Search results for: multiple conditions diagnosis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 15804

Search results for: multiple conditions diagnosis

14274 Experimental Investigation on the Mechanical Behaviour of Three-Leaf Masonry Walls under In-Plane Loading

Authors: Osama Amer, Yaser Abdel-Aty, Mohamed Abd El Hady

Abstract:

The present paper illustrates an experimental approach to provide understanding of the mechanical behavior and failure mechanisms of different typologies of unreinforced three-leaf masonry walls of historical Islamic architectural heritage in Egypt. The main objective of this study is to investigate the propagation of possible cracking, ultimate load, deformations and failure mechanisms. Experimental data on interface-shear and compression tests on large scale three-leaf masonry wallets are provided. The wallets were built basically of Egyptian limestone and modified lime mortar. External wallets were built of stone blocks while the inner leaf was built of rubble limestone. Different loading conditions and dimensions of core layer for two types of collar joints (with and without shear keys) are considered in the tests. Mechanical properties of the constituent materials of masonry were tested and a database of characteristic properties was created. The results of the experiments will highlight the properties, force-displacement curves, stress distribution of multiple-leaf masonry walls contributing to the derivation of rational design rules and validation of numerical models.

Keywords: masonry, three-leaf walls, mechanical behavior, testing, architectural heritage

Procedia PDF Downloads 292
14273 An Industrial Workplace Alerting and Monitoring Platform to Prevent Workplace Injury and Accidents

Authors: Sanjay Adhikesaven

Abstract:

Workplace accidents are a critical problem that causes many deaths, injuries, and financial losses. Climate change has a severe impact on industrial workers, partially caused by global warming. To reduce such casualties, it is important to proactively find unsafe environments where injuries could occur by detecting the use of personal protective equipment (PPE) and identifying unsafe activities. Thus, we propose an industrial workplace alerting and monitoring platform to detect PPE use and classify unsafe activity in group settings involving multiple humans and objects over a long period of time. Our proposed method is the first to analyze prolonged actions involving multiple people or objects. It benefits from combining pose estimation with PPE detection in one platform. Additionally, we propose the first open-source annotated data set with video data from industrial workplaces annotated with the action classifications and detected PPE. The proposed system can be implemented within the surveillance cameras already present in industrial settings, making it a practical and effective solution.

Keywords: computer vision, deep learning, workplace safety, automation

Procedia PDF Downloads 103
14272 Fatigue Life Evaluation of Al6061/Al2O3 and Al6061/SiC Composites under Uniaxial and Multiaxial Loading Conditions

Authors: C. E. Sutton, A. Varvani-Farahani

Abstract:

Fatigue damage and life prediction of particle metal matrix composites (PMMCs) under uniaxial and multiaxial loading conditions were investigated. Three PMM composite materials of Al6061/Al2O3/20p-T6, Al6061/Al2O3/22p-T6 and Al6061/SiC/17w-T6 tested under tensile, torsion, and combined tension-torsion fatigue cycling were evaluated with various fatigue damage models. The fatigue damage models of Smith-Watson-Topper (S. W. T.), Ellyin, Brown-Miller, Fatemi-Socie, and Varvani were compared for their capability to assess the fatigue damage of materials undergoing various loading conditions. Fatigue life predication results were then evaluated by implementing material-dependent coefficients that factored in the effects of the particle reinforcement in the earlier developed Varvani model. The critical plane-energy approach incorporated the critical plane as the plane of crack initiation and early stage of crack growth. The strain energy density was calculated on the critical plane incorporating stress and strain components acting on the plane. This approach successfully evaluated fatigue damage values versus fatigue lives within a narrower band for both uniaxial and multiaxial loading conditions as compared with other damage approaches studied in this paper.

Keywords: fatigue damage, life prediction, critical plane approach, energy approach, PMM composites

Procedia PDF Downloads 403
14271 A Novel Gene Encoding Ankyrin-Repeat Protein, SHG1, Is Indispensable for Seed Germination under Moderate Salt Stress

Authors: H. Sakamoto, J. Tochimoto, S. Kurosawa, M. Suzuki, S. Oguri

Abstract:

Salt stress adversely affects plant growth at various stages of development including seed germination, seedling establishment, vegetative growth and finally reproduction. Because of their immobile nature, plants have evolved mechanisms to sense and respond to salt stress. Seed dormancy is an adaptive trait that enables seed germination to coincide with favorable environmental conditions. We identified a novel locus of Arabidopsis, designated SHG1 (salt hypersensitive germination 1), whose disruption leads to reduced germination rate under moderate salt stress conditions. SHG1 encodes a transmembrane protein with an ankyrin repeat motif that has been implicated in diverse cellular processes such as signal transduction. The SGH1-disrupted Arabidopsis mutant died at the cotyledon stage when sown on salt-containing medium, although wild type plants could form true leaves under the same conditions. On the other hand, this mutant showed similar phenotypes to wild type plants when sown on medium without salt and transferred to salt-containing medium at the vegetative stage. These results suggested that SHG1 played indispensable role in the seed germination and seedling establishment under moderate salt stress conditions. SHG1 may be involved in the release of seed dormancy.

Keywords: germination, ankyrin repeat, arabidopsis, salt tolerance

Procedia PDF Downloads 398
14270 Human Immuno-Deficiency Virus Co-Infection with Hepatitis B Virus and Baseline Cd4+ T Cell Count among Patients Attending a Tertiary Care Hospital, Nepal

Authors: Soma Kanta Baral

Abstract:

Background: Since 1981, when the first AIDS case was reported, worldwide, more than 34 million people have been infected with HIV. Almost 95 percent of the people infected with HIV live in developing countries. As HBV & HIV share similar routes of transmission by sexual intercourse or drug use by parenteral injection, co-infection is common. Because of the limited access to healthcare & HIV treatment in developing countries, HIV-infected individuals are present late for care. Enumeration of CD4+ T cell count at the time of diagnosis has been useful to initiate the therapy in HIV infected individuals. The baseline CD4+ T cell count shows high immunological variability among patients. Methods: This prospective study was done in the serology section of the Department of Microbiology over a period of one year from august 2012 to July 2013. A total of 13037 individuals subjected for HIV test were included in the study comprising of 4982 males & 8055 females. Blood sample was collected by vein puncture aseptically with standard operational procedure in clean & dry test-tube. All blood samples were screened for HIV as described by WHO algorithm by Immuno-chromatography rapid kits. Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. After informed consent, HIV positive individuals were screened for HBsAg by Immuno-chromatography rapid kits (Hepacard). Further confirmation was done by biokit ELISA method as per the manufacturer’s guidelines. EDTA blood samples were collected from the HIV sero-positive individuals for baseline CD4+ T count. Then, CD4+ T cells count was determined by using FACS Calibur Flow Cytometer (BD). Results: Among 13037 individuals screened for HIV, 104 (0.8%) were found to be infected comprising of 69(66.34%) males & 35 (33.65%) females. The study showed that the high infection was noted in housewives (28.7%), active age group (30.76%), rural area (56.7%) & in heterosexual route (80.9%) of transmission. Out of total HIV infected individuals, distribution of HBV co-infection was found to be 6(5.7%). All co- infected individuals were married, male, above the age of 25 years & heterosexual route of transmission. Baseline CD4+ T cell count of HIV infected patient was found higher (mean CD4+ T cell count; 283cells/cu.mm) than HBV co-infected patients (mean CD4+ T cell count; 91 cells/cu.mm). Majority (77.2%) of HIV infected & all co-infected individuals were presented in our center late (CD4+ T cell count;< 350/cu. mm) for diagnosis and care. Majority of co- infected 4 (80%) were late presented with advanced AIDS stage (CD4+ count; <200/cu.mm). Conclusions: The study showed a high percentage of HIV sero-positive & co- infected individuals. Baseline CD4+ T cell count of majority of HIV infected individuals was found to be low. Hence, more sustained and vigorous awareness campaigns & counseling still need to be done in order to promote early diagnosis and management.

Keywords: HIV/AIDS, HBsAg, co-infection, CD4+

Procedia PDF Downloads 215
14269 Multiple-Material Flow Control in Construction Supply Chain with External Storage Site

Authors: Fatmah Almathkour

Abstract:

Managing and controlling the construction supply chain (CSC) are very important components of effective construction project execution. The goals of managing the CSC are to reduce uncertainty and optimize the performance of a construction project by improving efficiency and reducing project costs. The heart of much SC activity is addressing risk, and the CSC is no different. The delivery and consumption of construction materials is highly variable due to the complexity of construction operations, rapidly changing demand for certain components, lead time variability from suppliers, transportation time variability, and disruptions at the job site. Current notions of managing and controlling CSC, involve focusing on one project at a time with a push-based material ordering system based on the initial construction schedule and, then, holding a tremendous amount of inventory. A two-stage methodology was proposed to coordinate the feed-forward control of advanced order placement with a supplier to a feedback local control in the form of adding the ability to transship materials between projects to improve efficiency and reduce costs. It focused on the single supplier integrated production and transshipment problem with multiple products. The methodology is used as a design tool for the CSC because it includes an external storage site not associated with one of the projects. The idea is to add this feature to a highly constrained environment to explore its effectiveness in buffering the impact of variability and maintaining project schedule at low cost. The methodology uses deterministic optimization models with objectives that minimizing the total cost of the CSC. To illustrate how this methodology can be used in practice and the types of information that can be gleaned, it is tested on a number of cases based on the real example of multiple construction projects in Kuwait.

Keywords: construction supply chain, inventory control supply chain, transshipment

Procedia PDF Downloads 122
14268 Building Envelope Engineering and Typologies for Complex Architectures: Composition and Functional Methodologies

Authors: Massimiliano Nastri

Abstract:

The study examines the façade systems according to the constitutive and typological characters, as well as the functional and applicative requirements such as the expressive, constructive, and interactive criteria towards the environmental, perceptive, and energy conditions. The envelope systems are understood as instruments of mediation, interchange, and dynamic interaction between environmental conditions. The façades are observed for the sustainable concept of eco-efficient envelopes, selective and multi-purpose filters, adaptable and adjustable according to the environmental performance.

Keywords: typologies of façades, environmental and energy sustainability, interaction and perceptive mediation, technical skins

Procedia PDF Downloads 151
14267 Multi-source Question Answering Framework Using Transformers for Attribute Extraction

Authors: Prashanth Pillai, Purnaprajna Mangsuli

Abstract:

Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.

Keywords: natural language processing, deep learning, transformers, information retrieval

Procedia PDF Downloads 193
14266 Effect of Specimen Thickness on Probability Distribution of Grown Crack Size in Magnesium Alloys

Authors: Seon Soon Choi

Abstract:

The fatigue crack growth is stochastic because of the fatigue behavior having an uncertainty and a randomness. Therefore, it is necessary to determine the probability distribution of a grown crack size at a specific fatigue crack propagation life for maintenance of structure as well as reliability estimation. The essential purpose of this study is to present the good probability distribution fit for the grown crack size at a specified fatigue life in a rolled magnesium alloy under different specimen thickness conditions. Fatigue crack propagation experiments are carried out in laboratory air under three conditions of specimen thickness using AZ31 to investigate a stochastic crack growth behavior. The goodness-of-fit test for probability distribution of a grown crack size under different specimen thickness conditions is performed by Anderson-Darling test. The effect of a specimen thickness on variability of a grown crack size is also investigated.

Keywords: crack size, fatigue crack propagation, magnesium alloys, probability distribution, specimen thickness

Procedia PDF Downloads 499
14265 dynr.mi: An R Program for Multiple Imputation in Dynamic Modeling

Authors: Yanling Li, Linying Ji, Zita Oravecz, Timothy R. Brick, Michael D. Hunter, Sy-Miin Chow

Abstract:

Assessing several individuals intensively over time yields intensive longitudinal data (ILD). Even though ILD provide rich information, they also bring other data analytic challenges. One of these is the increased occurrence of missingness with increased study length, possibly under non-ignorable missingness scenarios. Multiple imputation (MI) handles missing data by creating several imputed data sets, and pooling the estimation results across imputed data sets to yield final estimates for inferential purposes. In this article, we introduce dynr.mi(), a function in the R package, Dynamic Modeling in R (dynr). The package dynr provides a suite of fast and accessible functions for estimating and visualizing the results from fitting linear and nonlinear dynamic systems models in discrete as well as continuous time. By integrating the estimation functions in dynr and the MI procedures available from the R package, Multivariate Imputation by Chained Equations (MICE), the dynr.mi() routine is designed to handle possibly non-ignorable missingness in the dependent variables and/or covariates in a user-specified dynamic systems model via MI, with convergence diagnostic check. We utilized dynr.mi() to examine, in the context of a vector autoregressive model, the relationships among individuals’ ambulatory physiological measures, and self-report affect valence and arousal. The results from MI were compared to those from listwise deletion of entries with missingness in the covariates. When we determined the number of iterations based on the convergence diagnostics available from dynr.mi(), differences in the statistical significance of the covariate parameters were observed between the listwise deletion and MI approaches. These results underscore the importance of considering diagnostic information in the implementation of MI procedures.

Keywords: dynamic modeling, missing data, mobility, multiple imputation

Procedia PDF Downloads 164
14264 Application of Deep Neural Networks to Assess Corporate Credit Rating

Authors: Parisa Golbayani, Dan Wang, Ionut¸ Florescu

Abstract:

In this work we implement machine learning techniques to financial statement reports in order to asses company’s credit rating. Specifically, the work analyzes the performance of four neural network architectures (MLP, CNN, CNN2D, LSTM) in predicting corporate credit rating as issued by Standard and Poor’s. The paper focuses on companies from the energy, financial, and healthcare sectors in the US. The goal of this analysis is to improve application of machine learning algorithms to credit assessment. To accomplish this, the study investigates three questions. First, we investigate if the algorithms perform better when using a selected subset of important features or whether better performance is obtained by allowing the algorithms to select features themselves. Second, we address the temporal aspect inherent in financial data and study whether it is important for the results obtained by a machine learning algorithm. Third, we aim to answer if one of the four particular neural network architectures considered consistently outperforms the others, and if so under which conditions. This work frames the problem as several case studies to answer these questions and analyze the results using ANOVA and multiple comparison testing procedures.

Keywords: convolutional neural network, long short term memory, multilayer perceptron, credit rating

Procedia PDF Downloads 235
14263 Investigation of the Space in Response to the Conditions Caused by the Pandemics and Presenting Five-Scale Design Guidelines to Adapt and Prepare to Face the Pandemics

Authors: Sara Ramezanzadeh, Nashid Nabian

Abstract:

Historically, pandemics in different periods have caused compulsory changes in human life. In the case of Covid-19, according to the limitations and established care instructions, spatial alignment with the conditions is important. Following the outbreak of Covid-19, the question raised in this study is how to do spatial design in five scales, namely object, space, architecture, city, and infrastructure, in response to the consequences created in the realms under study. From the beginning of the pandemic until now, some changes in the spatial realm have been created spontaneously or by space users. These transformations have been mostly applied in modifiable parts such as furniture arrangement, especially in work-related spaces. To implement other comprehensive requirements, flexibility and adaptation of space design to the conditions resulting from the pandemics are needed during and after the outbreak. Studying the effects of pandemics from the past to the present, this research covers eight major realms, including three categories of ramifications, solutions, and paradigm shifts, and analytical conclusions about the solutions that have been created in response to them. Finally, by the consideration of epidemiology as a modern discipline influencing the design, spatial solutions in the five scales mentioned (in response to the effects of the eight realms for spatial adaptation in the face of pandemics and their following conditions) are presented as a series of guidelines. Due to the unpredictability of possible pandemics in the future, the possibility of changing and updating the provided guidelines is considered.

Keywords: pandemics, Covid 19, spatial design, ramifications, solutions, paradigm shifts, guidelines

Procedia PDF Downloads 83
14262 Project Paulina: A Human-Machine Interface for Individuals with Limited Mobility and Conclusions from Research and Development

Authors: Radoslaw Nagay

Abstract:

The Paulina Project aims to address the challenges faced by immobilized individuals, such as those with multiple sclerosis, muscle dystrophy, or spinal cord injuries, by developing a flexible hardware and software solution. This paper presents the research and development efforts of our team, which commenced in 2019 and is now in its final stage. Recognizing the diverse needs and limitations of individuals with limited mobility, we conducted in-depth testing with a group of 30 participants. The insights gained from these tests led to the complete redesign of the system. Our presentation covers the initial project ideas, observations from in-situ tests, and the newly developed system that is currently under construction. Moreover, in response to the financial constraints faced by many disabled individuals, we propose an affordable business model for the future commercialization of our invention. Through the Paulina Project, we strive to empower immobilized individuals, providing them with greater independence and improved quality of life.

Keywords: UI, human-machine interface, social inclusion, multiple sclerosis, muscular dystrophy, spinal cord injury, quadriplegic

Procedia PDF Downloads 70
14261 Image Classification with Localization Using Convolutional Neural Networks

Authors: Bhuyain Mobarok Hossain

Abstract:

Image classification and localization research is currently an important strategy in the field of computer vision. The evolution and advancement of deep learning and convolutional neural networks (CNN) have greatly improved the capabilities of object detection and image-based classification. Target detection is important to research in the field of computer vision, especially in video surveillance systems. To solve this problem, we will be applying a convolutional neural network of multiple scales at multiple locations in the image in one sliding window. Most translation networks move away from the bounding box around the area of interest. In contrast to this architecture, we consider the problem to be a classification problem where each pixel of the image is a separate section. Image classification is the method of predicting an individual category or specifying by a shoal of data points. Image classification is a part of the classification problem, including any labels throughout the image. The image can be classified as a day or night shot. Or, likewise, images of cars and motorbikes will be automatically placed in their collection. The deep learning of image classification generally includes convolutional layers; the invention of it is referred to as a convolutional neural network (CNN).

Keywords: image classification, object detection, localization, particle filter

Procedia PDF Downloads 305
14260 Responsive Integrative Therapeutic Method: Paradigm for Addressing Core Deficits in Autism by Balkibekova

Authors: Balkibekova Venera Serikpaevna

Abstract:

Background: Autism Spectrum Disorder (ASD) poses significant challenges in both diagnosis and treatment. Existing therapeutic interventions often target specific symptoms, necessitating the exploration of alternative approaches. This study investigates the RITM (Rhythm Integration Tapping Music) developed by Balkibekova, aiming to create imitation, social engagement and a wide range of emotions through brain development. Methods: A randomized controlled trial was conducted with 100 participants diagnosed with ASD, aged 1 to 4 years. Participants were randomly assigned to either the RITM therapy group or a control group receiving standard care. The RITM therapy, rooted in tapping rhythm to music such as: marche on the drums, waltz on bells, lullaby on musical triangle, dancing on tambourine, polka on wooden spoons. Therapy sessions were conducted over a 3 year period, with assessments at baseline, midpoint, and post-intervention. Results: Preliminary analyses reveal promising outcomes in the RITM therapy group. Participants demonstrated significant improvements in social interactions, speech understanding, birth of speech, and adaptive behaviors compared to the control group. Careful examination of subgroup analyses provides insights into the differential effectiveness of the RITM approach across various ASD profiles. Conclusions: The findings suggest that RITM therapy, as developed by Balkibekova, holds promise as intervention for ASD. The integrative nature of the approach, addressing multiple domains simultaneously, may contribute to its efficacy. Further research is warranted to validate these preliminary results and explore the long-term impact of RITM therapy on individuals with ASD. This abstract presents a snapshot of the research, emphasizing the significance, methodology, key findings, and implications of the RITM therapy method for consideration in an autism conference.

Keywords: RITM therapy, tapping rhythm, autism, mirror neurons, bright emotions, social interactions, communications

Procedia PDF Downloads 64
14259 Information Visualization Methods Applied to Nanostructured Biosensors

Authors: Osvaldo N. Oliveira Jr.

Abstract:

The control of molecular architecture inherent in some experimental methods to produce nanostructured films has had great impact on devices of various types, including sensors and biosensors. The self-assembly monolayers (SAMs) and the electrostatic layer-by-layer (LbL) techniques, for example, are now routinely used to produce tailored architectures for biosensing where biomolecules are immobilized with long-lasting preserved activity. Enzymes, antigens, antibodies, peptides and many other molecules serve as the molecular recognition elements for detecting an equally wide variety of analytes. The principles of detection are also varied, including electrochemical methods, fluorescence spectroscopy and impedance spectroscopy. In this presentation an overview will be provided of biosensors made with nanostructured films to detect antibodies associated with tropical diseases and HIV, in addition to detection of analytes of medical interest such as cholesterol and triglycerides. Because large amounts of data are generated in the biosensing experiments, use has been made of computational and statistical methods to optimize performance. Multidimensional projection techniques such as Sammon´s mapping have been shown more efficient than traditional multivariate statistical analysis in identifying small concentrations of anti-HIV antibodies and for distinguishing between blood serum samples of animals infected with two tropical diseases, namely Chagas´ disease and Leishmaniasis. Optimization of biosensing may include a combination of another information visualization method, the Parallel Coordinate technique, with artificial intelligence methods in order to identify the most suitable frequencies for reaching higher sensitivity using impedance spectroscopy. Also discussed will be the possible convergence of technologies, through which machine learning and other computational methods may be used to treat data from biosensors within an expert system for clinical diagnosis.

Keywords: clinical diagnosis, information visualization, nanostructured films, layer-by-layer technique

Procedia PDF Downloads 337
14258 The Examination of Parents’ Perceptions and Motivations Regarding Type 1 Diabetes Management Technologies

Authors: Maria Dora Horvath, Norbert Buzas, Zsanett Tesch

Abstract:

Diabetes management poses many unique challenges for children and their parents. The use of a diabetes management device should not be one of these challenges as the purpose of these devices is to make the management more convenient. The objective of our study was to examine how demographical, psychological and diabetes-related factors determine the choices parents make regarding their child’s diabetes management technologies and how they perceive advanced devices. We conducted the study using an online questionnaire with 318 parents (mostly mothers). The questions of the survey were about demographical, diabetes-related and psychological factors (diabetes management problems, diabetes management competence). In addition, we asked the parents opinions about advanced diabetes management devices. We expanded our data with semi-structured in-depth interviews. 61 % of the participants Self-Monitored Blood Glucose (SMBG), and 39 % used a Continuous Glucose Monitoring System (CGM). Considering insulin administration, 58 % used Multiple Daily Insulin Injections (MDII) and 42 % used Continuous Subcutaneous Insulin Infusion (CSII). Parents who used diverse combinations of diabetes management devices showed significant differences in age (parents’ and child’s), the monthly cost of diabetes, the duration of diabetes, the highest level of education and average monthly household income. CGM users perceived diabetes management problems significantly more severe than SMBG users and CSII users felt significantly more competent in diabetes management than MDII users. Avoiding CGM use due to lack of financial resources was determined by diagnosis duration. While avoiding its use by the cause of the child rejecting, it was determined by the child’s age and diabetes competence. Using MDII instead of CSII because of the child’s rejection was determined by the monthly cost of diabetes and child’s age. We conducted a complex empirical study in which we examined perceptions and experiences of advanced and less advanced diabetes management technologies comprehensively. Our study highlights the factors that fundamentally influence parents’ motivations and choices about diabetes management technologies. These results could contribute to developing diabetes management technologies more suitable for children living with type 1 diabetes and their parents.

Keywords: advanced diabetes management technologies, children living with type 1 diabetes, diabetes management, motivation, parents

Procedia PDF Downloads 135
14257 Collision Detection Algorithm Based on Data Parallelism

Authors: Zhen Peng, Baifeng Wu

Abstract:

Modern computing technology enters the era of parallel computing with the trend of sustainable and scalable parallelism. Single Instruction Multiple Data (SIMD) is an important way to go along with the trend. It is able to gather more and more computing ability by increasing the number of processor cores without the need of modifying the program. Meanwhile, in the field of scientific computing and engineering design, many computation intensive applications are facing the challenge of increasingly large amount of data. Data parallel computing will be an important way to further improve the performance of these applications. In this paper, we take the accurate collision detection in building information modeling as an example. We demonstrate a model for constructing a data parallel algorithm. According to the model, a complex object is decomposed into the sets of simple objects; collision detection among complex objects is converted into those among simple objects. The resulting algorithm is a typical SIMD algorithm, and its advantages in parallelism and scalability is unparalleled in respect to the traditional algorithms.

Keywords: data parallelism, collision detection, single instruction multiple data, building information modeling, continuous scalability

Procedia PDF Downloads 289
14256 Clinicopathological and Immunohistochemical Study of Ovarian Sex Cord-Stromal Tumors and Their Histological Mimics

Authors: Ghada Esheba, Ebtisam Aljerayan, Afnan Al-Ghamdi, Atheer Alsharif, Hanan alzahrani

Abstract:

Background: Primary ovarian neoplasms comprise a heterogeneous group of tumors of three main subtypes: surface epithelial, germ cell, and sex cord-stromal. The wide morphological variation within and between these groups can result in diagnostic difficulties. Gonadal sex cord-stromal tumors (SCST) represent one of the most heterogeneous categories of human neoplasms, because they may contain various combinations of different gonadal sex cord and stromal element. Aim: The aim of this work is to highlight the clinicopathological characteristics of SCST and to assess the value of alpha-inhibin and calretinin in the distinction between SCST and their mimics. Material and methods: This study was carried out on 100 cases using full tissue sections; 70 cases were SCST and 30 cases were histological mimics of SCST. The cases were studied using immunohistochemically using alpha-inhibin. In addition, an ovarian tissue microarray containing 170 benign and malignant ovarian neoplasms was also studied immunohistochemically for calretinin expression. The ovarian microarray included 14 SCST, 59 ovarian serous borderline tumors, 17 mucinous borderline tumors, 10 mucinous adenocarcinomas, 32 endometrioid adenocarcinomas, 34 clear cell carcinomas, and 4 germ cell tumors. Results: 99% of SCST examined using full tissue sections exhibited positive cytoplasmic staining for inhibin. On the contrary, only 7% of the histological mimics (P value < 0.0001). 86% of SCST in the tissue microarray were positive for calretinin with nuclear and/or cytoplasmic staining compared to only 7% of the other tumor types (P value < 0.0001). Conclusions: SCST have characteristic clinicopathological and immunohistochemical features and their recognition is crucial for proper diagnosis and treatment. Alpha-inhibin and calretinin are of great help in the diagnosis of sex cord-stromal tumors.

Keywords: calretinin, granulosa cell tumor, inhibin, sex cord-stromal tumors

Procedia PDF Downloads 208
14255 Analyses of Uniaxial and Biaxial Flexure Tests Used in Ceramic Materials

Authors: Barry Hojjatie

Abstract:

Uniaxial (e.g., three-point bending) and biaxial flexure tests are used frequently for determining the strength of ceramics. It is generally believed that the biaxial test has an advantage as compared to uniaxial test because it produces a state of pure tension on the lower surface of the specimen and the maximum tensile stress, which is usually responsible for crack initiation and failure is unaffected by the edge condition. However, inconsistent strength values have been reported for the same material and testing conditions. The objective of this study was to analyze the strength of dental porcelain materials using the two different test methods and evaluate the main contributions to variability in biaxial testing and to analyze the relative influence of variables such as specimen geometric conditions and loading conditions on calculated strength of porcelain subjected to biaxial testing. Porcelain disks (16 mm dia x 2 mm thick) were subjected to biaxial flexure (pin-on-three-ball), and flexure strength values were calculated. A 3-D finite element model was developed to simulate various biaxial flexure test conditions. Stresses were analyzed for ceramic thickness in the range of 1.0-3.0 mm. For a 2-mm-thick disk subjected to a point load of 200 N, the maximum tensile stress at the lower surface was 180 MPa. This stress decreased to 95, 77, 68, and 59 MPa for the radius of the load values of 0.15, 0.3, 0.6, and 1.0 mm, respectively. Tensile stresses which developed at the top surface near the site of loading were small for the radius of the load ≥ 0.6 mm.

Keywords: ceramis, biaxial, flexure test, uniaxial

Procedia PDF Downloads 155
14254 Magnetite Nanoparticles Immobilized Pectinase: Preparation, Characterization and Application for the Fruit Juices Clarification

Authors: Leila Mosafa, Majid Moghadam, Mohammad Shahedi

Abstract:

In this work, pectinase was immobilized on the surface of silica-coated magnetite nanoparticles via covalent attachment. The magnetite-immobilized enzyme was characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy and vibrating sample magnetometry techniques. Response surface methodology using Minitab Software was applied for statistical designing of operating conditions in order to immobilize pectinase on magnetic nanoparticles. The optimal conditions were obtained at 30°C and pH 5.5 with 42.97 µl pectinase for 2 h. The immobilization yield was 50.6% at optimized conditions. Compared to the free pectinase, the immobilized pectinase was found to exhibit enhanced enzyme activity, better tolerance to the variation of pH and temperature, and improved storage stability. Both free and immobilized samples reduced the viscosity of apple juice from 1.12 to 0.88 and 0.92 mm2s-1, respectively, after 30 min at their optimum temperature. Furthermore, the immobilized enzyme could be reused six consecutive cycles and the efficiency loss in viscosity reduction was found to be only 8.16%.

Keywords: magnetite nanoparticles, pectinase enzyme, immobilization, juice clarification, enzyme activity

Procedia PDF Downloads 407
14253 Anatomical-Bodied and Psyche Represented in Contemporary Art: A Conceptual Study for A Curatorial Practice

Authors: Dumith Kulasekara

Abstract:

This paper examines the representation of the body that particularly stresses the anatomical organs and the psychic conditions in contemporary art. The paper looks closely at the works that address personal and social meanings implying psychic conditions by bringing the internal hidden anatomical organs of the body to the surface of the visual language. The paper argues that contemporary artists conceptualize the idea of the body as a site of generating psychic conditions by excavating the body as material, subject, and object in art practice. The paper conceptualizes this excavating process of the body acts similarly to the idea of dissecting the corporeal body to understand its internal organism that again shapes the materiality of the surface of the body. In doing so, the paper brings together this argument, knowledge produced in the historical and contemporary anatomical education in art and science, and psychoanalytical approaches to the theme to develop new interpretations of representing psyche in the anatomical-bodied. The present paper defines this new form of body conceptually and materially addresses the issues related to psychic conditions: sexual desires, gender, traumas, and memories. The paper suggests that representation of the anatomical-bodied brings a new direction of the multidisciplinary approach introduced by artists to visualize the body and psyche in the contemporary context. The paper also presents an in-depth- discussion on technological, scientific, and philosophical knowledge employed in representing the idea of the body in addressing different psychic conditions to challenge the experiencing the body in contemporary art. Therefore, the paper focuses on examining the theme in the different forms of visual language and contexts in contemporary art. Finally, this research aims to offer a theoretical and conceptual background to curate an exhibition on the title of the anatomical-bodied and psyche in contemporary art with the body of work discussed in this paper.

Keywords: anatomy, body, contemporary art, psyche, psychoanalysis, representation, trauma

Procedia PDF Downloads 140
14252 Effect of Modified Atmosphere Packaging and Storage Temperatures on Quality of Shelled Raw Walnuts

Authors: M. Javanmard

Abstract:

This study was aimed at analyzing the effects of packaging (MAP) and preservation conditions on the packaged fresh walnut kernel quality. The central composite plan was used for evaluating the effect of oxygen (0–10%), carbon dioxide (0-10%), and temperature (4-26 °C) on qualitative characteristics of walnut kernels. Also, the response level technique was used to find the optimal conditions for interactive effects of factors, as well as estimating the best conditions of process using least amount of testing. Measured qualitative parameters were: peroxide index, color, decreased weight, mould and yeast counting test, and sensory evaluation. The results showed that the defined model for peroxide index, color, weight loss, and sensory evaluation is significant (p < 0.001), so that increase of temperature causes the peroxide value, color variation, and weight loss to increase and it reduces the overall acceptability of walnut kernels. An increase in oxygen percentage caused the color variation level and peroxide value to increase and resulted in lower overall acceptability of the walnuts. An increase in CO2 percentage caused the peroxide value to decrease, but did not significantly affect other indices (p ≥ 0.05). Mould and yeast were not found in any samples. Optimal packaging conditions to achieve maximum quality of walnuts include: 1.46% oxygen, 10% carbon dioxide, and temperature of 4 °C.

Keywords: shelled walnut, MAP, quality, storage temperature

Procedia PDF Downloads 388
14251 Long-Term Indoor Air Monitoring for Students with Emphasis on Particulate Matter (PM2.5) Exposure

Authors: Seyedtaghi Mirmohammadi, Jamshid Yazdani, Syavash Etemadi Nejad

Abstract:

One of the main indoor air parameters in classrooms is dust pollution and it depends on the particle size and exposure duration. However, there is a lake of data about the exposure level to PM2.5 concentrations in rural area classrooms. The objective of the current study was exposure assessment for PM2.5 for students in the classrooms. One year monitoring was carried out for fifteen schools by time-series sampling to evaluate the indoor air PM2.5 in the rural district of Sari city, Iran. A hygrometer and thermometer were used to measure some psychrometric parameters (temperature, relative humidity, and wind speed) and Real-Time Dust Monitor, (MicroDust Pro, Casella, UK) was used to monitor particulate matters (PM2.5) concentration. The results show the mean indoor PM2.5 concentration in the studied classrooms was 135µg/m3. The regression model indicated that a positive correlation between indoor PM2.5 concentration and relative humidity, also with distance from city center and classroom size. Meanwhile, the regression model revealed that the indoor PM2.5 concentration, the relative humidity, and dry bulb temperature was significant at 0.05, 0.035, and 0.05 levels, respectively. A statistical predictive model was obtained from multiple regressions modeling for indoor PM2.5 concentration and indoor psychrometric parameters conditions.

Keywords: classrooms, concentration, humidity, particulate matters, regression

Procedia PDF Downloads 335
14250 Indian Road Traffic Flow Analysis Using Blob Tracking from Video Sequences

Authors: Balaji Ganesh Rajagopal, Subramanian Appavu alias Balamurugan, Ayyalraj Midhun Kumar, Krishnan Nallaperumal

Abstract:

Intelligent Transportation System is an Emerging area to solve multiple transportation problems. Several forms of inputs are needed in order to solve ITS problems. Advanced Traveler Information System (ATIS) is a core and important ITS area of this modern era. This involves travel time forecasting, efficient road map analysis and cost based path selection, Detection of the vehicle in the dynamic conditions and Traffic congestion state forecasting. This Article designs and provides an algorithm for traffic data generation which can be used for the above said ATIS application. By inputting the real world traffic situation in the form of video sequences, the algorithm determines the Traffic density in terms of congestion, number of vehicles in a given path which can be fed for various ATIS applications. The Algorithm deduces the key frame from the video sequences and follows the Blob detection, Identification and Tracking using connected components algorithm to determine the correlation between the vehicles moving in the real road scene.

Keywords: traffic transportation, traffic density estimation, blob identification and tracking, relative velocity of vehicles, correlation between vehicles

Procedia PDF Downloads 510
14249 Study on Multi-Point Stretch Forming Process for Double Curved Surface

Authors: Jiwoo Park, Junseok Yoon, Jeong Kim, Beomsoo Kang

Abstract:

Multi-Point Stretch Forming (MPSF) process is suitable for flexible manufacturing, and it has several advantages including that it could be applied to various forming such as sheet metal forming, single curved surface forming and double curved one. In this study, a systematic numerical simulation was carried out for atypical double curved surface forming using the multiple die stretch forming process. In this simulation, urethane pads were defined based on hyper-elastic material model as a cushion for the smooth forming surface. The deformation behaviour on elastic recovery was also investigated to consider the exact result after the last forming process, and then the experiment was also carried out to confirm the formability of this forming process. By comparing the simulation and experiment results, the suitability of the multiple die stretch forming process for the atypical double curved surface was verified. Consequently, it is confirmed that the multi-point stretch forming process has the capability and feasibility of being used to manufacture the double curved surfaces of sheet metal.

Keywords: multi-point stretch forming, double curved surface, numerical simulation, manufacturing

Procedia PDF Downloads 481
14248 Hospital Malnutrition and its Impact on 30-day Mortality in Hospitalized General Medicine Patients in a Tertiary Hospital in South India

Authors: Vineet Agrawal, Deepanjali S., Medha R., Subitha L.

Abstract:

Background. Hospital malnutrition is a highly prevalent issue and is known to increase the morbidity, mortality, length of hospital stay, and cost of care. In India, studies on hospital malnutrition have been restricted to ICU, post-surgical, and cancer patients. We designed this study to assess the impact of hospital malnutrition on 30-day post-discharge and in-hospital mortality in patients admitted in the general medicine department, irrespective of diagnosis. Methodology. All patients aged above 18 years admitted in the medicine wards, excluding medico-legal cases, were enrolled in the study. Nutritional assessment was done within 72 h of admission, using Subjective Global Assessment (SGA), which classifies patients into three categories: Severely malnourished, Mildly/moderately malnourished, and Normal/well-nourished. Anthropometric measurements like Body Mass Index (BMI), Triceps skin-fold thickness (TSF), and Mid-upper arm circumference (MUAC) were also performed. Patients were followed-up during hospital stay and 30 days after discharge through telephonic interview, and their final diagnosis, comorbidities, and cause of death were noted. Multivariate logistic regression and cox regression model were used to determine if the nutritional status at admission independently impacted mortality at one month. Results. The prevalence of malnourishment by SGA in our study was 67.3% among 395 hospitalized patients, of which 155 patients (39.2%) were moderately malnourished, and 111 (28.1%) were severely malnourished. Of 395 patients, 61 patients (15.4%) expired, of which 30 died in the hospital, and 31 died within 1 month of discharge from hospital. On univariate analysis, malnourished patients had significantly higher morality (24.3% in 111 Cat C patients) than well-nourished patients (10.1% in 129 Cat A patients), with OR 9.17, p-value 0.007. On multivariate logistic regression, age and higher Charlson Comorbidity Index (CCI) were independently associated with mortality. Higher CCI indicates higher burden of comorbidities on admission, and the CCI in the expired patient group (mean=4.38) was significantly higher than that of the alive cohort (mean=2.85). Though malnutrition significantly contributed to higher mortality on univariate analysis, it was not an independent predictor of outcome on multivariate logistic regression. Length of hospitalisation was also longer in the malnourished group (mean= 9.4 d) compared to the well-nourished group (mean= 8.03 d) with a trend towards significance (p=0.061). None of the anthropometric measurements like BMI, MUAC, or TSF showed any association with mortality or length of hospitalisation. Inference. The results of our study highlight the issue of hospital malnutrition in medicine wards and reiterate that malnutrition contributes significantly to patient outcomes. We found that SGA performs better than anthropometric measurements in assessing under-nutrition. We are of the opinion that the heterogeneity of the study population by diagnosis was probably the primary reason why malnutrition by SGA was not found to be an independent risk factor for mortality. Strategies to identify high-risk patients at admission and treat malnutrition in the hospital and post-discharge are needed.

Keywords: hospitalization outcome, length of hospital stay, mortality, malnutrition, subjective global assessment (SGA)

Procedia PDF Downloads 149
14247 Carbon@NiCoFeS Nanoparticles for Photocatalytic Degradation of Organic Pollutants via Peroxymonosulfate Activation

Authors: Raqiqa Tur Rasool, Ghulam Abbas Ashraf

Abstract:

This study presents the synthesis and application of Carbon@NiCoFeS nanoparticles as a photocatalyst for the degradation of organic pollutants through peroxymonosulfate (PMS) activation. The Carbon@NiCoFeS nanoparticles, synthesized via a hydrothermal method, exhibit a highly crystalline and uniformly distributed nanostructure, as confirmed by XRD, SEM, TEM, and FTIR analyses. The photocatalytic performance was tested using ibuprofen (IBU) as a model pollutant under visible light, demonstrating remarkable efficiency across various conditions, including different concentrations of photocatalyst and PMS and a range of pH values. The enhanced activity is attributed to the synergistic effects of Ni, Co, and Fe, promoting effective electron-hole separation and reactive radical generation, primarily SO4•− and •OH. Quenching experiments highlighted sulfate radicals' predominant role in the degradation process. The Carbon@NiCoFeS photocatalyst also showed excellent reusability and stability over multiple cycles, and its versatility in degrading various organic pollutants underscores its potential for practical wastewater treatment applications. This research offers significant insights into multi-metal sulfide photocatalyst design, showcasing Carbon@NiCoFeS nanoparticles' promising role in environmental remediation via efficient PMS activation.

Keywords: NiCoFeS nanoparticles, photocatalytic degradation, peroxymonosulfate activation, organic pollutant removal, wastewater treatment

Procedia PDF Downloads 47
14246 Innovative Screening Tool Based on Physical Properties of Blood

Authors: Basant Singh Sikarwar, Mukesh Roy, Ayush Goyal, Priya Ranjan

Abstract:

This work combines two bodies of knowledge which includes biomedical basis of blood stain formation and fluid communities’ wisdom that such formation of blood stain depends heavily on physical properties. Moreover biomedical research tells that different patterns in stains of blood are robust indicator of blood donor’s health or lack thereof. Based on these valuable insights an innovative screening tool is proposed which can act as an aide in the diagnosis of diseases such Anemia, Hyperlipidaemia, Tuberculosis, Blood cancer, Leukemia, Malaria etc., with enhanced confidence in the proposed analysis. To realize this powerful technique, simple, robust and low-cost micro-fluidic devices, a micro-capillary viscometer and a pendant drop tensiometer are designed and proposed to be fabricated to measure the viscosity, surface tension and wettability of various blood samples. Once prognosis and diagnosis data has been generated, automated linear and nonlinear classifiers have been applied into the automated reasoning and presentation of results. A support vector machine (SVM) classifies data on a linear fashion. Discriminant analysis and nonlinear embedding’s are coupled with nonlinear manifold detection in data and detected decisions are made accordingly. In this way, physical properties can be used, using linear and non-linear classification techniques, for screening of various diseases in humans and cattle. Experiments are carried out to validate the physical properties measurement devices. This framework can be further developed towards a real life portable disease screening cum diagnostics tool. Small-scale production of screening cum diagnostic devices is proposed to carry out independent test.

Keywords: blood, physical properties, diagnostic, nonlinear, classifier, device, surface tension, viscosity, wettability

Procedia PDF Downloads 376
14245 Bag of Words Representation Based on Fusing Two Color Local Descriptors and Building Multiple Dictionaries

Authors: Fatma Abdedayem

Abstract:

We propose an extension to the famous method called Bag of words (BOW) which proved a successful role in the field of image categorization. Practically, this method based on representing image with visual words. In this work, firstly, we extract features from images using Spatial Pyramid Representation (SPR) and two dissimilar color descriptors which are opponent-SIFT and transformed-color-SIFT. Secondly, we fuse color local features by joining the two histograms coming from these descriptors. Thirdly, after collecting of all features, we generate multi-dictionaries coming from n random feature subsets that obtained by dividing all features into n random groups. Then, by using these dictionaries separately each image can be represented by n histograms which are lately concatenated horizontally and form the final histogram, that allows to combine Multiple Dictionaries (MDBoW). In the final step, in order to classify image we have applied Support Vector Machine (SVM) on the generated histograms. Experimentally, we have used two dissimilar image datasets in order to test our proposition: Caltech 256 and PASCAL VOC 2007.

Keywords: bag of words (BOW), color descriptors, multi-dictionaries, MDBoW

Procedia PDF Downloads 297