Search results for: VOF (volume of fluid method)
20553 An In-Depth Experimental Study of Wax Deposition in Pipelines
Authors: Arias M. L., D’Adamo J., Novosad M. N., Raffo P. A., Burbridge H. P., Artana G.
Abstract:
Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevents wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of Y-TEC's flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 mts long equipped with a solid detector system, online microscope to visualize crystals, temperature and pressure sensors along the loop pipe. A baseline test was performed with diesel with no paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin added to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods. Finally, we scrutinized the effect of adding a chemical inhibitor to the working fluid on the dynamics of the process of wax deposition in the loop.Keywords: paraffin desposition, flow assurance, chemical inhibitors, flow loop
Procedia PDF Downloads 10520552 The Long-Term Leaching Behaviour of 137Cs, 60Co and 152Eu Radionuclides Incorporated in Mortar Matrices Made from Natural Aggregates and Recycled Aggregates
Authors: R. Deju, M. Mincu, D. Gurau
Abstract:
During the interim storage or final disposal of low level waste, migration/diffusion of radionuclides can occur when the waste comes in contact with water. The long-term leaching behaviour into surrounding fluid (demineralized water) of 137Cs, 60Co and 152Eu radionuclides, artificially incorporated in mortar matrices made from natural aggregates (river sand) and recycled radioactive concrete was studied. Results presented in this work are obtained in two years of mortar testing and will be used for the safety increasing in the storage of low level radioactive waste. The study involved the influence of curing time, type and size distribution of the aggregates on leaching behaviour. The mortar samples were immersed in distilled water for 30 days. The leached activity of the mortar samples was measured on samples from the immersing water and analyzed through a gamma-ray spectrometry method using an HPGe detector with a GESPECOR code for efficiency evaluation. The long-term leaching behaviour of the radionuclides was evaluated from the leaching data calculating the apparent diffusion coefficient.Keywords: gamma spectrometry, leaching behavior, reuse and recycling of radioactive concrete, waste management
Procedia PDF Downloads 24820551 Numerical Investigation of Embankment Settlement Improved by Method of Preloading by Vertical Drains
Authors: Seyed Abolhasan Naeini, Saeideh Mohammadi
Abstract:
Time dependent settlement due to loading on soft saturated soils produces many problems such as high consolidation settlements and low consolidation rates. Also, long term consolidation settlement of soft soil underlying the embankment leads to unpredicted settlements and cracks on soil surface. Preloading method is an effective improvement method to solve this problem. Using vertical drains in preloading method is an effective method for improving soft soils. Applying deep soil mixing method on soft soils is another effective method for improving soft soils. There are little studies on using two methods of preloading and deep soil mixing simultaneously. In this paper, the concurrent effect of preloading with deep soil mixing by vertical drains is investigated through a finite element code, Plaxis2D. The influence of parameters such as deep soil mixing columns spacing, existence of vertical drains and distance between them, on settlement and stability factor of safety of embankment embedded on soft soil is investigated in this research.Keywords: preloading, soft soil, vertical drains, deep soil mixing, consolidation settlement
Procedia PDF Downloads 21620550 Family of Density Curves of Queensland Soils from Compaction Tests, on a 3D Z-Plane Function of Moisture Content, Saturation, and Air-Void Ratio
Authors: Habib Alehossein, M. S. K. Fernando
Abstract:
Soil density depends on the volume of the voids and the proportion of the water and air in the voids. However, there is a limit to the contraction of the voids at any given compaction energy, whereby additional water is used to reduce the void volume further by lubricating the particles' frictional contacts. Hence, at an optimum moisture content and specific compaction energy, the density of unsaturated soil can be maximized where the void volume is minimum. However, when considering a full compaction curve and permutations and variations of all these components (soil, air, water, and energy), laboratory soil compaction tests can become expensive, time-consuming, and exhausting. Therefore, analytical methods constructed on a few test data can be developed and used to reduce such unnecessary efforts significantly. Concentrating on the compaction testing results, this study discusses the analytical modelling method developed for some fine-grained and coarse-grained soils of Queensland. Soil properties and characteristics, such as full functional compaction curves under various compaction energy conditions, were studied and developed for a few soil types. Using MATLAB, several generic analytical codes were created for this study, covering all possible compaction parameters and results as they occur in a soil mechanics lab. These MATLAB codes produce a family of curves to determine the relationships between the density, moisture content, void ratio, saturation, and compaction energy.Keywords: analytical, MATLAB, modelling, compaction curve, void ratio, saturation, moisture content
Procedia PDF Downloads 9020549 Analysis of the CO2 Emissions of Public Passenger Transport in Tianjin City of China
Authors: Tao Zhao, Xianshuo Xu
Abstract:
Low-carbon public passenger transport is an important part of low carbon city. The CO2 emissions of public passenger transport in Tianjin from 1995 to 2010 are estimated with IPCC CO2 counting method, which shows that the total CO2 emissions of Tianjin public passenger transport have gradually become stable at 1,425.1 thousand tons. And then the CO2 emissions of the buses, taxies, and rail transits are calculated respectively. A CO2 emission of 829.9 thousand tons makes taxies become the largest CO2 emissions source among the public passenger transport in Tianjin. Combining with passenger volume, this paper analyzes the CO2 emissions proportion of the buses, taxies, and rail transits compare the passenger transport rate with the proportion of CO2 emissions, as well as the CO2 emissions change of per 10,000 people. The passenger volume proportion of bus among the three public means of transport is 72.62% which is much higher than its CO2 emissions proportion of 36.01%, with the minimum number of CO2 emissions per 10,000 people of 4.90 tons. The countermeasures to reduce CO2 emissions of public passenger transport in Tianjin are to develop rail transit, update vehicles and use alternative fuel vehicles.Keywords: public passenger transport, carbon emissions, countermeasures, China
Procedia PDF Downloads 42920548 Risk Assessment of Particulate Matter (PM10) in Makkah, Saudi Arabia
Authors: Turki M. Habeebullah, Atef M. F. Mohammed, Essam A. Morsy
Abstract:
In recent decades, particulate matter (PM10) have received much attention due to its potential adverse health impact and the subsequent need to better control or regulate these pollutants. The aim of this paper is focused on study risk assessment of PM10 in four different districts (Shebikah, Masfalah, Aziziyah, Awali) in Makkah, Saudi Arabia during the period from 1 Ramadan 1434 AH - 27 Safar 1435 AH. samples was collected by using Low Volume Sampler (LVS Low Volume Sampler) device and filtration method for estimating the total concentration of PM10. The study indicated that the mean PM10 concentrations were 254.6 (186.1 - 343.2) µg/m3 in Shebikah, 184.9 (145.6 - 271.4) µg/m3 in Masfalah, 162.4 (92.4 - 253.8) µg/m3 in Aziziyah, and 56.0 (44.5 - 119.8) µg/m3 in Awali. These values did not exceed the permissible limits in PME (340 µg/m3 as daily average). Furthermore, health assessment is carried out using AirQ2.2.3 model to estimate the number of hospital admissions due to respiratory diseases. The cumulative number of cases per 100,000 were 1534 (18-3050 case), which lower than that recorded in the United States, Malaysia. The concentration response coefficient was 0.49 (95% CI 0.05 - 0.70) per 10 μg/m3 increase of PM10.Keywords: air pollution, respiratory diseases, airQ2.2.3, Makkah
Procedia PDF Downloads 45320547 In vitro Regeneration of Neural Cells Using Human Umbilical Cord Derived Mesenchymal Stem Cells
Authors: Urvi Panwar, Kanchan Mishra, Kanjaksha Ghosh, ShankerLal Kothari
Abstract:
Background: Day-by-day the increasing prevalence of neurodegenerative diseases have become a global issue to manage them by medical sciences. The adult neural stem cells are rare and require an invasive and painful procedure to obtain it from central nervous system. Mesenchymal stem cell (MSCs) therapies have shown remarkable application in treatment of various cell injuries and cell loss. MSCs can be derived from various sources like adult tissues, human bone marrow, umbilical cord blood and cord tissue. MSCs have similar proliferation and differentiation capability, but the human umbilical cord-derived mesenchymal stem cells (hUCMSCs) are proved to be more beneficial with respect to cell procurement, differentiation to other cells, preservation, and transplantation. Material and method: Human umbilical cord is easily obtainable and non-controversial comparative to bone marrow and other adult tissues. The umbilical cord can be collected after delivery of baby, and its tissue can be cultured using explant culture method. Cell culture medium such as DMEMF12+10% FBS and DMEMF12+Neural growth factors (bFGF, human noggin, B27) with antibiotics (Streptomycin/Gentamycin) were used to culture and differentiate mesenchymal stem cells into neural cells, respectively. The characterisations of MSCs were done with Flow Cytometer for surface markers CD90, CD73 and CD105 and colony forming unit assay. The differentiated various neural cells will be characterised by fluorescence markers for neurons, astrocytes, and oligodendrocytes; quantitative PCR for genes Nestin and NeuroD1 and Western blotting technique for gap43 protein. Result and discussion: The high quality and number of MSCs were isolated from human umbilical cord via explant culture method. The obtained MSCs were differentiated into neural cells like neurons, astrocytes and oligodendrocytes. The differentiated neural cells can be used to treat neural injuries and neural cell loss by delivering cells by non-invasive administration via cerebrospinal fluid (CSF) or blood. Moreover, the MSCs can also be directly delivered to different injured sites where they differentiate into neural cells. Therefore, human umbilical cord is demonstrated to be an inexpensive and easily available source for MSCs. Moreover, the hUCMSCs can be a potential source for neural cell therapies and neural cell regeneration for neural cell injuries and neural cell loss. This new way of research will be helpful to treat and manage neural cell damages and neurodegenerative diseases like Alzheimer and Parkinson. Still the study has a long way to go but it is a promising approach for many neural disorders for which at present no satisfactory management is available.Keywords: bone marrow, cell therapy, explant culture method, flow cytometer, human umbilical cord, mesenchymal stem cells, neurodegenerative diseases, neuroprotective, regeneration
Procedia PDF Downloads 20220546 A Hybrid Normalized Gradient Correlation Based Thermal Image Registration for Morphoea
Authors: L. I. Izhar, T. Stathaki, K. Howell
Abstract:
Analyzing and interpreting of thermograms have been increasingly employed in the diagnosis and monitoring of diseases thanks to its non-invasive, non-harmful nature and low cost. In this paper, a novel system is proposed to improve diagnosis and monitoring of morphoea skin disorder based on integration with the published lines of Blaschko. In the proposed system, image registration based on global and local registration methods are found inevitable. This paper presents a modified normalized gradient cross-correlation (NGC) method to reduce large geometrical differences between two multimodal images that are represented by smooth gray edge maps is proposed for the global registration approach. This method is improved further by incorporating an iterative-based normalized cross-correlation coefficient (NCC) method. It is found that by replacing the final registration part of the NGC method where translational differences are solved in the spatial Fourier domain with the NCC method performed in the spatial domain, the performance and robustness of the NGC method can be greatly improved. It is shown in this paper that the hybrid NGC method not only outperforms phase correlation (PC) method but also improved misregistration due to translation, suffered by the modified NGC method alone for thermograms with ill-defined jawline. This also demonstrates that by using the gradients of the gray edge maps and a hybrid technique, the performance of the PC based image registration method can be greatly improved.Keywords: Blaschko’s lines, image registration, morphoea, thermal imaging
Procedia PDF Downloads 31020545 Comparison of Allowable Stress Method and Time History Response Analysis for Seismic Design of Buildings
Authors: Sayuri Inoue, Naohiro Nakamura, Tsubasa Hamada
Abstract:
The seismic design method of buildings is classified into two types: static design and dynamic design. The static design is a design method that exerts static force as seismic force and is a relatively simple design method created based on the experience of seismic motion in the past 100 years. At present, static design is used for most of the Japanese buildings. Dynamic design mainly refers to the time history response analysis. It is a comparatively difficult design method that input the earthquake motion assumed in the building model and examine the response. Currently, it is only used for skyscrapers and specific buildings. In the present design standard in Japan, it is good to use either the design method of the static design and the dynamic design in the medium and high-rise buildings. However, when actually designing middle and high-rise buildings by two kinds of design methods, the relatively simple static design method satisfies the criteria, but in the case of a little difficult dynamic design method, the criterion isn't often satisfied. This is because the dynamic design method was built with the intention of designing super high-rise buildings. In short, higher safety is required as compared with general buildings, and criteria become stricter. The authors consider applying the dynamic design method to general buildings designed by the static design method so far. The reason is that application of the dynamic design method is reasonable for buildings that are out of the conventional standard structural form such as emphasizing design. For the purpose, it is important to compare the design results when the criteria of both design methods are arranged side by side. In this study, we performed time history response analysis to medium-rise buildings that were actually designed with allowable stress method. Quantitative comparison between static design and dynamic design was conducted, and characteristics of both design methods were examined.Keywords: buildings, seismic design, allowable stress design, time history response analysis, Japanese seismic code
Procedia PDF Downloads 15520544 Affordable Aerodynamic Balance for Instrumentation in a Wind Tunnel Using Arduino
Authors: Pedro Ferreira, Alexandre Frugoli, Pedro Frugoli, Lucio Leonardo, Thais Cavalheri
Abstract:
The teaching of fluid mechanics in engineering courses is, in general, a source of great difficulties for learning. The possibility of the use of experiments with didactic wind tunnels can facilitate the education of future professionals. The objective of this proposal is the development of a low-cost aerodynamic balance to be used in a didactic wind tunnel. The set is comprised of an Arduino microcontroller, programmed by an open source software, linked to load cells built by students from another project. The didactic wind tunnel is 5,0m long and the test area is 90,0 cm x 90,0 cm x 150,0 cm. The Weq® electric motor, model W-22 of 9,2 HP, moves a fan with nine blades, each blade 32,0 cm long. The Weq® frequency inverter, model WEGCFW 08 (Vector Inverter) is responsible for wind speed control and also for the motor inversion of the rotational direction. A flat-convex profile prototype of airfoil was tested by measuring the drag and lift forces for certain attack angles; the air flux conditions remained constant, monitored by a Pitot tube connected to a EXTECH® Instruments digital pressure differential manometer Model HD755. The results indicate a good agreement with the theory. The choice of all of the components of this proposal resulted in a low-cost product providing a high level of specific knowledge of mechanics of fluids, which may be a good alternative to teaching in countries with scarce educational resources. The system also allows the expansion to measure other parameters like fluid velocity, temperature, pressure as well as the possibility of automation of other functions.Keywords: aerodynamic balance, wind tunnel, strain gauge, load cell, Arduino, low-cost education
Procedia PDF Downloads 44520543 Second Order Analysis of Frames Using Modified Newmark Method
Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi
Abstract:
The main purpose of this paper is to present the Modified Newmark Method as a method of non-linear frame analysis by considering the effect of the axial load (second order analysis). The discussion will be restricted to plane frameworks containing a constant cross-section for each element. In addition, it is assumed that the frames are prevented from out-of-plane deflection. This part of the investigation is performed to generalize the established method for the assemblage structures such as frameworks. As explained, the governing differential equations are non-linear and cannot be formulated easily due to unknown axial load of the struts in the frame. By the assumption of constant axial load, the governing equations are changed to linear ones in most methods. Since the modeling and the solutions of the non-linear form of the governing equations are cumbersome, the linear form of the equations would be used in the established method. However, according to the ability of the method to reconsider the minor omitted parameters in modeling during the solution procedure, the axial load in the elements at each stage of the iteration can be computed and applied in the next stage. Therefore, the ability of the method to present an accurate approach to the solutions of non-linear equations will be demonstrated again in this paper.Keywords: nonlinear, stability, buckling, modified newmark method
Procedia PDF Downloads 42620542 Reliability-Based Method for Assessing Liquefaction Potential of Soils
Authors: Mehran Naghizaderokni, Asscar Janalizadechobbasty
Abstract:
This paper explores probabilistic method for assessing the liquefaction potential of sandy soils. The current simplified methods for assessing soil liquefaction potential use a deterministic safety factor in order to determine whether liquefaction will occur or not. However, these methods are unable to determine the liquefaction probability related to a safety factor. A solution to this problem can be found by reliability analysis.This paper presents a reliability analysis method based on the popular certain liquefaction analysis method. The proposed probabilistic method is formulated based on the results of reliability analyses of 190 field records and observations of soil performance against liquefaction. The results of the present study show that confidence coefficient greater and smaller than 1 does not mean safety and/or liquefaction in cadence for liquefaction, and for assuring liquefaction probability, reliability based method analysis should be used. This reliability method uses the empirical acceleration attenuation law in the Chalos area to derive the probability density distribution function and the statistics for the earthquake-induced cyclic shear stress ratio (CSR). The CSR and CRR statistics are used in continuity with the first order and second moment method to calculate the relation between the liquefaction probability, the safety factor and the reliability index. Based on the proposed method, the liquefaction probability related to a safety factor can be easily calculated. The influence of some of the soil parameters on the liquefaction probability can be quantitatively evaluated.Keywords: liquefaction, reliability analysis, chalos area, civil and structural engineering
Procedia PDF Downloads 47020541 Parallelizing the Hybrid Pseudo-Spectral Time Domain/Finite Difference Time Domain Algorithms for the Large-Scale Electromagnetic Simulations Using Massage Passing Interface Library
Authors: Donggun Lee, Q-Han Park
Abstract:
Due to its coarse grid, the Pseudo-Spectral Time Domain (PSTD) method has advantages against the Finite Difference Time Domain (FDTD) method in terms of memory requirement and operation time. However, since the efficiency of parallelization is much lower than that of FDTD, PSTD is not a useful method for a large-scale electromagnetic simulation in a parallel platform. In this paper, we propose the parallelization technique of the hybrid PSTD-FDTD (HPF) method which simultaneously possesses the efficient parallelizability of FDTD and the quick speed and low memory requirement of PSTD. Parallelization cost of the HPF method is exactly the same as the parallel FDTD, but still, it occupies much less memory space and has faster operation speed than the parallel FDTD. Experiments in distributed memory systems have shown that the parallel HPF method saves up to 96% of the operation time and reduces 84% of the memory requirement. Also, by combining the OpenMP library to the MPI library, we further reduced the operation time of the parallel HPF method by 50%.Keywords: FDTD, hybrid, MPI, OpenMP, PSTD, parallelization
Procedia PDF Downloads 14820540 Optimization of Solar Rankine Cycle by Exergy Analysis and Genetic Algorithm
Authors: R. Akbari, M. A. Ehyaei, R. Shahi Shavvon
Abstract:
Nowadays, solar energy is used for energy purposes such as the use of thermal energy for domestic, industrial and power applications, as well as the conversion of the sunlight into electricity by photovoltaic cells. In this study, the thermodynamic simulation of the solar Rankin cycle with phase change material (paraffin) was first studied. Then energy and exergy analyses were performed. For optimization, a single and multi-objective genetic optimization algorithm to maximize thermal and exergy efficiency was used. The parameters discussed in this paper included the effects of input pressure on turbines, input mass flow to turbines, the surface of converters and collector angles on thermal and exergy efficiency. In the organic Rankin cycle, where solar energy is used as input energy, the fluid selection is considered as a necessary factor to achieve reliable and efficient operation. Therefore, silicon oil is selected for a high-temperature cycle and water for a low-temperature cycle as an operating fluid. The results showed that increasing the mass flow to turbines 1 and 2 would increase thermal efficiency, while it reduces and increases the exergy efficiency in turbines 1 and 2, respectively. Increasing the inlet pressure to the turbine 1 decreases the thermal and exergy efficiency, and increasing the inlet pressure to the turbine 2 increases the thermal efficiency and exergy efficiency. Also, increasing the angle of the collector increased thermal efficiency and exergy. The thermal efficiency of the system was 22.3% which improves to 33.2 and 27.2% in single-objective and multi-objective optimization, respectively. Also, the exergy efficiency of the system was 1.33% which has been improved to 1.719 and 1.529% in single-objective and multi-objective optimization, respectively. These results showed that the thermal and exergy efficiency in a single-objective optimization is greater than the multi-objective optimization.Keywords: exergy analysis, genetic algorithm, rankine cycle, single and multi-objective function
Procedia PDF Downloads 14720539 The Use of Fractional Brownian Motion in the Generation of Bed Topography for Bodies of Water Coupled with the Lattice Boltzmann Method
Authors: Elysia Barker, Jian Guo Zhou, Ling Qian, Steve Decent
Abstract:
A method of modelling topography used in the simulation of riverbeds is proposed in this paper, which removes the need for datapoints and measurements of physical terrain. While complex scans of the contours of a surface can be achieved with other methods, this requires specialised tools, which the proposed method overcomes by using fractional Brownian motion (FBM) as a basis to estimate the real surface within a 15% margin of error while attempting to optimise algorithmic efficiency. This removes the need for complex, expensive equipment and reduces resources spent modelling bed topography. This method also accounts for the change in topography over time due to erosion, sediment transport, and other external factors which could affect the topography of the ground by updating its parameters and generating a new bed. The lattice Boltzmann method (LBM) is used to simulate both stationary and steady flow cases in a side-by-side comparison over the generated bed topography using the proposed method and a test case taken from an external source. The method, if successful, will be incorporated into the current LBM program used in the testing phase, which will allow an automatic generation of topography for the given situation in future research, removing the need for bed data to be specified.Keywords: bed topography, FBM, LBM, shallow water, simulations
Procedia PDF Downloads 9820538 Kernel Parallelization Equation for Identifying Structures under Unknown and Periodic Loads
Authors: Seyed Sadegh Naseralavi
Abstract:
This paper presents a Kernel parallelization equation for damage identification in structures under unknown periodic excitations. Herein, the dynamic differential equation of the motion of structure is viewed as a mapping from displacements to external forces. Utilizing this viewpoint, a new method for damage detection in structures under periodic loads is presented. The developed method requires only two periods of load. The method detects the damages without finding the input loads. The method is based on the fact that structural displacements under free and forced vibrations are associated with two parallel subspaces in the displacement space. Considering the concept, kernel parallelization equation (KPE) is derived for damage detection under unknown periodic loads. The method is verified for a case study under periodic loads.Keywords: Kernel, unknown periodic load, damage detection, Kernel parallelization equation
Procedia PDF Downloads 28420537 Comparison of Volume of Fluid Model: Experimental and Empirical Results for Flows over Stacked Drop Manholes
Authors: Ramin Mansouri
Abstract:
The manhole is one of the types of structures that are installed at the site of change direction or change in the pipe diameter or sewage pipes as well as in step slope areas to reduce the flow velocity. In this study, the flow characteristics of hydraulic structures in a manhole structure have been investigated with a numerical model. In this research, the types of computational grid coarse, medium, and fines have been used for simulation. In order to simulate flow, k-ε model (standard, RNG, Realizable) and k-w model (standard SST) are used. Also, in order to find the best wall conditions, two types of standard and non-equilibrium wall functions were investigated. The turbulent model k-ε has the highest correlation with experimental results or all models. In terms of boundary conditions, constant speed is set for the flow input boundary, the output pressure is set in the boundaries which are in contact with the air, and the standard wall function is used for the effect of the wall function. In the numerical model, the depth at the output of the second manhole is estimated to be less than that of the laboratory and the output jet from the span. In the second regime, the jet flow collides with the manhole wall and divides into two parts, so hydraulic characteristics are the same as large vertical shaft hydraulic characteristics. In this situation, the turbulence is in a high range since it can be seen more energy loss in it. According to the results, energy loss in numerical is estimated at 9.359%, which is more than experimental data.Keywords: manhole, energy, depreciation, turbulence model, wall function, flow
Procedia PDF Downloads 8220536 Potentiostatic Growth of Hazenite Mineral Coating on AZ31 Magnesium Alloy in 0.1 M K₂HPO₄/0.1 M Na₂HPO₄ Solution
Authors: Liping Wu, Durga Bhakta Pokharel, Junhua Dong, Changgang Wang, Lin Zhao, Wei Ke, Nan Chen
Abstract:
Hazenite conversion coating was deposited on AZ31 Mg alloy in a deaerated phosphate solution containing 0.1 M K₂HPO₄ and 0.1 M Na₂HPO₄ (Na₀.₁K0₀.₁) with pH 9 at −0.8 V. The coating mechanism of hazenite was elucidated by in situ potentiostatic current decay, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), electron probe micro-analyzer (EPMA) and differential scanning calorimetry (DSC). The volume of H₂ evolved during potentiostatic polarization was measured by a gas collection apparatus. The degradation resistance of the hazenite coating was evaluated in simulated body fluid (SBF) at 37℃ by using potentiodynamic polarization (PDP). The results showed that amorphous Mg(OH)₂ was deposited first, followed by the transformation of Mg(OH)₂ to amorphous MgHPO₄, subsequently the conversion of MgHPO₄ to crystallized K-struvite (KMgPO₄·6H₂O), finally the crystallization of crystallized hazenite (NaKMg₂(PO₄)₂·14H₂O). The deposited coating was composed of four layers where the inner layer is comprised of Mg(OH)₂, the middle layer of Mg(OH)₂ and MgHPO₄, the top layer of Mg(OH)₂, MgHPO₄ and K-struvite, the topmost layer of Mg(OH)₂, MgHPO₄, K-struvite and hazenite (NaKMg₂(PO₄)₂·14H₂O). The PD results showed that the hazenite coating decreased the corrosion rate by two orders of magnitude.Keywords: magnesium alloy, potentiostatic technique, hazenite, mineral conversion coating
Procedia PDF Downloads 18620535 MATLAB Supported Learning and Students' Conceptual Understanding of Functions of Two Variables: Experiences from Wolkite University
Authors: Eyasu Gemech, Kassa Michael, Mulugeta Atnafu
Abstract:
A non-equivalent group's quasi-experiment research was conducted at Wolkite University to investigate MATLAB supported learning and students' conceptual understanding in learning Applied Mathematics II using four different comparative instructional approaches: MATLAB supported traditional lecture method, MATLAB supported collaborative method, only collaborative method, and only traditional lecture method. Four intact classes of mechanical engineering groups 1 and 2, garment engineering and textile engineering students were randomly selected out of eight departments. The first three departments were considered as treatment groups and the fourth one 'Textile engineering' was assigned as a comparison group. The departments had 30, 29, 35 and 32 students respectively. The results of the study show that there is a significant mean difference in students' conceptual understanding between groups of students learning through MATLAB supported collaborative method and the other learning approaches. Students who were learned through MATLAB technology-supported learning in combination with collaborative method were found to understand concepts of functions of two variables better than students learning through the other methods of learning. These, hence, are informative of the potential approaches universities would follow for a better students’ understanding of concepts.Keywords: MATLAB supported collaborative method, MATLAB supported learning, collaborative method, conceptual understanding, functions of two variables
Procedia PDF Downloads 27820534 Forecasting Amman Stock Market Data Using a Hybrid Method
Authors: Ahmad Awajan, Sadam Al Wadi
Abstract:
In this study, a hybrid method based on Empirical Mode Decomposition and Holt-Winter (EMD-HW) is used to forecast Amman stock market data. First, the data are decomposed by EMD method into Intrinsic Mode Functions (IMFs) and residual components. Then, all components are forecasted by HW technique. Finally, forecasting values are aggregated together to get the forecasting value of stock market data. Empirical results showed that the EMD- HW outperform individual forecasting models. The strength of this EMD-HW lies in its ability to forecast non-stationary and non- linear time series without a need to use any transformation method. Moreover, EMD-HW has a relatively high accuracy comparing with eight existing forecasting methods based on the five forecast error measures.Keywords: Holt-Winter method, empirical mode decomposition, forecasting, time series
Procedia PDF Downloads 12920533 Assessment of ASEI-PDSI Method on Students’ Attitude and Achievement in Junior Secondary Schools Mathematics in FCT-Abuja
Authors: Amenaghawon Clement Osemwinyen
Abstract:
The Activity, Student-centred, Experiment, Improvisation - Plan, Do, See, Improve (ASEI-PDSI) method championed by the Strengthening Mathematics And Science Education (SMASE) - Nigeria Project is an attempt to improve the quality of mathematics, which has consistently declined over the years in both public primary and secondary schools across the country. The study thus assessed the ASEI-PDSI method on students’ attitudes and achievement in junior secondary schools (JSS) mathematics in FCT-Abuja. A survey research design was adopted, and 100 mathematics teachers using a stratified random sampling method were used for the study. The data were collected using structured questionnaires and analyzed using descriptive statistics. The findings showed that the ASEI-PDSI method had significantly improved the attitudes of students toward mathematics. The study also revealed that the ASEI-PDSI method significantly influenced junior secondary school (JSS) students’ mathematics achievement. Amongst the recommendations were that teachers should be encouraged to adopt the ASEI-PDSI method in teaching and learning mathematics in order to create a mathematically stimulating classroom environment which could advertently influence junior secondary school (JSS) students’ attitude and academic performance in mathematics. Also, regular in-service training programs should be organized by stakeholders (government and other interest groups) so as to improve the teaching strategies of teachers, mostly as they affect the ASEI-PDSI method.Keywords: achievement, ASEI-PDSI method, attitude, mathematics, SMASE
Procedia PDF Downloads 11220532 Finite Element Method for Calculating Temperature Field of Main Cable of Suspension Bridge
Authors: Heng Han, Zhilei Liang, Xiangong Zhou
Abstract:
In this paper, the finite element method is used to study the temperature field of the main cable of the suspension bridge, and the calculation method of the average temperature of the cross-section of the main cable suitable for the construction control of the cable system is proposed; By comparing and analyzing the temperature field of the main cable with five diameters, a reasonable diameter limit for calculating the average temperature of the cross section of the main cable by finite element method is proposed. The results show that the maximum error of this method is less than 1℃, which meets the requirements of construction control accuracy; For the main cable with a diameter greater than 400mm, the surface temperature measuring points combined with the finite element method shall be used to calculate the average cross-section temperature.Keywords: suspension bridge, main cable, temperature field, finite element
Procedia PDF Downloads 16020531 A Stable Method for Determination of the Number of Independent Components
Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor
Abstract:
Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock
Procedia PDF Downloads 9920530 The Use of Stochastic Gradient Boosting Method for Multi-Model Combination of Rainfall-Runoff Models
Authors: Phanida Phukoetphim, Asaad Y. Shamseldin
Abstract:
In this study, the novel Stochastic Gradient Boosting (SGB) combination method is addressed for producing daily river flows from four different rain-runoff models of Ohinemuri catchment, New Zealand. The selected rainfall-runoff models are two empirical black-box models: linear perturbation model and linear varying gain factor model, two conceptual models: soil moisture accounting and routing model and Nedbør-Afrstrømnings model. In this study, the simple average combination method and the weighted average combination method were used as a benchmark for comparing the results of the novel SGB combination method. The models and combination results are evaluated using statistical and graphical criteria. Overall results of this study show that the use of combination technique can certainly improve the simulated river flows of four selected models for Ohinemuri catchment, New Zealand. The results also indicate that the novel SGB combination method is capable of accurate prediction when used in a combination method of the simulated river flows in New Zealand.Keywords: multi-model combination, rainfall-runoff modeling, stochastic gradient boosting, bioinformatics
Procedia PDF Downloads 33920529 Flow Field Optimization for Proton Exchange Membrane Fuel Cells
Authors: Xiao-Dong Wang, Wei-Mon Yan
Abstract:
The flow field design in the bipolar plates affects the performance of the proton exchange membrane (PEM) fuel cell. This work adopted a combined optimization procedure, including a simplified conjugate-gradient method and a completely three-dimensional, two-phase, non-isothermal fuel cell model, to look for optimal flow field design for a single serpentine fuel cell of size 9×9 mm with five channels. For the direct solution, the two-fluid method was adopted to incorporate the heat effects using energy equations for entire cells. The model assumes that the system is steady; the inlet reactants are ideal gases; the flow is laminar; and the porous layers such as the diffusion layer, catalyst layer and PEM are isotropic. The model includes continuity, momentum and species equations for gaseous species, liquid water transport equations in the channels, gas diffusion layers, and catalyst layers, water transport equation in the membrane, electron and proton transport equations. The Bulter-Volumer equation was used to describe electrochemical reactions in the catalyst layers. The cell output power density Pcell is maximized subjected to an optimal set of channel heights, H1-H5, and channel widths, W2-W5. The basic case with all channel heights and widths set at 1 mm yields a Pcell=7260 Wm-2. The optimal design displays a tapered characteristic for channels 1, 3 and 4, and a diverging characteristic in height for channels 2 and 5, producing a Pcell=8894 Wm-2, about 22.5% increment. The reduced channel heights of channels 2-4 significantly increase the sub-rib convection and widths for effectively removing liquid water and oxygen transport in gas diffusion layer. The final diverging channel minimizes the leakage of fuel to outlet via sub-rib convection from channel 4 to channel 5. Near-optimal design without huge loss in cell performance but is easily manufactured is tested. The use of a straight, final channel of 0.1 mm height has led to 7.37% power loss, while the design with all channel widths to be 1 mm with optimal channel heights obtained above yields only 1.68% loss of current density. The presence of a final, diverging channel has greater impact on cell performance than the fine adjustment of channel width at the simulation conditions set herein studied.Keywords: optimization, flow field design, simplified conjugate-gradient method, serpentine flow field, sub-rib convection
Procedia PDF Downloads 29620528 Stable Tending Control of Complex Power Systems: An Example of Localized Design of Power System Stabilizers
Authors: Wenjuan Du
Abstract:
The phase compensation method was proposed based on the concept of the damping torque analysis (DTA). It is a method for the design of a PSS (power system stabilizer) to suppress local-mode power oscillations in a single-machine infinite-bus power system. This paper presents the application of the phase compensation method for the design of a PSS in a multi-machine power system. The application is achieved by examining the direct damping contribution of the stabilizer to the power oscillations. By using linearized equal area criterion, a theoretical proof to the application for the PSS design is presented. Hence PSS design in the paper is an example of stable tending control by localized method.Keywords: phase compensation method, power system small-signal stability, power system stabilizer
Procedia PDF Downloads 64120527 The Effect of Symmetrical Presentation of a "Photographic Mind Map" on the Production of Design Solutions
Authors: Pascal Alberti, Mustapha Mouloua
Abstract:
In today’s global market economy, various companies are often confronted with the dynamic and complex nature of current competitive markets. The dynamics of these markets are becoming more and more fluid, often requiring companies to provide competitive, definite advantages, and technological responses within increasingly shorte time frames. To meet these demands, companies must rely on the cognitive abilities of actors of creativity to provide tangible answers to the current contextual problems. Thus, it is important to provide a variety of instruments and design tools to support this particular stage of innovation, and to meet their demand expectations. For a number of years now, we have been extensively conducting experiments on the use of mind maps in the context of innovative projects with collaborative research teams from various nationalities. Our research findings reported a significant difference between a “Word” Mind Map and “Photographic” Mind Map, a correlation between the different uses of iconic tools and certain types of innovation, and a relationship between the different cognitive logics. In this paper, we will present our new results related to the effect of symmetrical presentation of a Photographic Mind Map" on the production of design solutions. Finally, we will conclude by highlighting the importance of our experimental method, and discussing both the theoretical and practical implications of our research.Keywords: creativity, innovation, management, mind mapping, design product
Procedia PDF Downloads 50820526 Patient-Specific Design Optimization of Cardiovascular Grafts
Authors: Pegah Ebrahimi, Farshad Oveissi, Iman Manavi-Tehrani, Sina Naficy, David F. Fletcher, Fariba Dehghani, David S. Winlaw
Abstract:
Despite advances in modern surgery, congenital heart disease remains a medical challenge and a major cause of infant mortality. Cardiovascular prostheses are routinely used in surgical procedures to address congenital malformations, for example establishing a pathway from the right ventricle to the pulmonary arteries in pulmonary valvar atresia. Current off-the-shelf options including human and adult products have limited biocompatibility and durability, and their fixed size necessitates multiple subsequent operations to upsize the conduit to match with patients’ growth over their lifetime. Non-physiological blood flow is another major problem, reducing the longevity of these prostheses. These limitations call for better designs that take into account the hemodynamical and anatomical characteristics of different patients. We have integrated tissue engineering techniques with modern medical imaging and image processing tools along with mathematical modeling to optimize the design of cardiovascular grafts in a patient-specific manner. Computational Fluid Dynamics (CFD) analysis is done according to models constructed from each individual patient’s data. This allows for improved geometrical design and achieving better hemodynamic performance. Tissue engineering strives to provide a material that grows with the patient and mimic the durability and elasticity of the native tissue. Simulations also give insight on the performance of the tissues produced in our lab and reduce the need for costly and time-consuming methods of evaluation of the grafts. We are also developing a methodology for the fabrication of the optimized designs.Keywords: computational fluid dynamics, cardiovascular grafts, design optimization, tissue engineering
Procedia PDF Downloads 24220525 A Comprehensive Review of Foam Assisted Water Alternating Gas (FAWAG) Technique: Foam Applications and Mechanisms
Authors: A. Shabib-Asl, M. Abdalla Ayoub Mohammed, A. F. Alta’ee, I. Bin Mohd Saaid, P. Paulo Jose Valentim
Abstract:
In the last few decades, much focus has been placed on enhancing oil recovery from existing fields. This is accomplished by the study and application of various methods. As for recent cases, the study of fluid mobility control and sweep efficiency in gas injection process as well as water alternating gas (WAG) method have demonstrated positive results on oil recovery and thus gained wide interest in petroleum industry. WAG injection application results in an increased oil recovery. Its mechanism consists in reduction of gas oil ratio (GOR). However, there are some problems associated with this which includes poor volumetric sweep efficiency due to its low density and high mobility when compared with oil. This has led to the introduction of foam assisted water alternating gas (FAWAG) technique, which in contrast with WAG injection, acts in improving the sweep efficiency and reducing the gas oil ration therefore maximizing the production rate from the producer wells. This paper presents a comprehensive review of FAWAG process from perspective of Snorre field experience. In addition, some comparative results between FAWAG and the other EOR methods are presented including their setbacks. The main aim is to provide a solid background for future laboratory research and successful field application-extend.Keywords: GOR, mobility ratio, sweep efficiency, WAG
Procedia PDF Downloads 45320524 Assessment of Aminopolyether on 18F-FDG Samples
Authors: Renata L. C. Leão, João E. Nascimento, Natalia C. E. S. Nascimento, Elaine S. Vasconcelos, Mércia L. Oliveira
Abstract:
The quality control procedures of a radiopharmaceutical include the assessment of its chemical purity. The method suggested by international pharmacopeias consists of a thin layer chromatographic run. In this paper, the method proposed by the United States Pharmacopeia (USP) is compared to a direct method to determine the final concentration of aminopolyether in Fludeoxyglucose (18F-FDG) preparations. The approach (no chromatographic run) was achieved by placing the thin-layer chromatography (TLC) plate directly on an iodine vapor chamber. Both methods were validated and they showed adequate results to determine the concentration of aminopolyether in 18F-FDG preparations. However, the direct method is more sensitive, faster and simpler when compared to the reference method (with chromatographic run), and it may be chosen for use in routine quality control of 18F-FDG.Keywords: chemical purity, Kryptofix 222, thin layer chromatography, validation
Procedia PDF Downloads 201