling, CFD, RANS
Procedia PDF Downloads 2051507 Mediatization of Politics and Democracy in Pakistan: An Interpretative Phenomenological Analysis
Authors: Shahid Imran
Abstract:
'Mediatization' has influenced the politics by shaping and transforming the attitudes and practices of political actors. It is a serious challenge to democracy in today’s era. This study aims to analyze the dynamics of media politics interplay in Pakistan and the contextual factors which govern this interplay. It will also address the perceived influence of media on the practices of politicians from the perspectives of the actors. The objectives have been achieved qualitatively through Interpretive Phenomenological Analysis (IPA). The phenomenological data have been collected using semi-structured interviews of journalists and politicians of Pakistan. The findings depict that politics in Pakistan is more driven by media logic than political or democratic logic. Media and politics have a ‘Tom and Jerry’ relationship. Political ecology is highly media-induced: politicians strategically adopt and adapt the media logic to be in the ‘media spotlight’; journalists, on the other hands, do not practice ‘fair journalism rather a more politically parallelized. The mediatized political communication behaviours of the actors are the undermining the public service logic and affecting the spirit of democracy in Pakistan. The study offers some valued implications for media, politicians and policy makers.Keywords: medialization, media logic, politics, political logic
Procedia PDF Downloads 2241506 Analysis of the Suspension Rocker of Formula SAE Prototype by Finite Element Method
Authors: Jessyca A. Bessa, Darlan A. Barroso, Jonas P. Reges, Auzuir R. Alexandria
Abstract:
This work aims to study the rocker. This is a device of the suspension of Formula SAE vehicle that receives efforts from the motion scrolling of the vehicle and transmits them to the chassis frame minimized by a momentum ratio and smoothed by the set spring - damper. A review of parameters used in vehicle dynamics and a geometric analysis of the forces and stresses caused by such was carried out. The main function of the rocker is to reduce the force transmitted to the frame due to movement of rolling and subsequent application of the suspension. This functions is taken as satisfactory, since the force applied to the wheel and which would be transmitted to the chassis is reduced from 3833.9N to 3496.48N. From these values can be further more detailed simulations using the finite element method aimed at mass reduction or even rocker manufacturing feasibility aluminum. Then, the analysis by the finite element method was applied. This analysis uses the theory of discretization of systems and examines the strength of the component based on the distortion energy, determining the maximum straining experienced by the component and the region of higher demand.Keywords: rocker, suspension, the finite element method, mechatronics engineering
Procedia PDF Downloads 5411505 One-Dimension Model for Positive Displacement Pump with Cavitation Algorithm
Authors: Francesco Rizzuto, Matthew Stickland, Stephan Hannot
Abstract:
The simulation of a positive displacement pump system with commercial software for Computer Fluid Dynamics (CFD), will result in an enormous computational effort due to the complexity of the pump system. This drawback restricts the use of it to a specific part of the pump in one simulation. This research focuses on developing an algorithm that provides a suitable result in agreement with experiment data, without that computational effort. The compressible equations are solved with an explicit algorithm. A comparison is presented between the FV method with Monotonic Upwind scheme for Conservative Laws (MUSCL) with slope limiter and experimental results. The source term for cavitation and friction is introduced into the algorithm with a slipping strategy and solved with a 4th order Runge-Kutta scheme (RK4). Different pumps are modeled and analyzed to evaluate the flexibility of the code. The simulation required minimal computation time and resources without compromising the accuracy of the simulation results. Therefore, this algorithm highlights the feasibility of pressure pulsation simulation as a design tool for an industrial purpose.Keywords: cavitation, diaphragm, DVCM, finite volume, MUSCL, positive displacement pump
Procedia PDF Downloads 1551504 A Study on the Influence of Pin-Hole Position Error of Carrier on Mesh Load and Planet Load Sharing of Planetary Gear
Authors: Kyung Min Kang, Peng Mou, Dong Xiang, Gang Shen
Abstract:
For planetary gear system, Planet pin-hole position accuracy is one of most influential factor to efficiency and reliability of planetary gear system. This study considers planet pin-hole position error as a main input error for model and build multi body dynamic simulation model of planetary gear including planet pin-hole position error using MSC. ADAMS. From this model, the mesh load results between meshing gears in each pin-hole position error cases are obtained and based on these results, planet load sharing factor which reflect equilibrium state of mesh load sharing between whole meshing gear pair is calculated. Analysis result indicates that the pin-hole position error of tangential direction cause profound influence to mesh load and load sharing factor between meshing gear pair.Keywords: planetary gear, load sharing factor, multibody dynamics, pin-hole position error
Procedia PDF Downloads 5791503 Invasion of Scaevola sericea (Goodeniaceae) in Cuba: Invasive Dynamic and Density-Dependent Relationship with the Native Species Tournefortia gnaphalodes (Boraginaceae)
Authors: Jorge Ferro-Diaz, Lazaro Marquez-Llauger, Jose Alberto Camejo-Lamas, Lazaro Marquez-Govea
Abstract:
The invasion of Scaevola sericea Vahl (Goodeniaceae) in Cuba is a recent process, this exotic invasive species was reported for the first time, in the national territory, by 2008. S. sericea is native to the coasts around the Indian Ocean and western Pacific, common on sandy beaches; it has expanded rapidly around the planet by either natural or anthropic causes, mainly due to its use in hotel gardening. Cuba is highly vulnerable to the colonization of these species, mainly due to tropical hurricanes which have increased in the last decades; it also affects other native species such as Tournefortia gnaphalodes (L.) R. Br. (Boraginaceae) that show invasive manifestations because of the unbalanced state of demographic processes of littoral vegetation, which has been studied by authors during the last 10 years. The fast development of Cuban tourism has encouraged the use of exotic species in gardening that invade large sectors of sandy coasts. Taking into account the importance of assessing the impacts dimensions and adopting effective control measures, a monitoring program for the invasion of S. sericea in Cuba was undertaken. The program has been implemented since 2013 and the main objective was to identify invasive patterns and interactions with other native species of coastal vegetation. This experience also aimed to validate the design and propose a standardized monitoring protocol to be applied throughout the country. In the Cuban territory, 12 sites were chosen, where there were established 24 permanent plots of 100 m2; measurements were taken twice a year taking into consideration variables such as abundance, plant height, soil cover, flora and companion vegetation, density and frequency; other physical variables of the beaches were also measured. Similarly, for associated individuals of T. gnaphalodes, the same variables were measured. The results of these first four years allowed us to document patterns of S. sericea invasion, highlighting the use of adventitious roots to enhance their colonization, and to characterize demographic indicators, ecosystem affections, and interactions with native plants. A density-dependent relationship with T. gnaphalodes was documented, finding a controlling effect on S. sericea, so that a manipulation experiment was applied to evaluate possible management actions to be incorporated in the Plans of the protected areas involved. With these results, it was concluded, for the evaluated sites, that S. sericea has had an invasion dynamics ruled by effects of coastal dynamics, more intense in beaches with affectations to the native vegetation, and more controlled in beaches with more preserved vegetation. It was found that when S. sericea is established, the mechanism that most reinforces its invasion is the use of adventitious roots, used to expand the patches and colonize beach sectors. It was also found that when the density of T. gnaphalodes increases, it detains the expansion of S. sericea and reduces its colonization possibilities, behaving as a natural controller of its biological invasion. The results include a proposal of a new Monitoring Protocol for Scaevola sericea in Cuba, with the possibility of extending its implementation to other countries in the region.Keywords: biological invasion, exotic invasive species, plant interactions, Scaevola sericea
Procedia PDF Downloads 2271502 Role of Functional Divergence in Specific Inhibitor Design: Using γ-Glutamyltranspeptidase (GGT) as a Model Protein
Authors: Ved Vrat Verma, Rani Gupta, Manisha Goel
Abstract:
γ-glutamyltranspeptidase (GGT: EC 2.3.2.2) is an N-terminal nucleophile hydrolase conserved in all three domains of life. GGT plays a key role in glutathione metabolism where it catalyzes the breakage of the γ-glutamyl bonds and transfer of γ-glutamyl group to water (hydrolytic activity) or amino acids or short peptides (transpeptidase activity). GGTs from bacteria, archaea, and eukaryotes (human, rat and mouse) are homologous proteins sharing >50% sequence similarity and conserved four layered αββα sandwich like three dimensional structural fold. These proteins though similar in their structure to each other, are quite diverse in their enzyme activity: some GGTs are better at hydrolysis reactions but poor in transpeptidase activity, whereas many others may show opposite behaviour. GGT is known to be involved in various diseases like asthma, parkinson, arthritis, and gastric cancer. Its inhibition prior to chemotherapy treatments has been shown to sensitize tumours to the treatment. Microbial GGT is known to be a virulence factor too, important for the colonization of bacteria in host. However, all known inhibitors (mimics of its native substrate, glutamate) are highly toxic because they interfere with other enzyme pathways. However, a few successful efforts have been reported previously in designing species specific inhibitors. We aim to leverage the diversity seen in GGT family (pathogen vs. eukaryotes) for designing specific inhibitors. Thus, in the present study, we have used DIVERGE software to identify sites in GGT proteins, which are crucial for the functional and structural divergence of these proteins. Since, type II divergence sites vary in clade specific manner, so type II divergent sites were our focus of interest throughout the study. Type II divergent sites were identified for pathogen vs. eukaryotes clusters and sites were marked on clade specific representative structures HpGGT (2QM6) and HmGGT (4ZCG) of pathogen and eukaryotes clade respectively. The crucial divergent sites within 15 A radii of the binding cavity were highlighted, and in-silico mutations were performed on these sites to delineate the role of these sites on the mechanism of catalysis and protein folding. Further, the amino acid network (AAN) analysis was also performed by Cytoscape to delineate assortative mixing for cavity divergent sites which could strengthen our hypothesis. Additionally, molecular dynamics simulations were performed for wild complexes and mutant complexes close to physiological conditions (pH 7.0, 0.1 M ionic strength and 1 atm pressure) and the role of putative divergence sites and structural integrities of the homologous proteins have been analysed. The dynamics data were scrutinized in terms of RMSD, RMSF, non-native H-bonds and salt bridges. The RMSD, RMSF fluctuations of proteins complexes are compared, and the changes at protein ligand binding sites were highlighted. The outcomes of our study highlighted some crucial divergent sites which could be used for novel inhibitors designing in a species-specific manner. Since, for drug development, it is challenging to design novel drug by targeting similar protein which exists in eukaryotes, so this study could set up an initial platform to overcome this challenge and help to deduce the more effective targets for novel drug discovery.Keywords: γ-glutamyltranspeptidase, divergence, species-specific, drug design
Procedia PDF Downloads 2681501 Rotary Entrainment in Two Phase Stratified Gas-Liquid Layers: An Experimental Study
Authors: Yagya Sharma, Basanta K. Rana, Arup K. Das
Abstract:
Rotary entrainment is a phenomenon in which the interfaces of two immiscible fluids are subjected to external flux in the form of rotation. Present work reports the experimental study on rotary motion of a horizontal cylinder between the interface of air and water to observe the penetration of gas inside the liquid. Experiments have been performed to establish entrainment of air mass in water alongside the cylindrical surface. The movement of tracer and seeded particles have been tracked to calculate the speed and path of the entrained air inside water. Simplified particle image velocimetry technique has been used to trace the movement of particles/tracers at the moment they are injected inside the entrainment zone and suspended beads have been used to replicate the particle movement with respect to time in order to determine the flow dynamics of the fluid along the cylinder. Present paper establishes a thorough experimental analysis of the rotary entrainment phenomenon between air and water keeping in interest the extent to which we can intermix the two and also to study its entrainment trajectories.Keywords: entrainment, gas-liquid flow, particle image velocimetry, stratified layer mixing
Procedia PDF Downloads 3391500 A Spiral Dynamic Optimised Hybrid Fuzzy Logic Controller for a Unicycle Mobile Robot on Irregular Terrains
Authors: Abdullah M. Almeshal, Mohammad R. Alenezi, Talal H. Alzanki
Abstract:
This paper presents a hybrid fuzzy logic control strategy for a unicycle trajectory following robot on irregular terrains. In literature, researchers have presented the design of path tracking controllers of mobile robots on non-frictional surface. In this work, the robot is simulated to drive on irregular terrains with contrasting frictional profiles of peat and rough gravel. A hybrid fuzzy logic controller is utilised to stabilise and drive the robot precisely with the predefined trajectory and overcome the frictional impact. The controller gains and scaling factors were optimised using spiral dynamics optimisation algorithm to minimise the mean square error of the linear and angular velocities of the unicycle robot. The robot was simulated on various frictional surfaces and terrains and the controller was able to stabilise the robot with a superior performance that is shown via simulation results.Keywords: fuzzy logic control, mobile robot, trajectory tracking, spiral dynamic algorithm
Procedia PDF Downloads 4951499 Impacts of Land Cover Changes over the Last Three Decades in Capital City of Pakistan Islamabad with the Perspective of Urbanization
Authors: Muhammad Tayyab Sohail, Li Jiangfeng
Abstract:
This study aimed at characterizing land cover dynamics for about three decades in capital city of Pakistan Islamabad. The specific objectives were identifying and map the major land cover types in 1993, 2002 and 2014 and check the reduction of greenery and urbanization rate and its some environments aspects. The study showed that overall grasslands decreased in the prescribed period. The key hotspots of these changes were distributed in all directions of the study area, but at different times. Urbanization is increasing every year in this city but the policies for this number of people are not sufficient to meet their living standard requirements. Apart from it, there is also an impact of urbanization on environmental related problems. Underground water is going down and down, traffic related issue and other associated problems are part of this research. Therefore, policies that integrate restoration and conservation of natural ecosystems with enhancement of agricultural productivity are strongly recommended. This will ensure environmental sustainability and socio-economic well-being in the area. Future research needs to address the problems related to urbanization and need to clarify the problems and solve it on high priority.Keywords: land, Islamabad, water, urban
Procedia PDF Downloads 2851498 Autonomous Rendezvous for Underactuated Spacecraft
Authors: Espen Oland
Abstract:
This paper presents a solution to the problem of autonomous rendezvous for spacecraft equipped with one main thruster for translational control and three reaction wheels for rotational control. With fewer actuators than degrees of freedom, this constitutes an underactuated control problem, requiring a coupling between the translational and rotational dynamics to facilitate control. This paper shows how to obtain this coupling, and applies the results to autonomous rendezvous between a follower spacecraft and a leader spacecraft. Additionally, since the thrust is constrained between zero and an upper bound, no negative forces can be generated to slow down the speed of the spacecraft. A combined speed and attitude control logic is therefore created that can be divided into three main phases: 1) The orbital velocity vector is pointed towards the desired position and the thrust is used to obtain the desired speed, 2) during the coasting phase, the attitude is changed to facilitate deceleration using the main thruster, 3) the speed is decreased as the spacecraft reaches its desired position. The results are validated through simulations, showing the capabilities of the proposed approach.Keywords: attitude control, spacecraft rendezvous, translational control, underactuated rigid body
Procedia PDF Downloads 2921497 New Hybrid Method to Model Extreme Rainfalls
Authors: Youness Laaroussi, Zine Elabidine Guennoun, Amine Amar
Abstract:
Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose in the present paper a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.Keywords: extreme values theory, fractals dimensions, peaks Over threshold, rainfall occurrences
Procedia PDF Downloads 3611496 Rotor Dynamic Analysis for a Shaft Train by Using Finite Element Method
Authors: M. Najafi
Abstract:
In the present paper, a large turbo-generator shaft train including a heavy-duty gas turbine engine, a coupling, and a generator is established. The method of analysis is based on finite element simplified model for lateral and torsional vibration calculation. The basic elements of rotor are the shafts and the disks which are represented as circular cross section flexible beams and rigid body elements, respectively. For more accurate results, the gyroscopic effect and bearing dynamics coefficients and function of rotation are taken into account, and for the influence of shear effect, rotor has been modeled in the form of Timoshenko beam. Lateral critical speeds, critical speed map, damped mode shapes, Campbell diagram, zones of instability, amplitudes, phase angles response due to synchronous forces of excitation and amplification factor are calculated. Also, in the present paper, the effect of imbalanced rotor and effects of changing in internal force and temperature are studied.Keywords: rotor dynamic analysis, finite element method, shaft train, Campbell diagram
Procedia PDF Downloads 1361495 [Keynote Speech]: Simulation Studies of Pulsed Voltage Effects on Cells
Authors: Jiahui Song
Abstract:
In order to predict or explain a complicated biological process, it is important first to construct mathematical models that can be used to yield analytical solutions. Through numerical simulation, mathematical model results can be used to test scenarios that might not be easily attained in a laboratory experiment, or to predict parameters or phenomena. High-intensity, nanosecond pulse electroporation has been a recent development in bioelectrics. The dynamic pore model can be achieved by including a dynamic aspect and a dependence on the pore population density into pore formation energy equation to analyze and predict such electroporation effects. For greater accuracy, with inclusion of atomistic details, molecular dynamics (MD) simulations were also carried out during this study. Besides inducing pores in cells, external voltages could also be used in principle to modulate action potential generation in nerves. This could have an application in electrically controlled ‘pain management’. Also a simple model-based rate equation treatment of the various cellular bio-chemical processes has been used to predict the pulse number dependent cell survival trends.Keywords: model, high-intensity, nanosecond, bioelectrics
Procedia PDF Downloads 2261494 Global Race for Talent: Exploring Global Talent Management (GTM) and its Impact on Organizational Development: From the Prospective of Malaysian MNEs
Authors: Asma Moomal, Zukarnain Zakaria
Abstract:
In this uncertain, highly competitive and hasty moving era, most of the organizations are surviving under the pressure of complex dynamics, fierce competition and many challenges in terms of global talent management within the global market. One key result of these challenges is that the organizations have to be organized and good at handling human capital if they want to gain sustainable and steady success in near future. By keeping in mind the importance of global competition, many human resource (HR) professionals are diagnosing the complexities in managing talent of human capital at global level, especially those of multinational enterprises (MNEs). As, there has been little research in the country regarding identification of the GTM in MNEs, this paper reviewed the relevant literature in order to examine the role of GTM strategies in enhancing the organizational development in the MNEs of Malaysia. The data collection technique used in this study was done through the secondary data resources (i.e. the existing literature analysis). This study contributes to extend our understanding of the impact of GTM on organizational development of MNEs within the country.Keywords: Global Talent Management (GTM), multinational enterprises (MNEs), organizational development, talent
Procedia PDF Downloads 4391493 The Potential of 48V HEV in Real Driving
Authors: Mark Schudeleit, Christian Sieg, Ferit Küçükay
Abstract:
This paper describes how to dimension the electric components of a 48V hybrid system considering real customer use. Furthermore, it provides information about savings in energy and CO2 emissions by a customer-tailored 48V hybrid. Based on measured customer profiles, the electric units such as the electric motor and the energy storage are dimensioned. Furthermore, the CO2 reduction potential in real customer use is determined compared to conventional vehicles. Finally, investigations are carried out to specify the topology design and preliminary considerations in order to hybridize a conventional vehicle with a 48V hybrid system. The emission model results from an empiric approach also taking into account the effects of engine dynamics on emissions. We analyzed transient engine emissions during representative customer driving profiles and created emission meta models. The investigation showed a significant difference in emissions when simulating realistic customer driving profiles using the created verified meta models compared to static approaches which are commonly used for vehicle simulation.Keywords: customer use, dimensioning, hybrid electric vehicles, vehicle simulation, 48V hybrid system
Procedia PDF Downloads 5071492 The Flow Separation Delay on the Aircraft Wing
Authors: Ishtiaq A. Chaudhry, Z. R. Tahir, F. A. Siddiqui, Z. Anwar, F. Valenzuelacalva
Abstract:
A series of experiments involving the particle image velocimetry technique are carried out to analyse the quantitative effectiveness of the synthesized vortical structures towards actual flow separation control. The streamwise vortices are synthesized from the synthetic jet actuator and introduced into the attached and separating boundary layer developed on the flat plate surface. Two types of actuators with different geometrical set up are used to analyse the evolution of vortical structures in the near wall region and their impact towards achieving separation delay on the actual aircraft wing. Firstly a single circular jet is synthesized at varying actuator operating parameters and issued into the boundary layer to evaluate the dynamics of the interaction between the vortical structures and the near wall low momentum fluid in the separated region. Secondly, an array of jets has been issued into the artificially separated region to assess the effectiveness of various vortical structures towards achieving the reattachment of the separated flow in the streamwise direction.Keywords: boundary layer, flow separation, streamwise vortices, synthetic jet actuator
Procedia PDF Downloads 4621491 Estimation of Damping Force of Double Ended Shear Mode Magnetorheological Damper Using Computational Analysis
Authors: Gurubasavaraju T. M.
Abstract:
The magnetorheological (MR) damper could provide variable damping force with respect to the different input magnetic field. The damping force could be estimated through computational analysis using finite element and computational fluid dynamics analysis. The double-ended damper operates without changing the total volume of fluid. In this paper, damping force of double ended damper under different magnetic field is computed. Initially, the magneto-statics analysis carried out to evaluate the magnetic flux density across the fluid flow gap. The respective change in the rheology of the MR fluid is computed by using the experimentally fitted polynomial equation of shear stress versus magnetic field plot of MR fluid. The obtained values are substituted in the Herschel Buckley model to express the non-Newtonian behavior of MR fluid. Later, using computational fluid dynamic (CFD) analysis damping characteristics in terms of force versus velocity and force versus displacement for the respective magnetic field is estimated. The purpose of the present approach is to characterize the preliminary designed MR damper before fabricating.Keywords: MR fluid, double ended MR damper, CFD, FEA
Procedia PDF Downloads 1801490 Adapting to College: Exploration of Psychological Well-Being, Coping, and Identity as Markers of Readiness
Authors: Marit D. Murry, Amy K. Marks
Abstract:
The transition to college is a critical period that affords abundant opportunities for growth in conjunction with novel challenges for emerging adults. During this time, emerging adults are garnering experiences and acquiring hosts of new information that they are required to synthesize and use to inform life-shaping decisions. This stage is characterized by instability and exploration, which necessitates a diverse set of coping skills to successfully navigate and positively adapt to their evolving environment. However, important sociocultural factors result in differences that occur developmentally for minority emerging adults (i.e., emerging adults with an identity that has been or is marginalized). While the transition to college holds vast potential, not all are afforded the same chances, and many individuals enter into this stage at varying degrees of readiness. Understanding the nuance and diversity of student preparedness for college and contextualizing these factors will better equip systems to support incoming students. Emerging adulthood for ethnic, racial minority students presents itself as an opportunity for growth and resiliency in the face of systemic adversity. Ethnic, racial identity (ERI) is defined as an identity that develops as a function of one’s ethnic-racial group membership. Research continues to demonstrate ERI as a resilience factor that promotes positive adjustment in young adulthood. Adaptive coping responses (e.g., engaging in help-seeking behavior, drawing on personal and community resources) have been identified as possible mechanisms through which ERI buffers youth against stressful life events, including discrimination. Additionally, trait mindfulness has been identified as a significant predictor of general psychological health, and mindfulness practice has been shown to be a self-regulatory strategy that promotes healthy stress responses and adaptive coping strategy selection. The current study employed a person-centered approach to explore emerging patterns across ethnic identity development and psychological well-being criterion variables among college freshmen. Data from 283 incoming college freshmen at Northeastern University were analyzed. The Brief COPE Acceptance and Emotional Support scales, the Five Factor Mindfulness Questionnaire, and MIEM Exploration and Affirmation measures were used to inform the cluster profiles. The TwoStep auto-clustering algorithm revealed an optimal three-cluster solution (BIC = 848.49), which classified 92.6% (n = 262) of participants in the sample into one of the three clusters. The clusters were characterized as ‘Mixed Adjustment’, ‘Lowest Adjustment’, and ‘Moderate Adjustment.’ Cluster composition varied significantly by ethnicity X² (2, N = 262) = 7.74 (p = .021) and gender X² (2, N = 259) = 10.40 (p = .034). The ‘Lowest Adjustment’ cluster contained the highest proportion of students of color, 41% (n = 32), and male-identifying students, 44.2% (n = 34). Follow-up analyses showed higher ERI exploration in ‘Moderate Adjustment’ cluster members, also reported higher levels of psychological distress, with significantly elevated depression scores (p = .011), psychological diagnoses of depression (p = .013), anxiety (p = .005) and psychiatric disorders (p = .025). Supporting prior research, students engaging with identity exploration processes often endure more psychological distress. These results indicate that students undergoing identity development may require more socialization and different services beyond normal strategies.Keywords: adjustment, coping, college, emerging adulthood, ethnic-racial identity, psychological well-being, resilience
Procedia PDF Downloads 1101489 A New Study on Mathematical Modelling of COVID-19 with Caputo Fractional Derivative
Authors: Sadia Arshad
Abstract:
The new coronavirus disease or COVID-19 still poses an alarming situation around the world. Modeling based on the derivative of fractional order is relatively important to capture real-world problems and to analyze the realistic situation of the proposed model. Weproposed a mathematical model for the investigation of COVID-19 dynamics in a generalized fractional framework. The new model is formulated in the Caputo sense and employs a nonlinear time-varying transmission rate. The existence and uniqueness solutions of the fractional order derivative have been studied using the fixed-point theory. The associated dynamical behaviors are discussed in terms of equilibrium, stability, and basic reproduction number. For the purpose of numerical implementation, an effcient approximation scheme is also employed to solve the fractional COVID-19 model. Numerical simulations are reported for various fractional orders, and simulation results are compared with a real case of COVID-19 pandemic. According to the comparative results with real data, we find the best value of fractional orderand justify the use of the fractional concept in the mathematical modelling, for the new fractional modelsimulates the reality more accurately than the other classical frameworks.Keywords: fractional calculus, modeling, stability, numerical solution
Procedia PDF Downloads 1111488 A Comprehensive Planning Model for Amalgamation of Intensification and Green Infrastructure
Authors: Sara Saboonian, Pierre Filion
Abstract:
The dispersed-suburban model has been the dominant one across North America for the past seventy years, characterized by automobile reliance, low density, and land-use specialization. Two planning models have emerged as possible alternatives to address the ills inflicted by this development pattern. First, there is intensification, which promotes efficient infrastructure by connecting high-density, multi-functional, and walkable nodes with public transit services within the suburban landscape. Second is green infrastructure, which provides environmental health and human well-being by preserving and restoring ecosystem services. This research studies incompatibilities and the possibility of amalgamating the two alternatives in an attempt to develop a comprehensive alternative to suburban model that advocates density, multi-functionality and transit- and pedestrian-conduciveness, with measures capable of mitigating the adverse environmental impacts of compactness. The research investigates three Canadian urban growth centers, where intensification is the current planning practice, and the awareness of green infrastructure benefits is on the rise. However, these three centers are contrasted by their development stage, the presence or absence of protected natural land, their environmental approach, and their adverse environmental consequences according to the planning cannons of different periods. The methods include reviewing the literature on green infrastructure planning, criticizing the Ontario provincial plans for intensification, surveying residents’ preferences for alternative models, and interviewing officials who deal with the local planning for the centers. Moreover, the research draws on recalling debates between New Urbanism and Landscape/Ecological Urbanism. The case studies expose the difficulties in creating urban growth centres that accommodate green infrastructure while adhering to intensification principles. First, the dominant status of intensification and the obstacles confronting intensification have monopolized the planners’ concerns. Second, the tension between green infrastructure and intensification explains the absence of the green infrastructure typologies that correspond to intensification-compatible forms and dynamics. Finally, the lack of highlighted social-economic benefits of green infrastructure reduces residents’ participation. Moreover, the results from the research provide insight into predominating urbanization theories, New Urbanism and Landscape/Ecological Urbanism. In order to understand political, planning, and ecological dynamics of such blending, dexterous context-specific planning is required. Findings suggest the influence of the following factors on amalgamating intensification and green infrastructure. Initially, producing ecosystem services-based justifications for green infrastructure development in the intensification context provides an expert-driven backbone for the implementation programs. This knowledge-base should be translated to effectively imbue different urban stakeholders. Moreover, due to the limited greenfields in intensified areas, spatial distribution and development of multi-level corridors such as pedestrian-hospitable settings and transportation networks along green infrastructure measures are required. Finally, to ensure the long-term integrity of implemented green infrastructure measures, significant investment in public engagement and education, as well as clarification of management responsibilities is essential.Keywords: ecosystem services, green infrastructure, intensification, planning
Procedia PDF Downloads 3551487 Rogue Waves Arising on the Standing Periodic Wave in the High-Order Ablowitz-Ladik Equation
Authors: Yanpei Zhen
Abstract:
The nonlinear Schrödinger (NLS) equation models wave dynamics in many physical problems related to fluids, plasmas, and optics. The standing periodic waves are known to be modulationally unstable, and rogue waves (localized perturbations in space and time) have been observed on their backgrounds in numerical experiments. The exact solutions for rogue waves arising on the periodic standing waves have been obtained analytically. It is natural to ask if the rogue waves persist on the standing periodic waves in the integrable discretizations of the integrable NLS equation. We study the standing periodic waves in the semidiscrete integrable system modeled by the high-order Ablowitz-Ladik (AL) equation. The standing periodic wave of the high-order AL equation is expressed by the Jacobi cnoidal elliptic function. The exact solutions are obtained by using the separation of variables and one-fold Darboux transformation. Since the cnoidal wave is modulationally unstable, the rogue waves are generated on the periodic background.Keywords: Darboux transformation, periodic wave, Rogue wave, separating the variables
Procedia PDF Downloads 1831486 Internal and External Overpressure Calculation for Vented Gas Explosion by Using a Combined Computational Fluid Dynamics Approach
Abstract:
Recent oil and gas accidents have reminded us the severe consequences of gas explosion on structure damage and financial loss. In order to protect the structures and personnel, engineers and researchers have been working on numerous different explosion mitigation methods. Amongst, venting is the most economical approach to mitigate gas explosion overpressure. In this paper, venting is used as the overpressure alleviation method. A theoretical method and a numerical technique are presented to predict the internal and external pressure from vented gas explosion in a large enclosure. Under idealized conditions, a number of experiments are used to calibrate the accuracy of the theoretically calculated data. A good agreement between the theoretical results and experimental data is seen. However, for realistic scenarios, the theoretical method over-estimates internal pressures and is incapable of predicting external pressures. Therefore, a CFD simulation procedure is proposed in this study to estimate both the internal and external overpressure from a large-scale vented explosion. Satisfactory agreement between CFD simulation results and experimental data is achieved.Keywords: vented gas explosion, internal pressure, external pressure, CFD simulation, FLACS, ANSYS Fluent
Procedia PDF Downloads 1611485 Interaction between Unsteady Supersonic Jet and Vortex Rings
Authors: Kazumasa Kitazono, Hiroshi Fukuoka, Nao Kuniyoshi, Minoru Yaga, Eri Ueno, Naoaki Fukuda, Toshio Takiya
Abstract:
The unsteady supersonic jet formed by a shock tube with a small high-pressure chamber was used as a simple alternative model for pulsed laser ablation. Understanding the vortex ring formed by the shock wave is crucial in clarifying the behavior of unsteady supersonic jet discharged from an elliptical cell. Therefore, this study investigated the behavior of vortex rings and a jet. The experiment and numerical calculation were conducted using the schlieren method and by solving the axisymmetric two-dimensional compressible Navier–Stokes equations, respectively. In both, the calculation and the experiment, laser ablation is conducted for a certain duration, followed by discharge through the exit. Moreover, a parametric study was performed to demonstrate the effect of pressure ratio on the interaction among vortex rings and the supersonic jet. The interaction between the supersonic jet and the vortex rings increased the velocity of the supersonic jet up to the magnitude of the velocity at the center of the vortex rings. The interaction between the vortex rings increased the velocity at the center of the vortex ring.Keywords: computational fluid dynamics, shock-wave, unsteady jet, vortex ring
Procedia PDF Downloads 470