Search results for: chemical precipitation route
4217 Chemical and Mineralogical Properties of Soils from an Arid Region of Misurata-Libya: Treated Wastewater Irrigation Impacts
Authors: Khalifa Alatresh, Mirac Aydin
Abstract:
This research explores the impacts of irrigation by treated wastewater (TWW) on the mineralogical and chemical attributes of sandy calcareous soils in the Southern region of Misurata. Soil samples obtained from three horizons (A, B, and C) of six TWW-irrigated pedons (29years) and six other pedons from nearby non-irrigated areas (dry-control). The results demonstrated that the TWW-irrigated pedons had significantly higher salinity (EC), sodium adsorption ratio (SAR), exchangeable sodium percentage (ESP), cation exchange capacity (CEC), available phosphor (AP), total nitrogen (TN), and organic matter (OM) relative to the control pedons. Nonetheless, all the values of interest (EC < 4000 µs/cm < SAR < 13, pH < 8.5 and ESP < 15) remained lower than the thresholds, showing no issues with sodicity or salinity. Irrigated pedons contained significantly higher amounts of total clay and showed an altered distribution of particle sizes and minerals identified (quartz, calcite, microcline, albite, anorthite, and dolomite) within the profile. The observed results included the occurrence of Margarite, Anorthite, Chabazite, and Tridymite minerals after the application of TWW in small quantities that are not enough to influence soil genesis and classification.0,51 cm.Keywords: treated wastewater, sandy calcareous soils, soil mineralogy, and chemistry
Procedia PDF Downloads 1134216 Delineation of Oil– Polluted Sites in Ibeno LGA, Nigeria
Authors: Ime R. Udotong, Ofonime U. M. John, Justina I. R. Udotong
Abstract:
Ibeno, Nigeria hosts the operational base of Mobil Producing Nigeria Unlimited (MPNU), a subsidiary of ExxonMobil and the current highest oil and condensate producer in Nigeria. Besides MPNU, other multinational oil companies like Shell Petroleum Development Company Ltd, Elf Petroleum Nigeria Ltd and Nigerian Agip Energy, a subsidiary of ENI E&P operate onshore, on the continental shelf and deep offshore of the Atlantic Ocean in Ibeno, Nigeria, respectively. This study was designed to carry out the survey of the oil impacted sites in Ibeno, Nigeria. A combinations of electrical resistivity (ER), ground penetrating radar (GPR) and physico-chemical as well as microbiological characterization of soils and water samples from the area were carried out. Results obtained revealed that there have been hydrocarbon contaminations of this environment by past crude oil spills as observed from significant concentrations of THC, BTEX and heavy metal contents in the environment. Also, high resistivity values and GPR profiles clearly showing the distribution, thickness and lateral extent of hydrocarbon contamination as represented on the radargram reflector tones corroborates previous significant oil input. Contaminations were of varying degrees, ranging from slight to high, indicating levels of substantial attenuation of crude oil contamination over time. Hydrocarbon pollution of the study area was confirmed by the results of soil and water physico-chemical and microbiological analysis. The levels of THC contamination observed in this study are indicative of high levels of crude oil contamination. Moreover, the display of relatively lower resistivities of locations outside the impacted areas compared to resistivity values within the impacted areas, the 3-D Cartesian images of oil contaminant plume depicted by red, light brown and magenta for high, low and very low oil impacted areas, respectively as well as the high counts of hydrocarbonoclastic microorganisms in excess of 1% confirmed significant recent pollution of the study area.Keywords: oil-polluted sites, physico-chemical analyses, microbiological characterization, geotechnical investigations, total hydrocarbon content
Procedia PDF Downloads 3874215 Polypyrrole as Bifunctional Materials for Advanced Li-S Batteries
Authors: Fang Li, Jiazhao Wang, Jianmin Ma
Abstract:
The practical application of Li-S batteries is hampered due to poor cycling stability caused by electrolyte-dissolved lithium polysulfides. Dual functionalities such as strong chemical adsorption stability and high conductivity are highly desired for an ideal host material for a sulfur-based cathode. Polypyrrole (PPy), as a conductive polymer, was widely studied as matrixes for sulfur cathode due to its high conductivity and strong chemical interaction with soluble polysulfides. Thus, a novel cathode structure consisting of a free-standing sulfur-polypyrrole cathode and a polypyrrole coated separator was designed for flexible Li-S batteries. The PPy materials show strong interaction with dissoluble polysulfides, which could suppress the shuttle effect and improve the cycling stability. In addition, the synthesized PPy film with a rough surface acts as a current collector, which improves the adhesion of sulfur materials and restrain the volume expansion, enhancing the structural stability during the cycling process. For further enhancing the cycling stability, a PPy coated separator was also applied, which could make polysulfides into the cathode side to alleviate the shuttle effect. Moreover, the PPy layer coated on commercial separator is much lighter than other reported interlayers. A soft-packaged flexible Li-S battery has been designed and fabricated for testing the practical application of the designed cathode and separator, which could power a device consisting of 24 light-emitting diode (LED) lights. Moreover, the soft-packaged flexible battery can still show relatively stable cycling performance after repeated bending, indicating the potential application in flexible batteries. A novel vapor phase deposition method was also applied to prepare uniform polypyrrole layer coated sulfur/graphene aerogel composite. The polypyrrole layer simultaneously acts as host and adsorbent for efficient suppression of polysulfides dissolution through strong chemical interaction. The density functional theory (DFT) calculations reveal that the polypyrrole could trap lithium polysulfides through stronger bonding energy. In addition, the deflation of sulfur/graphene hydrogel during the vapor phase deposition process enhances the contact of sulfur with matrixes, resulting in high sulfur utilization and good rate capability. As a result, the synthesized polypyrrole coated sulfur/graphene aerogel composite delivers a specific discharge capacity of 1167 mAh g⁻¹ and 409.1 mAh g⁻¹ at 0.2 C and 5 C respectively. The capacity can maintain at 698 mAh g⁻¹ at 0.5 C after 500 cycles, showing an ultra-slow decay rate of 0.03% per cycle.Keywords: polypyrrole, strong chemical interaction, long-term stability, Li-S batteries
Procedia PDF Downloads 1404214 Surface Coatings of Boards Made from Alternative Materials
Authors: Stepan Hysek, Petra Gajdacova
Abstract:
In recent years, alternative materials, such as annual plants or recycled and waste materials are becoming more and more popular input material for the production of composite materials. They can be used for the production of insulation boards, construction boards or furniture boards. Surface finishing of those boards is essential for utilization in furniture. However, some difficulties could occur during coating of boards from alternative materials; physical and chemical differences from conventional particleboards need to be considered. From the physical aspects, surface soundness and surface roughness mainly determine the quality of the surface. Since surface layers of boards from alternative materials have often lower density, these characteristics could be deteriorated and thus the production process needs to be optimized. Also, chemical reactions of board’s material with coating could be undesirable. The objective of this study is to evaluate the parameters affecting the surface quality of boards made form alternative materials and to find possibilities of the coating of these boards. In this study, boards of particles from rapeseed stems were produced using a laboratory press. Surface soundness, as representatives of mechanical properties and surface roughness, as representative of physical properties, were measured on boards from rapeseed stems. Results clearly indicated that produced boards had lower surface quality than commercially produced particle boards from wood. Therefore, higher thickness of surface coating on rapeseed based boards is needed.Keywords: coating, surface, annual plant, composites, particleboard
Procedia PDF Downloads 2634213 Effects of Collection Time on Chemical Composition of Leaf Essential Oils of Hoslundia opposita
Authors: O. E. Ogunjinmi, N. O. Olawore, L. A. Usman, S. O. Ogunjinmi
Abstract:
An essential oil is any concentrated, hydrophobic liquid containing volatile aroma compounds produced by plants. It has been established that several factors affect the component of the plants such as the texture of the soil, relative humidity, wind, and collection time. This study is aimed at investigating the effect of collection time on the chemical composition of this essential oil. Pulverized leaves (500 g) of Hoslundia opposite harvested in the morning (7 am) and afternoon (2 pm) of the same day were separately hydrodistilled using Clevenger apparatus to obtain the essential oils from the leaves. The leaf oils collected in the morning (7 am) and afternoon (2 pm) harvests yielded 0.54 and 0.65 %w/w respectively. Analysis of the leaf oil obtained in the morning, using gas chromatography (GC) and gas chromatography combined mass spectrometry (GC-MS) revealed the presence of twenty-three (23) compounds which made up 81.8% of the total oil while nineteen (19) compounds (93.2%) were identified in the afternoon leaf essential oil. The most abundant components of the leaf oil collected in the morning (7 am) harvest were p-cymene (28.7%), sabinene (7.1%) and 1,8-cineole (6.6%) Meanwhile the major components of leaf oil in the afternoon (2 pm) harvest were p-cymene (26.4%), thymol (15.3%), 1,8-cineole (15.0%) and g-terpinene (10.4%). The composition pattern of leaf oil obtained in the morning and afternoon harvests of Hoslundia opposite revealed significant differences in qualitative and quantitative.Keywords: essential oil, Hoslundia opposita, para cymene, 1, 8-cineole
Procedia PDF Downloads 3904212 Superficial Metrology of Organometallic Chemical Vapour Deposited Undoped ZnO Thin Films on Stainless Steel and Soda-Lime Glass Substrates
Authors: Uchenna Sydney Mbamara, Bolu Olofinjana, Ezekiel Oladele B. Ajayi
Abstract:
Elaborate surface metrology of undoped ZnO thin films, deposited by organometallic chemical vapour deposition (OMCVD) technique at different precursor flow rates, was carried out. Dicarbomethyl-zinc precursor was used. The films were deposited on AISI304L steel and soda-lime glass substrates. Ultraviolet-visible-near-infrared (UV-Vis-NIR) spectroscopy showed that all the thin films were over 80% transparent, with an average bandgap of 3.39 eV, X-ray diffraction (XRD) results showed that the thin films were crystalline with a hexagonal structure, while Rutherford backscattering spectroscopy (RBS) results identified the elements present in each thin film as zinc and oxygen in the ratio of 1:1. Microscope and contactless profilometer results gave images with characteristic colours. The profilometer also gave the surface roughness data in both 2D and 3D. The asperity distribution of the thin film surfaces was Gaussian, while the average fractal dimension Da was in the range of 2.5 ≤ Da. The metrology proved the surfaces good for ‘touch electronics’ and coating mechanical parts for low friction.Keywords: undoped ZnO, precursor flow rate, OMCVD, thin films, surface texture, tribology
Procedia PDF Downloads 604211 Investigating Methanol Interaction on Hexagonal Ceria-BTC Microrods
Authors: Jamshid Hussain, Kuen Song Lin
Abstract:
For prospective applications, chemists and materials scientists are particularly interested in creating 3D-micro/nanocomposite structures with shapes and unique characteristics. Ceria has recently been produced with a variety of morphologies, including one-dimensional structures (nanoparticles, nanorods, nanowires, and nanotubes). It is anticipated that this material can be used in different fields, such as catalysis, methanol decomposition, carbon monoxide oxidation, optical materials, and environmental protection. Distinct three-dimensional hydrated ceria-BTC (CeO₂-1,3,5-Benzenetricarboxylic-acid) microstructures were successfully synthesized via a hydrothermal route in an aqueous solution. FE-SEM and XRD patterns reveal that a ceria-BTC framework diameter and length are approximately 1.45–2.4 and 5.5–6.5 µm, respectively, at 130 oC and with pH 2 for 72 h. It was demonstrated that the reaction conditions affected the 3D ceria-BTC architecture. The hexagonal ceria-BTC microrod comprises organic linkers, which are transformed into hierarchical ceria microrod in the presences of air at 400 oC was confirmed by Fourier transform infrared spectroscopy. The Ce-O bonding of the hierarchical ceria microrod (HCMs) species has a bond distance and coordination number of 2.44 and 6.89, respectively, which attenuates the EXAFS spectra. Compared to the ceria powder, the HCMs produced more oxygen vacancies and Ce3+ as shown by the XPS and XANES/EXAFS analyses.Keywords: hierarchical ceria microrod, three-dimensional ceria, methanol decomposition, reaction mechanism, XANES/EXAFS
Procedia PDF Downloads 64210 Insecticidal Activity of Bacillus Thuringiensis Strain AH-2 Against Hemiptera Insects Pests: Aphis. Gossypii, and Lepidoptera Insect Pests: Plutella Xylostella and Hyphantria Cunea
Authors: Ajuna B. Henry
Abstract:
In recent decades, climate change has demanded biological pesticides; more Bt strains are being discovered worldwide, some containing novel insecticidal genes while others have been modified through molecular approaches for increased yield, toxicity, and wider host target. In this study, B. thuringiensis strain AH-2 (Bt-2) was isolated from the soil and tested for insecticidal activity against Aphis gossypii (Hemiptera: Aphididae) and Lepidoptera insect pests: fall webworm (Hyphantria cunea) and diamondback moth (Plutella xylostella). A commercial strain B. thuringiensis subsp. kurstaki (Btk), and a chemical pesticide, imidacloprid (for Hemiptera) and chlorantraniliprole (for Lepidoptera), were used as positive control and the same media (without bacterial inoculum) as a negative control. For aphidicidal activity, Bt-2 caused a mortality rate of 70.2%, 78.1% or 88.4% in third instar nymphs of A. gossypii (3N) at 10%, 25% or 50% culture concentrations, respectively. Moreover, Bt-2 was effectively produced in cost-effective (PB) supplemented with either glucose (PBG) or sucrose (PBS) and maintained high aphicidal efficacy with 3N mortality rates of 85.9%, 82.9% or 82.2% in TSB, PBG or PBS media, respectively at 50% culture concentration. Bt-2 also suppressed adult fecundity by 98.3% compared to only 65.8% suppression by Btk at similar concentrations but was slightly lower than chemical treatment, which caused 100% suppression. Partial purification of 60 – 80% (NH4)2SO4 fraction of Bt-2 aphicidal proteins purified on anion exchange (DEAE-FF) column revealed a 105 kDa aphicidal protein with LC50 = 55.0 ng/µℓ. For Lepidoptera pests, chemical pesticide, Bt-2, and Btk cultures, mortality of 86.7%, 60%, and 60% in 3rd instar larvae of P. xylostella, and 96.7%, 80.0%, and 93.3% in 6th instar larvae of H. cunea, after 72h of exposure. When the entomopathogenic strains were cultured in a cost-effective PBG or PBS, the insecticidal activity in all strains was not significantly different compared to the use of a commercial medium (TSB). Bt-2 caused a mortality rate of 60.0%, 63.3%, and 50.0% against P. xylostella larvae and 76.7%, 83.3%, and 73.3% against H. cunea when grown in TSB, PBG, and PBS media, respectively. Bt-2 (grown in cost-effective PBG medium) caused a dose-dependent toxicity of 26.7%, 40.0%, and 63.3% against P. xylostella and 46.7%, 53.3%, and 76.7% against H. cunea at 10%, 25% and 50% culture concentration, respectively. The partially purified Bt-2 insecticidal proteins fractions F1, F2, F3, and F4 (extracted at different ratios of organic solvent) caused low toxicity (50.0%, 40.0%, 36.7%, and 30.0%) against P. xylostella and relatively high toxicity (56.7%, 76.7%, 66.7%, and 63.3%) against H. cunea at 100 µg/g of artificial diets. SDS-PAGE analysis revealed that a128kDa protein is associated with toxicity of Bt-2. Our result demonstrates a medium and strong larvicidal activity of Bt-2 against P. xylostella and H. cunea, respectively. Moreover, Bt-2 could be potentially produced using a cost-effective PBG medium which makes it an effective alternative biocontrol strategy to reduce chemical pesticide application.Keywords: biocontrol, insect pests, larvae/nymph mortality, cost-effective media, aphis gossypii, plutella xylostella, hyphantria cunea, bacillus thuringiensi
Procedia PDF Downloads 184209 Strategies Used by the Saffron Producers of Taliouine (Morocco) to Adapt to Climate Change
Authors: Aziz Larbi, Widad Sadok
Abstract:
In Morocco, the mountainous regions extend over about 26% of the national territory where 30% of the total population live. They contain opportunities for agriculture, forestry, pastureland and mining. The production systems in these zones are characterised by crop diversification. However, these areas have become vulnerable to the effects of climate change. To understand these effects in relation to the population living in these areas, a study was carried out in the zone of Taliouine, in the Anti-Atlas. The vulnerability of crop productions to climate change was analysed and the different ways of adaptation adopted by farmers were identified. The work was done on saffron, the most profitable crop in the target area even though it requires much water. Our results show that the majority of the farmers surveyed had noticed variations in the climate of the region: irregularity of precipitation leading to a decrease in quantity and an uneven distribution throughout the year; rise in temperature; reduction in the cold period and less snow. These variations had impacts on the cropping system of saffron and its productivity. To cope with these effects, the farmers adopted various strategies: better management and use of water; diversification of agricultural activities; increase in the contribution of non-agricultural activities to their gross income; and seasonal migration.Keywords: climate change, Taliouine, saffron, perceptions, adaptation strategies
Procedia PDF Downloads 574208 Understanding Level 5 Sport Student’s Perspectives of the Barriers to Progression and Attainment
Authors: Emma Whewell, Lee Waters, Mark Wall
Abstract:
This paper is a mixed methods investigation into the perceived barriers to attainment and progression. Initially entry level data was analysed to identify some of the key characteristics of the student cohort- for example entry route, age and ethnic background. Secondly, a phenomenological case study of the lived experiences of 15 level 5 sport and exercise students was conducted. It aimed to understand the complexities of success in higher education, far beyond entry qualifications, indices of deprivation and POLAR characteristics, to offer a first-hand account of student perceptions and interpretations of the barriers they face in progression, retention and completion on their programme. Using focus groups and interviews with students from a range of indices we offer a set of rich case studies exploring the interpretations of our students’ lived experiences and challenges. Findings demonstrate a complex set of circumstances that centre on managing workload, use of support services and aspirations of students that conflict with university priorities. Conclusions centre on the role of academic and pastoral support, assumptions about priorities of students and practical interventions to support achievement.Keywords: access and participation, higher education, progression and retention, barriers
Procedia PDF Downloads 1074207 Investigation of Effective Parameters on Water Quality of Iranian Rivers Using Hydrochemical and Statistical Methods
Authors: Maryam Sayadi, Rana Sedighpour, Hossein Rezaie
Abstract:
In this study, in order to evaluate water quality of Gamasiab and Gharehsoo rivers located in Kermanshah province, the information of a 5-year statistical period during the years 2014-2018 was used. To evaluate the hydrochemistry of water, first the type and hydrogeochemical facies of river water were determined using Stiff and Piper diagrams. Then, based on Gibbs diagram and combination diagrams, the factors controlling the chemical parameters of the two rivers were identified. Saturation indices were used to predict the possibility of dissolution and deposition of some minerals. Then, in order to classify water in different sections, fourteen water quality indicators for different uses along with WHO standard were used. Finally, factor analysis was used to determine the processes affecting the hydrochemistry of the two rivers. The results of this study showed that in both rivers, the predominant type and facies are bicarbonate of calcite. Also, the main factor in changing the chemical quality of water in both Gamasiab and Gharehsoo rivers is the water-rock reaction. According to the results of factor analysis in both rivers, two factors have the greatest impact on water quality in the region. Among the parameters of Gamasiab river in the first factor, HCO3-, Na+ and Cl-, respectively, had the highest factor loads, and in the second factor, SO42- and Mg2+ were selected as the main parameters. The parameters Ca2+, Cl- and Na have the highest factor loads in the first factor and in the second factor Mg2+ and SO42- have the highest factor loads in Gharehsoo river. The dissolution of carbonate formations due to their abundance and expansion in the two basins has a more significant effect on changing water chemistry. It has saturated the water of rivers with aragonite, calcite and dolomite. Due to the low contribution of the second factor in changing the chemical parameters, the water of both rivers is saturated with respect to evaporative minerals such as gypsum, halite and anhydrite in all stations. Based on Schoeller diagrams, Wilcox and other quality indicators in these two sections, the amount of main physicochemical parameters are in the desired range for drinking and agriculture. The results of Langelier, Ryznar, Larson-Skold and Puckorius indices showed that water is corrosive in industry.Keywords: factor analysis, hydrochemical, saturation index, surface water quality
Procedia PDF Downloads 1254206 An Alternative Antimicrobial Approach to Fight Bacterial Pathogens from Phellinus linteus
Authors: S. Techaoei, K. Jarmkom, P. Eakwaropas, W. Khobjai
Abstract:
The objective of this research was focused on investigating in vitro antimicrobial activity of Phellinus linteus fruiting body extracts on Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. Phellinus linteus fruiting body was extracted with ethanol and ethyl acetate and was vaporized. The disc diffusion assay was used to assess antimicrobial activity against tested bacterial strains. Primary screening of chemical profile of crude extract was determined by using thin layer chromatography. The positive control and the negative control were used as erythromycin and dimethyl sulfoxide, respectively. Initial screening of Phellinus linteus crude extract with the disc diffusion assay demonstrated that only ethanol had greater antimicrobial activity against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus. The MIC assay showed that the lower MIC was observed with 0.5 mg/ml of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus and 0.25 mg/ml. of Escherichia coli and Staphylococcus aureus, respectively. TLC chemical profile of extract was represented at Rf ≈ 0.71-0.76.Keywords: Staphylococcus aureus, Escherichia coli, Phellinus linteus, Methicillin-resistant Staphylococcus aureus, antimicrobial activity
Procedia PDF Downloads 2814205 Effect of Chemical Fertilizer on Plant Growth-Promoting Rhizobacteria in Wheat
Authors: Tessa E. Reid, Vanessa N. Kavamura, Maider Abadie, Adriana Torres-Ballesteros, Mark Pawlett, Ian M. Clark, Jim Harris, Tim Mauchline
Abstract:
The deleterious effect of chemical fertilizer on rhizobacterial diversity has been well documented using 16S rRNA gene amplicon sequencing and predictive metagenomics. Biofertilization is a cost-effective and sustainable alternative; improving strategies depends on isolating beneficial soil microorganisms. Although culturing is widespread in biofertilization, it is unknown whether the composition of cultured isolates closely mirrors native beneficial rhizobacterial populations. This study aimed to determine the relative abundance of culturable plant growth-promoting rhizobacteria (PGPR) isolates within total soil DNA and how potential PGPR populations respond to chemical fertilization in a commercial wheat variety. It was hypothesized that PGPR will be reduced in fertilized relative to unfertilized wheat. Triticum aestivum cv. Cadenza seeds were sown in a nutrient depleted agricultural soil in pots treated with and without nitrogen-phosphorous-potassium (NPK) fertilizer. Rhizosphere and rhizoplane samples were collected at flowering stage (10 weeks) and analyzed by culture-independent (amplicon sequence variance (ASV) analysis of total rhizobacterial DNA) and -dependent (isolation using growth media) techniques. Rhizosphere- and rhizoplane-derived microbiota culture collections were tested for plant growth-promoting traits using functional bioassays. In general, fertilizer addition decreased the proportion of nutrient-solubilizing bacteria (nitrate, phosphate, potassium, iron and, zinc) isolated from rhizocompartments in wheat, whereas salt tolerant bacteria were not affected. A PGPR database was created from isolate 16S rRNA gene sequences and searched against total soil DNA, revealing that 1.52% of total community ASVs were identified as culturable PGPR isolates. Bioassays identified a higher proportion of PGPR in non-fertilized samples (rhizosphere (49%) and rhizoplane (91%)) compared to fertilized samples (rhizosphere (21%) and rhizoplane (19%)) which constituted approximately 1.95% and 1.25% in non-fertilized and fertilized total community DNA, respectively. The analyses of 16S rRNA genes and deduced functional profiles provide an in-depth understanding of the responses of bacterial communities to fertilizer; this study suggests that rhizobacteria, which potentially benefit plants by mobilizing insoluble nutrients in soil, are reduced by chemical fertilizer addition. This knowledge will benefit the development of more targeted biofertilization strategies.Keywords: bacteria, fertilizer, microbiome, rhizoplane, rhizosphere
Procedia PDF Downloads 3054204 The Mineralogy of Shales from the Pilbara and How Chemical Weathering Affects the Intact Strength
Authors: Arturo Maldonado
Abstract:
In the iron ore mining industry, the intact strength of rock units is defined using the uniaxial compressive strength (UCS). This parameter is very important for the classification of shale materials, allowing the split between rock and cohesive soils based on the magnitude of UCS. For this research, it is assumed that UCS less than or equal to 1 MPa is representative of soils. Several researchers have anticipated that the magnitude of UCS reduces with weathering progression, also since UCS is a directional property, its magnitude depends upon the rock fabric orientation. Thus, the paper presents how the UCS of shales is affected by both weathering grade and bedding orientation. The mineralogy of shales has been defined using Hyper-spectral and chemical assays to define the mineral constituents of shale and other non-shale materials. Geological classification tools have been used to define distinct lithological types, and in this manner, the author uses mineralogical datasets to recognize and isolate shales from other rock types and develop tertiary plots for fresh and weathered shales. The mineralogical classification of shales has reduced the contamination of lithology types and facilitated the study of the physical factors affecting the intact strength of shales, like anisotropic strength due to bedding orientation. The analysis of mineralogical characteristics of shales is perhaps the most important contribution of this paper to other researchers who may wish to explore similar methods.Keywords: rock mechanics, mineralogy, shales, weathering, anisotropy
Procedia PDF Downloads 584203 Radio Frequency Identification Chips in Colour Preference Tracking
Authors: A. Ballard
Abstract:
The ability to track goods and products en route in the delivery system, in the warehouse, and on the top floor is a huge advantage to shippers and retailers. Recently the emergence of radio frequency identification (RFID) technology has enabled this better than ever before. However, a significant problem exists in that RFID technology depends on the quality of the information stored for each tagged product. Because of the profusion of names for colours, it is very difficult to ascertain that stored values are recognised by all users who view the product visually. This paper reports the findings of a study in which 50 consumers and 50 logistics workers were shown colour swatches and asked to choose the name of the colour from a multiple choice list. They were then asked to match consumer products, including toasters, jumpers, and toothbrushes, with the identifying inventory information available for each one. The findings show that the ability to match colours was significantly stronger with the color swatches than with the consumer products and that while logistics professionals made more frequent correct identification than the consumers, their results were still unsatisfactorily low. Based on these findings, a proposed universal model of colour identification numbers has been developed.Keywords: consumer preferences, supply chain logistics, radio frequency identification, RFID, colour preference
Procedia PDF Downloads 1184202 Quantification of Leachate Potential of the Quezon City Controlled Dumping Facility Using Help Model
Authors: Paul Kenneth D. Luzon, Maria Antonia N. Tanchuling
Abstract:
The Quezon City Controlled Dumping facility also known as Payatas produces leachate which can contaminate soil and water environment in the area. The goal of this study is to quantify the leachate produced by the QCCDF using the Hydrologic Evaluation of Landfill Performance (HELP) model. Results could be used as input for groundwater contaminant transport studies. The HELP model is based on a simple water budget and is an essential “model requirement” used by the US Environmental Protection Agency (EPA). Annual waste profile of the QCCDF was calculated. Based on topographical maps and estimation of settlement due to overburden pressure and degradation, a total of 10M m^3 of waste is contained in the landfill. The input necessary for the HELP model are weather data, soil properties, and landfill design. Results showed that from 1988 to 2011, an average of 50% of the total precipitation percolates through the bottom layer. Validation of the results is still needed due to the assumptions made in the study. The decrease in porosity of the top soil cover showed the best mitigation for minimizing percolation rate. This study concludes that there is a need for better leachate management system in the QCCDF.Keywords: help model, landfill, payatas trash slide, quezon city controlled dumping facility
Procedia PDF Downloads 2904201 Thermal Decomposition Behaviors of Hexafluoroethane (C2F6) Using Zeolite/Calcium Oxide Mixtures
Authors: Kazunori Takai, Weng Kaiwei, Sadao Araki, Hideki Yamamoto
Abstract:
HFC and PFC gases have been commonly and widely used as refrigerant of air conditioner and as etching agent of semiconductor manufacturing process, because of their higher heat of vaporization and chemical stability. On the other hand, HFCs and PFCs gases have the high global warming effect on the earth. Therefore, we have to be decomposed these gases emitted from chemical apparatus like as refrigerator. Until now, disposal of these gases were carried out by using combustion method like as Rotary kiln treatment mainly. However, this treatment needs extremely high temperature over 1000 °C. In the recent year, in order to reduce the energy consumption, a hydrolytic decomposition method using catalyst and plasma decomposition treatment have been attracted much attention as a new disposal treatment. However, the decomposition of fluorine-containing gases under the wet condition is not able to avoid the generation of hydrofluoric acid. Hydrofluoric acid is corrosive gas and it deteriorates catalysts in the decomposition process. Moreover, an additional process for the neutralization of hydrofluoric acid is also indispensable. In this study, the decomposition of C2F6 using zeolite and zeolite/CaO mixture as reactant was evaluated in the dry condition at 923 K. The effect of the chemical structure of zeolite on the decomposition reaction was confirmed by using H-Y, H-Beta, H-MOR and H-ZSM-5. The formation of CaF2 in zeolite/CaO mixtures after the decomposition reaction was confirmed by XRD measurements. The decomposition of C2F6 using zeolite as reactant showed the closely similar behaviors regardless the type of zeolite (MOR, Y, ZSM-5, Beta type). There was no difference of XRD patterns of each zeolite before and after reaction. On the other hand, the difference in the C2F6 decomposition for each zeolite/CaO mixtures was observed. These results suggested that the rate-determining process for the C2F6 decomposition on zeolite alone is the removal of fluorine from reactive site. In other words, the C2F6 decomposition for the zeolite/CaO improved compared with that for the zeolite alone by the removal of the fluorite from reactive site. HMOR/CaO showed 100% of the decomposition for 3.5 h and significantly improved from zeolite alone. On the other hand, Y type zeolite showed no improvement, that is, the almost same value of Y type zeolite alone. The descending order of C2F6 decomposition was MOR, ZSM-5, beta and Y type zeolite. This order is similar to the acid strength characterized by NH3-TPD. Hence, it is considered that the C-F bond cleavage is closely related to the acid strength.Keywords: hexafluoroethane, zeolite, calcium oxide, decomposition
Procedia PDF Downloads 4804200 Characterization of the Physicochemical Properties of Raw and Calcined Kaolinitic Clays Using Analytical Techniques
Authors: Alireza Khaloo, Asghar Gholizadeh-Vayghan
Abstract:
The present work focuses on the characterization of the physicochemical properties of kaolinitic clays in both raw and calcined (i.e., dehydroxylated) states. The properties investigated included the dehydroxylation temperature, chemical composition and crystalline phases, band types, kaolinite content, vitreous phase, and reactive and unreactive silica and alumina. The thermogravimetric analysis, X-ray diffractometry and infrared spectroscopy results suggest that full dehydroxylation takes place at 639°C, converting kaolinite to reactive metakaolinite (Si₂Al₂O₇). Application of higher temperatures up to 800 °C leads to complete decarbonation of the calcite phase, and the kaolinite converts to mullite at temperatures exceeding 957 °C. Calcination at 639°C was found to cause a 50% increase in the vitreous content of kaolin. Statistically meaningful increases in the reactivity of silica, alumina, calcite and sodium carbonate in kaolin were detected as a result of such thermal treatment. Such increases were found to be 11%, 47%, 240% and 10%, respectively. The ferrite phase, however, showed a 36% decline in reactivity. The proposed approach can be used as an analytical method to determine the viability of the source of kaolinite and proper physical and chemical modifications needed to enhance its suitability for geopolymer production.Keywords: physicochemical properties, dehydroxylation, kaolinitic clays, kaolinite content, vitreous phase, reactivity
Procedia PDF Downloads 1614199 Contribution to the Study of Some Phytochemicals and Biological Aspects of Artemisia absinthium L
Authors: Sihem Benmimoune, Abdelbaki Lemgharbi, Ahmed Ait Yahia, Abdelkrim Kameli
Abstract:
Our study is based on chemical and phytochemical characterization of Artemisia absinthium L and in vitro tests to demonstrate the biological activities of essential oil and natural extract. A qualitative and quantitative comparison of the essential oil extracted by two extraction procedures was performed by analysis of CG/SM and the yield calculation. The method of hydrodistillation has a chemical composition and provides oil content than the best training water vapor. These oils are composed mainly of thujone followed chamazulene and ρ-cymene. The antimicrobial activity of wormwood oil was tested in vitro by two methods (agar diffusion and microdilution) on four plant pathogenic fungi (Aspergillus sp, Botrytis cinerea, Fusarium culmorum and Helminthosporium sp). The study of the antifungal effect showed that this oil has an inhibitory effect counterpart the microorganisms tested in particular the strain Botrytis cinerea. Otherwise, this activity depends on the nature of the oil and the germ itself. The antioxidant activity in vitro was studied with the DPPH method. The activity test shows that the oil and extract of Artemisia absinthium have a very low antioxidant capacity compared to the antioxidants used as a reference. The extract has a potentially high antiradical power not from its oil. The quantitative determinations of phenolic compounds by the Folin-Ciocalteu revealed that absinthe is low in total polyphenols and tannins.Keywords: artemisia absinthium, biological activities, essential oil, extraction processes
Procedia PDF Downloads 3404198 Logic Programming and Artificial Neural Networks in Pharmacological Screening of Schinus Essential Oils
Authors: José Neves, M. Rosário Martins, Fátima Candeias, Diana Ferreira, Sílvia Arantes, Júlio Cruz-Morais, Guida Gomes, Joaquim Macedo, António Abelha, Henrique Vicente
Abstract:
Some plants of genus Schinus have been used in the folk medicine as topical antiseptic, digestive, purgative, diuretic, analgesic or antidepressant, and also for respiratory and urinary infections. Chemical composition of essential oils of S. molle and S. terebinthifolius had been evaluated and presented high variability according with the part of the plant studied and with the geographic and climatic regions. The pharmacological properties, namely antimicrobial, anti-tumoural and anti-inflammatory activities are conditioned by chemical composition of essential oils. Taking into account the difficulty to infer the pharmacological properties of Schinus essential oils without hard experimental approach, this work will focus on the development of a decision support system, in terms of its knowledge representation and reasoning procedures, under a formal framework based on Logic Programming, complemented with an approach to computing centered on Artificial Neural Networks and the respective Degree-of-Confidence that one has on such an occurrence.Keywords: artificial neuronal networks, essential oils, knowledge representation and reasoning, logic programming, Schinus molle L., Schinus terebinthifolius Raddi
Procedia PDF Downloads 5424197 Treatment of Poultry Slaughterhouse Wastewater by Mesophilic Static Granular Bed Reactor (SGBR) Coupled with UF Membrane
Authors: Moses Basitere, Marshal Sherene Sheldon, Seteno Karabo Obed Ntwampe, Debbie Dejager
Abstract:
In South Africa, Poultry slaughterhouses consume largest amount of freshwater and discharges high strength wastewater, which can be treated successfully at low cost using anaerobic digesters. In this study, the performance of bench-scale mesophilic Static Granular Bed Reactor (SGBR) containing fully anaerobic granules coupled with ultra-filtration (UF) membrane as a post-treatment for poultry slaughterhouse wastewater was investigated. The poultry slaughterhouse was characterized by chemical oxygen demand (COD) range between 2000 and 6000 mg/l, average biological oxygen demand (BOD) of 2375 mg/l and average fats, oil and grease (FOG) of 554 mg/l. A continuous SGBR anaerobic reactor was operated for 6 weeks at different hydraulic retention time (HRT) and an Organic loading rate. The results showed an average COD removal was greater than 90% for both the SGBR anaerobic digester and ultrafiltration membrane. The total suspended solids and fats oil and grease (FOG) removal was greater than 95%. The SGBR reactor coupled with UF membrane showed a greater potential to treat poultry slaughterhouse wastewater.Keywords: chemical oxygen demand, poultry slaughterhouse wastewater, static granular bed reactor, ultrafiltration, wastewater
Procedia PDF Downloads 3864196 Geospatial Network Analysis Using Particle Swarm Optimization
Authors: Varun Singh, Mainak Bandyopadhyay, Maharana Pratap Singh
Abstract:
The shortest path (SP) problem concerns with finding the shortest path from a specific origin to a specified destination in a given network while minimizing the total cost associated with the path. This problem has widespread applications. Important applications of the SP problem include vehicle routing in transportation systems particularly in the field of in-vehicle Route Guidance System (RGS) and traffic assignment problem (in transportation planning). Well known applications of evolutionary methods like Genetic Algorithms (GA), Ant Colony Optimization, Particle Swarm Optimization (PSO) have come up to solve complex optimization problems to overcome the shortcomings of existing shortest path analysis methods. It has been reported by various researchers that PSO performs better than other evolutionary optimization algorithms in terms of success rate and solution quality. Further Geographic Information Systems (GIS) have emerged as key information systems for geospatial data analysis and visualization. This research paper is focused towards the application of PSO for solving the shortest path problem between multiple points of interest (POI) based on spatial data of Allahabad City and traffic speed data collected using GPS. Geovisualization of results of analysis is carried out in GIS.Keywords: particle swarm optimization, GIS, traffic data, outliers
Procedia PDF Downloads 4814195 Influence of the Molecular Architecture of a Polycarboxylate-Based Superplasticizer on the Rheological and Physicomechanical Properties of Cement Pastes
Authors: Alya Harichane, Abderraouf Achour, Abdelbaki Benmounah
Abstract:
The main difficulty encountered in the formulation of high-performance concrete (HPC) consists in choosing the most efficient cement-superplasticizer pair allowing to obtain maximum water reduction, good workability of the concrete in the fresh state, and very good mechanical resistance in the hardened state. The aim of this work is to test the efficiency of three polycarboxylate ether-based superplasticizers (PCE) marketed in Algeria with CEMI 52.5 R cement and to study the effect of chemical structure of PCE on zeta potential, rheological and mechanical properties of cement pastes. The property of the polymers in cement was tested by a Malvern Zetasizer 2000 apparatus and VT 550 viscometer. Results showed that the zeta potential and its rheological properties are related to the molecular weight and the density carboxylic of PCE. The PCE with a moderate molecular weight and the highest carboxylic groups had the best dispersion (high value of zeta potential) and lowest viscosity. The effect of the chemical structure of PCEs on mechanical properties is evaluated by the formulation of cement mortar with these PCEs. The result shows that there is a correlation between the zeta potential of polymer and the compressive strength of cement paste.Keywords: molecular weight, polycarboxylate-ether superplasticizer, rheology, zeta potential
Procedia PDF Downloads 884194 Comparative Performance of Retting Methods on Quality Jute Fibre Production and Water Pollution for Environmental Safety
Authors: A. K. M. Zakir Hossain, Faruk-Ul Islam, Muhammad Alamgir Chowdhury, Kazi Morshed Alam, Md. Rashidul Islam, Muhammad Humayun Kabir, Noshin Ara Tunazzina, Taufiqur Rahman, Md. Ashik Mia, Ashaduzzaman Sagar
Abstract:
The jute retting process is one of the key factors for the excellent jute fibre production as well as maintaining water quality. The traditional method of jute retting is time-consuming and hampers the fish cultivation by polluting the water body. Therefore, a low cost, time-saving, environment-friendly, and improved technique is essential for jute retting to overcome this problem. Thus the study was focused to compare the extent of water pollution and fibre quality of two retting systems, i.e., traditional retting practices over-improved retting method (macha retting) by assessing different physico-chemical and microbiological properties of water and fibre quality parameters. Water samples were collected from the top and bottom of the retting place at the early, mid, and final stages of retting from four districts of Bangladesh viz., Gaibandha, Kurigram, Lalmonirhat, and Rangpur. Different physico-chemical parameters of water samples viz., pH, dissolved oxygen (DO), conductivity (CD), total dissolved solids (TDS), hardness, calcium, magnesium, carbonate, bicarbonate, chloride, phosphorus and sulphur content were measured. Irrespective of locations, the DO of the final stage retting water samples was very low as compared to the mid and early stage, and the DO of traditional jute retting method was significantly lower than the improved macha method. The pH of the water samples was slightly more acidic in the traditional retting method than that of the improved macha method. Other physico-chemical parameters of the water sample were found higher in the traditional method over-improved macha retting in all the stages of retting. Bacterial species were isolated from the collected water samples following the dilution plate technique. Microbiological results revealed that water samples of improved macha method contained more bacterial species that are supposed to involve in jute retting as compared to water samples of the traditional retting method. The bacterial species were then identified by the sequencing of 16SrDNA. Most of the bacterial species identified belong to the genera Pseudomonas, Bacillus, Pectobacterium, and Stenotrophomonas. In addition, the tensile strength of the jute fibre was tested, and the results revealed that the improved macha method showed higher mechanical strength than the traditional method in most of the locations. The overall results indicate that the water and fibre quality were found better in the improved macha retting method than the traditional method. Therefore, a time-saving and cost-friendly improved macha retting method can be widely adopted for the jute retting process to get the quality jute fiber and to keep the environment clean and safe.Keywords: jute retting methods, physico-chemical parameters, retting microbes, tensile strength, water quality
Procedia PDF Downloads 1564193 A Magnetic Hydrochar Nanocomposite as a Potential Adsorbent of Emerging Pollutants
Authors: Aura Alejandra Burbano Patino, Mariela Agotegaray, Veronica Lassalle, Fernanda Horst
Abstract:
Water pollution is of worldwide concern due to its importance as an essential resource for life. Industrial and urbanistic growth are anthropogenic activities that have caused an increase of undesirable compounds in water. In the last decade, emerging pollutants have become of great interest since, at very low concentrations (µg/L and ng/L), they exhibit a hazardous effect on wildlife, aquatic ecosystems, and human organisms. One group of emerging pollutants that are a matter of study are pharmaceuticals. Their high consumption rate and their inappropriate disposal have led to their detection in wastewater treatment plant influent, effluent, surface water, and drinking water. In consequence, numerous technologies have been developed to efficiently treat these pollutants. Adsorption appears like an easy and cost-effective technology. One of the most used adsorbents of emerging pollutants removal is carbon-based materials such as hydrochars. This study aims to use a magnetic hydrochar nanocomposite to be employed as an adsorbent for diclofenac removal. Kinetics models and the adsorption efficiency in real water samples were analyzed. For this purpose, a magnetic hydrochar nanocomposite was synthesized through the hydrothermal carbonization (HTC) technique hybridized to co-precipitation to add the magnetic component into the hydrochar, based on iron oxide nanoparticles. The hydrochar was obtained from sunflower husk residue as the precursor. TEM, TGA, FTIR, Zeta potential as a function of pH, DLS, BET technique, and elemental analysis were employed to characterize the material in terms of composition and chemical structure. Adsorption kinetics were carried out in distilled water and real water at room temperature, pH of 5.5 for distilled water and natural pH for real water samples, 1:1 adsorbent: adsorbate dosage ratio, contact times from 10-120 minutes, and 50% dosage concentration of DCF. Results have demonstrated that magnetic hydrochar presents superparamagnetic properties with a saturation magnetization value of 55.28 emu/g. Besides, it is mesoporous with a surface area of 55.52 m²/g. It is composed of magnetite nanoparticles incorporated into the hydrochar matrix, as can be proven by TEM micrographs, FTIR spectra, and zeta potential. On the other hand, kinetic studies were carried out using DCF models, finding percent removal efficiencies up to 85.34% after 80 minutes of contact time. In addition, after 120 minutes of contact time, desorption of emerging pollutants from active sites took place, which indicated that the material got saturated after that t time. In real water samples, percent removal efficiencies decrease up to 57.39%, ascribable to a possible mechanism of competitive adsorption of organic or inorganic compounds, ions for active sites of the magnetic hydrochar. The main suggested adsorption mechanism between the magnetic hydrochar and diclofenac include hydrophobic and electrostatic interactions as well as hydrogen bonds. It can be concluded that the magnetic hydrochar nanocomposite could be valorized into a by-product which appears as an efficient adsorbent for DCF removal as a model emerging pollutant. These results are being complemented by modifying experimental variables such as pollutant’s initial concentration, adsorbent: adsorbate dosage ratio, and temperature. Currently, adsorption assays of other emerging pollutants are being been carried out.Keywords: environmental remediation, emerging pollutants, hydrochar, magnetite nanoparticles
Procedia PDF Downloads 1884192 Bioinspired Green Synthesis of Magnetite Nanoparticles Using Room-Temperature Co-Precipitation: A Study of the Effect of Amine Additives on Particle Morphology in Fluidic Systems
Authors: Laura Norfolk, Georgina Zimbitas, Jan Sefcik, Sarah Staniland
Abstract:
Magnetite nanoparticles (MNP) have been an area of increasing research interest due to their extensive applications in industry, such as in carbon capture, water purification, and crucially, the biomedical industry. The use of MNP in the biomedical industry is rising, with studies on their effect as Magnetic resonance imaging contrast agents, drug delivery systems, and as hyperthermic cancer treatments becoming prevalent in the nanomaterial research community. Particles used for biomedical purposes must meet stringent criteria; the particles must have consistent shape and size between particles. Variation between particle morphology can drastically alter the effective surface area of the material, making it difficult to correctly dose particles that are not homogeneous. Particles of defined shape such as octahedral and cubic have been shown to outperform irregular shaped particles in some applications, leading to the need to synthesize particles of defined shape. In nature, highly homogeneous MNP are found within magnetotactic bacteria, a unique bacteria capable of producing magnetite nanoparticles internally under ambient conditions. Biomineralisation proteins control the properties of the MNPs, enhancing their homogeneity. One of these proteins, Mms6, has been successfully isolated and used in vitro as an additive in room-temperature co-precipitation reactions (RTCP) to produce particles of defined mono-dispersed size & morphology. When considering future industrial scale-up it is crucial to consider the costs and feasibility of an additive, as an additive that is not readily available or easily synthesized at a competitive price will not be sustainable. As such, additives selected for this research are inspired by the functional groups of biomineralisation proteins, but cost-effective, environmentally friendly, and compatible with scale-up. Diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA), and pentaethylenehexamine (PEHA) have been successfully used in RTCP to modulate the properties of particles synthesized, leading to the formation of octahedral nanoparticles with no use of organic solvents, heating, or toxic precursors. By extending this principle to a fluidic system, ongoing research will reveal whether the amine additives can also exert morphological control in an environment which is suited toward higher particle yield. Two fluidic systems have been employed; a peristaltic turbulent flow mixing system suitable for the rapid production of MNP, and a macrofluidic system for the synthesis of tailored nanomaterials under a laminar flow regime. The presence of the amine additives in the turbulent flow system in initial results appears to offer similar morphological control as observed under RTCP conditions, with higher proportions of octahedral particles formed. This is a proof of concept which may pave the way to green synthesis of tailored MNP on an industrial scale. Mms6 and amine additives have been used in the macrofluidic system, with Mms6 allowing magnetite to be synthesized at unfavourable ferric ratios, but no longer influencing particle size. This suggests this synthetic technique while still benefiting from the addition of additives, may not allow additives to fully influence the particles formed due to the faster timescale of reaction. The amine additives have been tested at various concentrations, the results of which will be discussed in this paper.Keywords: bioinspired, green synthesis, fluidic, magnetite, morphological control, scale-up
Procedia PDF Downloads 1124191 Physico-Chemical Quality Study of Geothermal Waters of the Region DjéRid-Tunisia
Authors: Anis Eloud, Mohamed Ben Amor
Abstract:
Tunisia is a semi-arid country on ¾ of its territory. It is characterized by the scarcity of water resources and accentuated by climate variability. The potential water resources are estimated at 4.6 million m3 / year, of which 2.7 million m3 / year represent surface water and 1.9 million m3 / year feed all the layers that make up the renewable groundwater resources. Water available in Tunisia easily exceed health or agricultural salinity standards. Barely 50% of water resources are less than 1.5 g / l divided at 72% of surface water salinity, 20% of deep groundwater and only 8% in groundwater levels. Southern Tunisia has the largest web "of water in the country, these waters are characterized by a relatively high salinity may exceed 4 gl-1. This is the "root of many problems encountered during their operation. In the region of Djérid, Albian wells are numerous. These wells debit a geothermal water with an average flow of 390 L / s. This water is characterized by a relatively high salinity and temperature of which is around 65 ° C at the source. Which promotes the formation of limescale deposits within the water supply pipe and the cooling loss thereby increasing the load in direct relation with enormous expense and circuits to replace these lines when completely plugged. The present work is a study of geothermal water quality of the region Djérid from physico-chemical analyzes.Keywords: water quality, salinity, geothermal, supply pipe
Procedia PDF Downloads 5294190 Experimental and Theoretical Mass Transfer Studies of Pure Carbondioxide Absorption in Sodium Hydroxide in Millichannels
Authors: A. Durgadevi, S. Pushpavanam
Abstract:
For the past several decades, CO2 levels have been dramatically increasing in the atmosphere due to the man-made emissions such as fossil fuel-fired power plants. With the increase in CO2 emissions, CO2 concentration in the atmosphere has increased resulting in global warming. This shows the need to study different ways to capture the emitted CO2 directly from the exhausts of power plants or atmosphere. There are several ways to remove CO2, such as absorption into a liquid solvent, adsorption into a solid, cryogenic separation, permeation through membranes and photochemical conversion. In most industries, the absorption of CO2 in chemical solvents (in absorption towers) is used for CO2 capture. In these towers, the mass transfer along with chemical reactions take place between the gas and liquid phase. This helps in the separation of CO2 from other gases. It is important to understand these processes in detail. These flow patterns are difficult to maintain in large scale industrial absorbers. So to get accurate information controlled gas-liquid absorption experiments are carried out in milli-channels in this work under controlled atmosphere. The absorption experiments of CO2 in varying concentrations of sodium hydroxide solution are carried out in T-junction glass milli-channels with a circular cross section (inner diameter of 2mm). The gas and liquid flow rates are controlled by a mass flow controller (MFC) and a Harvard syringe pump respectively. The slug flow in the channel is recorded using a camera and the videos are analysed. The gas slug of pure CO2 is found to decrease in size along the length of the channel due to absorption of gas in the liquid. This is also captured with the model developed and the mass transfer characteristics are studied. The pressure drop across the channel is determined by sum of the pressure drops from the gas slugs and the liquid plugs. A dimensionless correlation for the mass transfer coefficient is developed in terms of Sherwood number and compared with the existing correlations in the literature. They are found to be in close agreement with each other. In this case, due to the presence of chemical reaction, the enhancement of mass transfer is obtained. This is quantified with the help of an enhancement factor.Keywords: absorption, enhancement factor, mass transfer coefficient, Sherwood number
Procedia PDF Downloads 1744189 Physical, Chemical and Environmental Properties of Natural and Construction/Demolition Recycled Aggregates
Authors: Débora C. Mendes, Matthias Eckert, Cláudia S. Moço, Hélio Martins, Jean-Pierre P. Gonçalves, Miguel Oliveira, José P. Da Silva
Abstract:
Uncontrolled disposal of construction and demolition waste (C & DW) in embankments in the periphery of cities causes both environmental and social problems, namely erosion, deforestation, water contamination and human conflicts. One of the milestones of EU Horizon 2020 Programme is the management of waste as a resource. To achieve this purpose for C & DW, a detailed analysis of the properties of these materials should be done. In this work we report the physical, chemical and environmental properties of C & DW aggregates from 25 different origins. The results are compared with those of common natural aggregates used in construction. Assays were performed according to European Standards. Additional analysis of heavy metals and organic compounds such as polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were performed to evaluate their environmental impact. Finally, properties of concrete prepared with C & DW aggregates are also reported. Physical analyses of C & DW aggregates indicated lower quality properties than natural aggregates, particularly for concrete preparation and unbound layers of road pavements. Chemical properties showed that most samples (80%) meet the values required by European regulations for concrete and unbound layers of road pavements. Analyses of heavy metals Cd, Cr, Cu, Pb, Ni, Mo and Zn in the C&DW leachates showed levels below the limits established by the Council Decision of 19 December 2002. Identification and quantification of PCBs and PAHs indicated that few samples shows the presence of these compounds. The measured levels of PCBs and PAHs are also below the limits. Other compounds identified in the C&DW leachates include phthalates and diphenylmethanol. In conclusion, the characterized C&DW aggregates show lower quality properties than natural aggregates but most samples showed to be environmentally safe. A continuous monitoring of the presence of heavy metals and organic compounds should be made to trial safe C&DW aggregates. C&DW aggregates provide a good economic and environmental alternative to natural aggregates.Keywords: concrete preparation, construction and demolition waste, heavy metals, organic pollutants
Procedia PDF Downloads 3474188 Preparation and Characterization of Antifouling Polysulfone Flat Sheet Membrane by Phase Inversion
Authors: Bharti Saini, Sukanta K. Dash
Abstract:
In this work polymeric Nanofiltration (NF) membranes of polysulfone (PSF) (average molecular weight of 22400 Da) were prepared using polyethylene glycol (PEG) (average molecular weight of 200 Da) as an organic additive and ZnCl2 as an inorganic additive. Dimethyl acetamide (DMAc) was used as the solvent, and Deionised water as nonsolvent. The membranes were prepared by phase inversion (immersion precipitation) method. PEG 200 and ZnCl2 in varying concentration are directly added into the casting solution of PSF and DMAc. PEG 200 was used in concentration varying from 0 to 10 % (w/w) in the solution of PSF and DMAc, while ZnCl2 is varied from 0 to 2% (w/w). Membranes were characterized for surface morphology, water uptake, porosity and contact angle, with respect to concentration of PEG and ZnCl2. It was observed that with the increase in additive PEG 200, the porosity and hence, hydrophilicity increase. As a result, the number of pores increases as justified by the SEM analysis as well. The study revealed that the synergistic effect of PEG with ZnCl2 is more effective, and the best results were produced by the solution containing 2% PEG 200 and 1% ZnCl2. It was inferred that with the increase in concentration of additives, the pore size goes on decreasing. The membranes obtained gradually move from microfiltration range to nanofiltration range, and this change is primarily brought about by the addition of ZnCl2.Keywords: membrane, phase inversion method, polysulfone, porous structure
Procedia PDF Downloads 233