Search results for: sustainable energy and climate action plan
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 16749

Search results for: sustainable energy and climate action plan

1419 Transformations of River Zones in Hanoi, Vietnam: Problems of Urban Drainage and Environmental Pollution

Authors: Phong Le Ha

Abstract:

In many cities the entire world, the relationship between cities and rivers is always considered as a fundament of urban history research because of their profound interactions. This kind of relationship makes the river zones become extremely sensitive in many aspects. One of the most important aspect is their roles in the drainage of cities. In this paper we will examine an extraordinary case of Hanoi, the capital of Vietnam and Red river zones. This river has contradictory impacts to this city: It is considered as a source of life of the inhabitants who live along its two banks, however, the risk of inundation caused by the complicated hydrology system of this river is always a real threat to the cities that it flows through. Morphologically, Red river was connected to the inner rivers system that made Hanoi a complete form of a river city. This structure combined with the topography of Hanoi helps this city to assure a stable drainage system in which the river zones in the north of Hanoi play some extreme important roles. Nevertheless, in the late 20 years, Hanoi's strong urbanization and the instability of Red river's complicated hydrology make the very remarkable transformations in the relationship river-city and in the river zones: The connection between the river and the city declines; the system of inner lakes are progressively replaced by habitat land; in the river zones, the infrastructure system can't adapt to the transformations of the new quarters which have the origin of the agricultural villages. These changes bring out many chances for the urban development, but also many risks and problems, particularly in the environment and technical sides. Among these, pluvial and used water evacuation is one of the most severe problems. The disappear of inner-city lakes, the high dike and the topographical changes of Hanoi blow up the risk of inundation of this city. In consequences, the riverine zones, particularly in the north of Hanoi, where the two most important water evacuation rivers of Hanoi meet each other, are burdened with the drainage pressure. The unique water treatment plant in this zone seems to be overcharged in receiving each day about 40000m3 of used water (not include pluvial water). This kind of problem leads also to another risk related to the environmental pollution (water pollution and air pollution). So, in order to better understand the situation and to propose the solutions to resolve the problems, an interdisciplinary research covering many different fields such urban planning, architecture, geography, and especially drainage and environment has been carried out. In general, this paper will analyze an important part of the research : the process of urban transformation of Hanoi (changes in urban morphology, infrastructure system, evolution of the dike system, ...) and the hydrological changes of Red river which cause the drainage and environmental problems. The conclusions of these analyses will be the solid base of the following researches focusing on the solutions of a sustainable development.

Keywords: drainage, environment, Hanoi, infrastructure, red rivers, urbanization

Procedia PDF Downloads 387
1418 Improvement of the Mechanical Behavior of an Environmental Concrete Based on Demolished

Authors: Larbi Belagraa

Abstract:

The universal need to conserve resources, protect the environment and use energy efficiently must necessarily be felt in the field of concrete technology. The recycling of construction and demolition waste as a source of aggregates for the production of concrete has attracted growing interest from the construction industry. In Algeria, the depletion of natural deposits of aggregates and the difficulties in setting up new quarries; makes it necessary to seek new sources of supply, to meet the need for aggregates for the major projects launched by the Algerian government in the last decades. In this context, this work is a part of the approach to provide answers to concerns about the lack of aggregates for concrete. It also aims to develop the inert fraction of demolition materials and mainly concrete construction demolition waste(C&D) as a source of aggregates for the manufacture of new hydraulic concretes based on recycled aggregates. This experimental study presents the results of physical and mechanical characterizations of natural and recycled aggregates, as well as their influence on the properties of fresh and hardened concrete. The characterization of the materials used has shown that the recycled aggregates have heterogeneity, a high water absorption capacity, and a medium quality hardness. However, the limits prescribed by the standards in force do not disqualify these materials of use for application as recycled aggregate concrete type (RAC). The results obtained from the present study show that acceptable mechanical, compressive, and flexural strengths of RACs are obtained using Superplasticizer SP 45 and 5% replacement of cement with silica fume based on recycled aggregates, compared to those of natural concretes. These mechanical performances demonstrate a characteristic resistance at 28 days in compression within the limits of 30 to 40 MPa without any particular suitable technology .to be adapted in the case.

Keywords: recycled aggregates, concrete(RAC), superplasticizer, silica fume, compressive strength

Procedia PDF Downloads 169
1417 Effect of Pole Weight on Nordic Walking

Authors: Takeshi Sato, Mizuki Nakajima, Macky Kato, Shoji Igawa

Abstract:

The purpose of study was to investigate the effect of varying pole weights on energy expenditure, upper limb and lower limb muscle activity as Electromyogram during Nordic walking (NW). Four healthy men [age = 22.5 (±1.0) years, body mass = 61.4 (±3.6) kg, height = 170.3 (±4.3) cm] and three healthy women [age = 22.7 (±2.9) years, body mass = 53.0 (±1.7) kg, height = 156.7 (±4.5) cm] participated in the experiments after informed consent. Seven healthy subjects were tested on the treadmill, walking, walking (W) with Nordic Poles (NW) and walking with 1kg weight Nordic Poles (NW+1). Walking speed was 6 km per hours in all trials. Eight EMG activities were recorded by bipolar surface methods in biceps brachii, triceps brachii, trapezius, deltoideus, tibialis anterior, medial gastrocnemius, rectus femoris and biceps femoris muscles. And heart rate (HR), oxygen uptake (VO2), and rate of perceived exertion (RPE) were measured. The level of significance was set at a = 0.05, with p < 0.05 regarded as statistically significant. Our results confirmed that use of NW poles increased HR at a given upper arm muscle activity but decreased lower limb EMGs in comparison with W. Moreover NW was able to increase more step lengths with hip joint extension during NW rather than W. Also, EMG revealed higher activation of upper limb for almost all NW and 1kgNW tests plus added masses compared to W (p < 0.05). Therefore, it was thought either of NW and 1kgNW were to have benefit as a physical exercise for safe, feasible, and readily training for a wide range of aged people in the quality of daily life. However, there was no significant effected in leg muscles activity by using 1kgNW except for upper arm muscle activity during Nordic pole walking.

Keywords: Nordic walking, electromyogram, heart rate, RPE

Procedia PDF Downloads 235
1416 An Effective Synthesis Method of Microwave Solution Combustion with the Application of Visible Light-Responsive Photocatalyst of Rb21 Dye

Authors: Rahul Jarariya

Abstract:

The textile industry uses various types of dyes and discharges a lot of highly coloured wastewater. It impacts the environment like allergic reaction, respiratory, skin problems, irritation to a mucous membrane, the upper respiratory tract has to the fore, Intoxicated dye discharges 40 to 50,000 tons with great concern. Spinel ferrites gained a lot of attention due to their wide application area from biomedical to wastewater treatment. Generally, spinel ferrite is known as M-Fe2O4. Spinel type nanoparticles possess high suspension stability. The synthesis method of Microwave solution combustion (MC) method is effective for nanoscale materials, including oxides, metals, alloys, and sulfides, works as fast and energy-efficient during the process. The review focuses on controlling, nanostructure and doping. The influence of the fuel concentration and the post-treatment temperature on the structural and magnetic properties. The effects of amounts of fuel and phase changes, particle size and shape, and magnetic properties can be characterized by various techniques. Urea is the most commonly used fuel. Ethanol or n-butanol is apt for removing impurities. As a result of the materials gives fine purity. Photocatalysis phenomena act with catalyst dosage to degrade dye from wastewater. Visible light responsive produces a large amount of hydroxyl (•OH) radical made the degradation efficiency of Rh21 type dye. It develops a narrow bandgap to make it suitable for enhanced photocatalytic activity.

Keywords: microwave solution combustion method, normal spinel, doped spinels, magnetic property, Rb21

Procedia PDF Downloads 175
1415 Numerical Study of Elastic Performances of Sandwich Beam with Carbon-Fibre Reinforced Skins

Authors: Soukaina Ounss, Hamid Mounir, Abdellatif El Marjani

Abstract:

Sandwich materials with composite reinforced skins are mostly required in advanced construction applications with a view to ensure resistant structures. Their lightweight, their high flexural stiffness and their optimal thermal insulation make them a suitable solution to obtain efficient structures with performing rigidity and optimal energy safety. In this paper, the mechanical behavior of a sandwich beam with composite skins reinforced by unidirectional carbon fibers is investigated numerically through analyzing the impact of reinforcements specifications on the longitudinal elastic modulus in order to select the adequate sandwich configuration that has an interesting rigidity and an accurate convergence to the analytical approach which is proposed to verify performed numerical simulations. Therefore, concerned study starts by testing flexion performances of skins with various fibers orientations and volume fractions to determine those to use in sandwich beam. For that, the combination of a reinforcement inclination of 30° and a volume ratio of 60% is selected with the one with 60° of fibers orientation and 40% of volume fraction, this last guarantees to chosen skins an important rigidity with an optimal fibers concentration and a great enhance in convergence to analytical results in the sandwich model for the reason of the crucial core role as transverse shear absorber. Thus, a resistant sandwich beam is elaborated from a face-sheet constituted from two layers of previous skins with fibers oriented in 60° and an epoxy core; concerned beam has a longitudinal elastic modulus of 54 Gpa (gigapascal) that equals to the analytical value by a negligible error of 2%.

Keywords: fibers orientation, fibers volume ratio, longitudinal elastic modulus, sandwich beam

Procedia PDF Downloads 159
1414 Enhanced Bioproduction of Moscatilin in Dendrobium ovatum through Hairy Root Culture

Authors: Ipsita Pujari, Abitha Thomas, Vidhu S. Babu, K. Satyamoorthy

Abstract:

Orchids are esteemed as celebrities in cut flower industry globally, due to their long-lasting fragrance and freshness. Apart from splendor, the unique metabolites endowed with pharmaceutical potency have made them one of the most hunted in plant kingdom. This had led to their trafficking, resulting in habitat loss, subsequently making them occupiers of IUCN red list as RET species. Many of the orchids especially wild varieties still remain undiscovered. In view to protect and conserve the wild germplasm, researchers have been inventing novel micropropagation protocols; thereby conserving Orchids. India is overflowing with exclusive wild cultivars of Orchids, whose pharmaceutical properties remain untapped and are not marketed owing to relatively small flowers. However, their germplasm is quite pertinent to be preserved for making unusual hybrids. Dendrobium genus is the second largest among Orchids exists in India and has highest demand attributable to enduring cut flowers and significant therapeutic uses in traditional medicinal system. Though the genus is quite endemic in Western Ghat regions of the country, many species are still anonymous with their unknown curative properties. A standard breeding cycle in Orchids usually takes five to seven years (Dendrobium hybrids taking a long juvenile phase of two to five years reaching maturity and flowering stage) and this extensive life cycle has always hindered the development of Dendrobium breeding. Dendrobium is reported with essential therapeutic plant bio-chemicals and ‘Moscatilin’ is one, found exclusive to this famous Dendrobium genus. Moscatilin is reported to have anti-mutagenic and anti-cancer properties, whose positive action has very recently been demonstrated against a range of cancers. Our preliminary study here established a simple and economic small-scale propagation protocol of Dendrobium ovatum describing in vitro production of Moscatilin. Subsequently for enhancing the content of Moscatilin, an efficient experimental related to the organization of transgenic (hairy) D. ovatum root cultures through infection of Agrobacterium rhizogenes 2364 strain on MS basal medium is being reported in the present study. Hairy roots generated on almost half of the explants used (spherules, in vitro plantlets and calli) maintained through suspension cultures, after 8 weeks of co-cultivation with Agrobacterium rhizogenes. GFP assay performed with isolated hairy roots has confirmed the integrative transformation which was further positively confirmed by PCR using rolB gene specific primers. Reverse phase-high performance liquid chromatography and mass spectrometry techniques were used for quantification and accurate identification of Moscatilin respectively from transgenic systems. A noticeable ~3 fold increase in contents were observed in transformed D. ovatum root cultures as compared to the simple in vitro culture, callus culture and callus regeneration plantlets. Role of elicitors e.g., Methyl jasmonate, Salicylic acid, Yeast extract and Chitosan were tested for elevating the Moscatilin content to obtain a comprehensive optimized protocol facilitating the in vitro production of valuable Moscatilin with larger yield. This study would provide evidence towards the in vitro assembly of Moscatilin within a short time-period through not a so-expensive technology for the first time. It also serves as an appropriate basis for bioreactor scale-up resulting in commercial bioproduction of Moscatilin.

Keywords: bioproduction, Dendrobium ovatum, hairy root culture, moscatilin

Procedia PDF Downloads 232
1413 Influence of Pine Wood Ash as Pozzolanic Material on Compressive Strength of a Concrete

Authors: M. I. Nicolas, J. C. Cruz, Ysmael Verde, A.Yeladaqui-Tello

Abstract:

The manufacture of Portland cement has revolutionized the construction industry since the nineteenth century; however, the high cost and large amount of energy required on its manufacturing encouraged, from the seventies, the search of alternative materials to replace it partially or completely. Among the materials studied to replace the cement are the ashes. In the city of Chetumal, south of the Yucatan Peninsula in Mexico, there are no natural sources of pozzolanic ash. In the present study, the cementitious properties of artificial ash resulting from the combustion of waste pine wood were analyzed. The ash obtained was sieved through the screen and No.200 a fraction was analyzed using the technique of X-ray diffraction; with the aim of identifying the crystalline phases and particle sizes of pozzolanic material by the Debye-Scherrer equation. From the characterization of materials, mixtures for a concrete of f'c = 250 kg / cm2 were designed with the method ACI 211.1; for the pattern mixture and for partial replacements of Portland cement by 5%, 10% and 12% pine wood ash mixture. Simple resistance to axial compression of specimens prepared with each concrete mixture, at 3, 14 and 28 days of curing was evaluated. Pozzolanic activity was observed in the ash obtained, checking the presence of crystalline silica (SiO2 of 40.24 nm) and alumina (Al2O3 of 35.08 nm). At 28 days of curing, the specimens prepared with a 5% ash, reached a compression resistance 63% higher than design; for specimens with 10% ash, was 45%; and for specimens with 12% ash, only 36%. Compared to Pattern mixture, which after 28 days showed a f'c = 423.13 kg/cm2, the specimens reached only 97%, 86% and 82% of the compression resistance, for mixtures containing 5%, 10% ash and 12% respectively. The pozzolanic activity of pine wood ash influences the compression resistance, which indicates that it can replace up to 12% of Portland cement by ash without compromising its design strength, however, there is a decrease in strength compared to the pattern concrete.

Keywords: concrete, pine wood ash, pozzolanic activity, X-ray

Procedia PDF Downloads 452
1412 Enhancement of Light Extraction of Luminescent Coating by Nanostructuring

Authors: Aubry Martin, Nehed Amara, Jeff Nyalosaso, Audrey Potdevin, FrançOis ReVeret, Michel Langlet, Genevieve Chadeyron

Abstract:

Energy-saving lighting devices based on LightEmitting Diodes (LEDs) combine a semiconductor chip emitting in the ultraviolet or blue wavelength region to one or more phosphor(s) deposited in the form of coatings. The most common ones combine a blue LED with the yellow phosphor Y₃Al₅O₁₂:Ce³⁺ (YAG:Ce) and a red phosphor. Even if these devices are characterized by satisfying photometric parameters (Color Rendering Index, Color Temperature) and good luminous efficiencies, further improvements can be carried out to enhance light extraction efficiency (increase in phosphor forward emission). One of the possible strategies is to pattern the phosphor coatings. Here, we have worked on different ways to nanostructure the coating surface. On the one hand, we used the colloidal lithography combined with the Langmuir-Blodgett technique to directly pattern the surface of YAG:Tb³⁺ sol-gel derived coatings, YAG:Tb³⁺ being used as phosphor model. On the other hand, we achieved composite architectures combining YAG:Ce coatings and ZnO nanowires. Structural, morphological and optical properties of both systems have been studied and compared to flat YAG coatings. In both cases, nanostructuring brought a significative enhancement of photoluminescence properties under UV or blue radiations. In particular, angle-resolved photoluminescence measurements have shown that nanostructuring modifies photons path within the coatings, with a better extraction of the guided modes. These two strategies have the advantage of being versatile and applicable to any phosphor synthesizable by sol-gel technique. They then appear as promising ways to enhancement luminescence efficiencies of both phosphor coatings and the optical devices into which they are incorporated, such as LED-based lighting or safety devices.

Keywords: phosphor coatings, nanostructuring, light extraction, ZnO nanowires, colloidal lithography, LED devices

Procedia PDF Downloads 171
1411 Assessment of Pakistan-China Economic Corridor: An Emerging Dynamic of 21st Century

Authors: Naad-E-Ali Sulehria

Abstract:

Pakistan and china have stepped in a new phase of strengthening fraternity as the dream of economic corridor once discerned by both countries is going to take a pragmatic shape. Pak-China economic corridor an under construction program is termed to be an emerging dynamic of 21st century that anticipates a nexus between Asian continent and Indian Ocean by extending its functions to adjoining East, South, Central and Western Asian regions. The $45.6 billion worth heavily invested megaprojects by China are meant to revive energy sector and building economic infrastructure in Pakistan. Evidently, these projects are a part of ‘southern extension’ of Silk Road economic belt which is going to draw out prominent incentives for both countries particularly bolstering China to acquire influential dominance over the regional trade and beyond. In pursuit to adhere, by these progressive plans both countries have began working on their respective assignments. This article discusses the economical development programs under China’s peripheral diplomacy regarding its region-specific-approach to accumulate trade of Persian Gulf and access the landlocked Central Asian states through Pakistan in a sublimate context to break US encirclement of Asia. Pakistan’s utmost preference to utilize its strategic channel as a trade hub to become an emerging economy and surpass its arch-rival India for strategic concerns is contemplated accordingly. The needs and feasibility of the economic gateway and the dividends it can provide in the contemporary scenario are examined carefully and analysis is drawn upon the future prospects of the Pakistan-China Economic corridor once completed.

Keywords: pak-china economic corridor (PCEC), central asian republic states (CARs), new silk road economic belt, gawadar

Procedia PDF Downloads 362
1410 21st-Century Middlebrow Film: A Critical Examination of the Spectator Experience in Malayalam Film

Authors: Anupama A. P.

Abstract:

The Malayalam film industry, known as Mollywood, has a rich tradition of storytelling and cultural significance within Indian cinema. Middlebrow films have emerged as a distinct influential category, particularly in the 1980s, with directors like K.G. George, who engaged with female subjectivity and drew inspiration from the ‘women’s cinema’ of the 1950s and 1960s. In recent decades, particularly post-2010, the industry has transformed significantly with a new generation of filmmakers diverging from melodrama and new wave of the past, incorporating advanced technology and modern content. This study examines the evolution and impact of Malayalam middlebrow cinema in the 21st century, focusing on post-2000 films and their influence on contemporary spectator experiences. These films appeal to a wide range of audiences without compromising on their artistic integrity, tackling social issues and personal dramas with thematic and narrative complexity. Historically, middlebrow films in Malayalam cinema have portrayed realism and addressed the socio-political climate of Kerala, blending realism with reflexivity and moving away from traditional sentimentality. This shift is evident in the new generation of Malayalam films, which present a global representation of characters and a modern treatment of individuals. To provide a comprehensive understanding of this evolution, the study analyzes a diverse selection of films such as Kerala Varma Pazhassi Raja (2009), Drishyam (2013), Maheshinte Prathikaaram (2016), Take Off (2017), and Thondimuthalum Driksakshiyum (2017) and Virus (2019) illustrating the broad thematic range and innovative narrative techniques characteristic of this genre. These films exemplify how middlebrow cinema continues to evolve, adapting to changing societal contexts and audience expectations. This research employs a theoretical methodology, drawing on cultural studies and audience reception theory, utilizing frameworks such as Bordwell’s narrative theory, Deleuze’s concept of deterritorialization, and Hall’s encoding/decoding model to analyze the changes in Malayalam middlebrow cinema and interpret the storytelling methods, spectator experience, and audience reception of these films. The findings indicate that Malayalam middlebrow cinema post-2010 offers a spectator experience that is both intellectually stimulating and broadly appealing. This study highlights the critical role of middlebrow cinema in reflecting and shaping societal values, making it a significant cultural artefact within the broader context of Indian and global cinema. By bridging entertainment with thought-provoking narratives, these films engage audiences and contribute to wider cultural discourse, making them pivotal in contemporary cinematic landscapes. To conclude, this study highlights the importance of Malayalam middle-brow cinema in influencing contemporary cinematic tastes. The nuanced and approachable narratives of post-2010 films are posited to assume an increasingly pivotal role in the future of Malayalam cinema. By providing a deeper understanding of Malayalam middlebrow cinema and its societal implications, this study enriches theoretical discourse, promotes regional cinema, and offers valuable insights into contemporary spectator experiences and the future trajectory of Malayalam cinema.

Keywords: Malayalam cinema, middlebrow cinema, spectator experience, audience reception, deterritorialization

Procedia PDF Downloads 23
1409 The Effects of SCMs on the Mechanical Properties and Durability of Fibre Cement Plates

Authors: Ceren Ince, Berkay Zafer Erdem, Shahram Derogar, Nabi Yuzer

Abstract:

Fibre cement plates, often used in construction, generally are made using quartz as an inert material, cement as a binder and cellulose as a fibre. This paper first of all investigates the mechanical properties and durability of fibre cement plates when quartz is both partly and fully replaced with diatomite. Diatomite does not only have lower density compared to quartz but also has high pozzolanic activity. The main objective of this paper is the investigation of the effects of supplementary cementing materials (SCMs) on the short and long term mechanical properties and durability characteristics of fibre cement plates prepared using diatomite. Supplementary cementing materials such as ground granulated blast furnace slug (GGBS) and fly ash (FA) are used in this study. 10, 20, 30 and 40% of GGBS and FA are used as partial replacement materials to cement. Short and long term mechanical properties such as compressive and flexural strengths as well as capillary absorption, sorptivity characteristics and mass were investigated. Consistency and setting time at each replacement levels of SCMs were also recorded. The effects of using supplementary cementing materials on the carbonation and sulphate resistance of fibre cement plates were then experimented. The results, first of all, show that the use of diatomite as a full or partial replacement to quartz resulted in a systematic decrease in total mass of the fibre cement plates. The reduction of mass was largely due to the lower density and finer particle size of diatomite compared to quartz. The use of diatomite did not only reduce the mass of these plates but also increased the compressive strength significantly as a result of its high pozzolanic activity. The replacement levels of both GGBS and FA resulted in a systematic decrease in short term compressive strength with increasing replacement levels. This was essentially expected as the total heat of hydration is much lower in GGBS and FA than that of cement. Long term results however, indicated that the compressive strength of fibre cement plates prepared using both GGBS and FA increases with time and hence the compressive strength of plates prepared using SCMs is either equivalent or more than the compressive strength of plates prepared using cement alone. Durability characteristics of fibre cement plates prepared using SCMs were enhanced significantly. Measurements of capillary absorption and sopritivty characteristics were also indicated that the plates prepared using SCMs has much lower permeability compared to plates prepared cement alone. Much higher resistance to carbonation and sulphate attach were observed with plates prepared using SCMs. The results presented in this paper show that the use of SCMs does not only support the production of more sustainable construction materials but also enhances the mechanical properties and durability characteristics of fibre cement plates.

Keywords: diatomite, fibre, strength, supplementary cementing material

Procedia PDF Downloads 323
1408 Engaging Women Entrepreneurs in School Adolescent Health Program to Ensure Menstrual Hygiene Management in Rural Bangladesh

Authors: Toslim Uddin Khan, Jesmin Akter, Mohiuddin Ahmed

Abstract:

Menstrual hygiene management (MHM) and personal health-care practice is a critical issue to prevent morbidity and other reproductive health complications among adolescent girls in Bangladesh. Inadequate access to water, sanitation and hygiene (WASH) facilities lead to unhealthy MHM practices that resulted in poor reproductive health outcomes. It is evident from different studies that superstitions and misconception are more common in rural communities that limit young girls’ access to and understanding of the menstrual hygiene and self care practices. The state-of-the-art approach of Social Marketing Company (SMC) is proved to be instrumental in delivering reinforcing health messages, making public health and hygiene products available at the door steps of the community through community mobilization programs in rural Bangladesh. School health program is one of the flagship interventions of SMC to equip adolescent girls and boys with correct knowledge of health and hygiene practices among themselves, their families and peers. In Bangladeshi culture, adolescent girls often feel shy to ask fathers or male family members about buying sanitary napkin from local pharmacy and they seem to be reluctant to seek help regarding their menstrual problems. A recent study reveals that 48% adolescent girls are using sanitary napkins while majority of them are unaware of menstrual hygiene practices in Bangladesh. Under school adolescent program, SMC organizes health education sessions for adolescent girls from grade seven to ten using enter-educate approach with special focus on sexual and reproductive health and menstrual hygiene issues including delaying marriage and first pregnancy. In addition, 2500 rural women entrepreneurs branded as community sales agents are also involved in disseminating health messages and selling priority health products including sanitary napkin at the household level. These women entrepreneurs are serving as a source of sustainable supply of the sanitary napkins for the rural adolescent girls and thereby they are earning profit margins on the sales they make. A recent study on the impact of adolescent program activities reveals that majority (71%) of the school adolescent girls are currently using sanitary napkins. Health education equips and empowers adolescent girls with accurate knowledge about menstrual hygiene practices and self-care as well. Therefore, engagement of female entrepreneurs in school adolescent health program at the community level is one of the promising ways to improve menstrual hygiene practices leading to increased use of sanitary napkin in rural and semi-rural communities in Bangladesh.

Keywords: school adolescent program, social marketing, women entrepreneurs, menstrual hygiene management

Procedia PDF Downloads 185
1407 Variable Refrigerant Flow (VRF) Zonal Load Prediction Using a Transfer Learning-Based Framework

Authors: Junyu Chen, Peng Xu

Abstract:

In the context of global efforts to enhance building energy efficiency, accurate thermal load forecasting is crucial for both device sizing and predictive control. Variable Refrigerant Flow (VRF) systems are widely used in buildings around the world, yet VRF zonal load prediction has received limited attention. Due to differences between VRF zones in building-level prediction methods, zone-level load forecasting could significantly enhance accuracy. Given that modern VRF systems generate high-quality data, this paper introduces transfer learning to leverage this data and further improve prediction performance. This framework also addresses the challenge of predicting load for building zones with no historical data, offering greater accuracy and usability compared to pure white-box models. The study first establishes an initial variable set of VRF zonal building loads and generates a foundational white-box database using EnergyPlus. Key variables for VRF zonal loads are identified using methods including SRRC, PRCC, and Random Forest. XGBoost and LSTM are employed to generate pre-trained black-box models based on the white-box database. Finally, real-world data is incorporated into the pre-trained model using transfer learning to enhance its performance in operational buildings. In this paper, zone-level load prediction was integrated with transfer learning, and a framework was proposed to improve the accuracy and applicability of VRF zonal load prediction.

Keywords: zonal load prediction, variable refrigerant flow (VRF) system, transfer learning, energyplus

Procedia PDF Downloads 1
1406 Modeling the Human Harbor: An Equity Project in New York City, New York USA

Authors: Lauren B. Birney

Abstract:

The envisioned long-term outcome of this three-year research, and implementation plan is for 1) teachers and students to design and build their own computational models of real-world environmental-human health phenomena occurring within the context of the “Human Harbor” and 2) project researchers to evaluate the degree to which these integrated Computer Science (CS) education experiences in New York City (NYC) public school classrooms (PreK-12) impact students’ computational-technical skill development, job readiness, career motivations, and measurable abilities to understand, articulate, and solve the underlying phenomena at the center of their models. This effort builds on the partnership’s successes over the past eight years in developing a benchmark Model of restoration-based Science, Technology, Engineering, and Math (STEM) education for urban public schools and achieving relatively broad-based implementation in the nation’s largest public school system. The Billion Oyster Project Curriculum and Community Enterprise for Restoration Science (BOP-CCERS STEM + Computing) curriculum, teacher professional developments, and community engagement programs have reached more than 200 educators and 11,000 students at 124 schools, with 84 waterfront locations and Out of School of Time (OST) programs. The BOP-CCERS Partnership is poised to develop a more refined focus on integrating computer science across the STEM domains; teaching industry-aligned computational methods and tools; and explicitly preparing students from the city’s most under-resourced and underrepresented communities for upwardly mobile careers in NYC’s ever-expanding “digital economy,” in which jobs require computational thinking and an increasing percentage require discreet computer science technical skills. Project Objectives include the following: 1. Computational Thinking (CT) Integration: Integrate computational thinking core practices across existing middle/high school BOP-CCERS STEM curriculum as a means of scaffolding toward long term computer science and computational modeling outcomes. 2. Data Science and Data Analytics: Enabling Researchers to perform interviews with Teachers, students, community members, partners, stakeholders, and Science, Technology, Engineering, and Mathematics (STEM) industry Professionals. Collaborative analysis and data collection were also performed. As a centerpiece, the BOP-CCERS partnership will expand to include a dedicated computer science education partner. New York City Department of Education (NYCDOE), Computer Science for All (CS4ALL) NYC will serve as the dedicated Computer Science (CS) lead, advising the consortium on integration and curriculum development, working in tandem. The BOP-CCERS Model™ also validates that with appropriate application of technical infrastructure, intensive teacher professional developments, and curricular scaffolding, socially connected science learning can be mainstreamed in the nation’s largest urban public school system. This is evidenced and substantiated in the initial phases of BOP-CCERS™. The BOP-CCERS™ student curriculum and teacher professional development have been implemented in approximately 24% of NYC public middle schools, reaching more than 250 educators and 11,000 students directly. BOP-CCERS™ is a fully scalable and transferable educational model, adaptable to all American school districts. In all settings of the proposed Phase IV initiative, the primary beneficiary group will be underrepresented NYC public school students who live in high-poverty neighborhoods and are traditionally underrepresented in the STEM fields, including African Americans, Latinos, English language learners, and children from economically disadvantaged households. In particular, BOP-CCERS Phase IV will explicitly prepare underrepresented students for skilled positions within New York City’s expanding digital economy, computer science, computational information systems, and innovative technology sectors.

Keywords: computer science, data science, equity, diversity and inclusion, STEM education

Procedia PDF Downloads 54
1405 Agrowastes to Edible Hydrogels through Bio Nanotechnology Interventions: Bioactive from Mandarin Peels

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits contain an abundance of phytochemicals that can promote health. A substantial amount of agrowaste is produced from the juice processing industries, primarily peels and seeds. This leftover agrowaste is a reservoir of nutraceuticals, particularly bioflavonoids which render it antioxidant and potentially anticancerous. It is, therefore, favorable to utilize this biomass and contribute towards sustainability in a manner that value-added products may be derived from them, nutraceuticals, in this study. However, the pre-systemic metabolism of flavonoids in the gastric phase limits the effectiveness of these bioflavonoids derived from mandarin biomass. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was explored for its flavonoid profile. This work entails supercritical fluid extraction and identification of bioflavonoids from mandarin biomass. Furthermore, to overcome the limitations of these flavonoids in the gastrointestinal tract, a double-layered vehicular mechanism comprising the fabrication of nanoconjugates and edible hydrogels was adopted. Total flavonoids in the mandarin peel extract were estimated by the aluminum chloride complexation method and were found to be 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the abundance of polymethoxyflavones (PMFs), nobiletin and tangeretin as the major flavonoids in the extract, followed by hesperetin and naringenin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which showed an IC50 of 0.55μg/ml. Nanoconjugates were fabricated via the solvent evaporation method, which was further impregnated into hydrogels. Additionally, the release characteristics of nanoconjugate-laden hydrogels in a simulated gastrointestinal environment were studied. The PLGA-PMFs nanoconjugates exhibited a particle size between 200-250nm having a smooth and spherical shape as revealed by FE-SEM. The impregnated alginate hydrogels offered a dense network that ensured the holding of PLGA-PMF nanoconjugates, as confirmed by Cryo-SEM images. Rheological studies revealed the shear-thinning behavior of hydrogels and their high resistance to deformation. Gastrointestinal studies showed a negligible 4.0% release of flavonoids in the gastric phase, followed by a sustained release over the next hours in the intestinal environment. Therefore, based on the enormous potential of recovering nutraceuticals from agro-processing wastes, further augmented by nanotechnological interventions for enhancing the bioefficacy of these compounds, lays the foundation for exploring the path towards the development of value-added products, thereby contributing towards the sustainable use of agrowaste.

Keywords: agrowaste, gastrointestinal, hydrogel, nutraceuticals

Procedia PDF Downloads 88
1404 Modeling Landscape Performance: Evaluating the Performance Benefits of the Olmsted Brothers’ Proposed Parkway Designs for Los Angeles

Authors: Aaron Liggett

Abstract:

This research focuses on the visionary proposal made by the Olmsted Brothers Landscape Architecture firm in the 1920s for a network of interconnected parkways in Los Angeles. Their envisioned parkways aimed to address environmental and cultural strains by providing green space for recreation, wildlife habitat, and stormwater management while serving as multimodal transportation routes. Although the parkways were never constructed, through an evidence-based approach, this research presents a framework for evaluating the potential functionality and success of the parkways by modeling and visualizing their quantitative and qualitative landscape performance and benefits. Historical documents and innovative digital modeling tools produce detailed analysis, modeling, and visualization of the parkway designs. A set of 1928 construction documents are used to analyze and interpret the design intent of the parkways. Grading plans are digitized in CAD and modeled in Sketchup to produce 3D visualizations of the parkway. Drainage plans are digitized to model stormwater performance. Planting plans are analyzed to model urban forestry and biodiversity. The EPA's Storm Water Management Model (SWMM) predicts runoff quantity and quality. The USDA Forests Service tools evaluate carbon sequestration and air quality. Spatial and overlay analysis techniques are employed to assess urban connectivity and the spatial impacts of the parkway designs. The study reveals how the integration of blue infrastructure, green infrastructure, and transportation infrastructure within the parkway design creates a multifunctional landscape capable of offering alternative spatial and temporal uses. The analysis demonstrates the potential for multiple functional, ecological, aesthetic, and social benefits to be derived from the proposed parkways. The analysis of the Olmsted Brothers' proposed Los Angeles parkways, which predated contemporary ecological design and resiliency practices, demonstrates the potential for providing multiple functional, ecological, aesthetic, and social benefits within urban designs. The findings highlight the importance of integrated blue, green, and transportation infrastructure in creating a multifunctional landscape that simultaneously serves multiple purposes. The research contributes new methods for modeling and visualizing landscape performance benefits, providing insights and techniques for informing future designs and sustainable development strategies.

Keywords: landscape architecture, ecological urban design, greenway, landscape performance

Procedia PDF Downloads 121
1403 Raman Scattering Broadband Spectrum Generation in Compact Yb-Doped Fiber Laser

Authors: Yanrong Song, Zikai Dong, Runqin Xu, Jinrong Tian, Kexuan Li

Abstract:

Nonlinear polarization rotation (NPR) technique has become one of the main techniques to achieve mode-locked fiber lasers for its compactness, implementation, and low cost. In this paper, we demonstrate a compact mode-locked Yb-doped fiber laser based on NPR technique in the all normal dispersion (ANDi) regime. In the laser cavity, there are no physical filter and polarization controller in laser cavity. Mode-locked pulse train is achieved in ANDi regime based on NPR technique. The fiber birefringence induced filtering effect is the mainly reason for mode-locking. After that, an extra 20 m long single-mode fiber is inserted in two different positions, dissipative soliton operation and noise like pulse operations are achieved correspondingly. The nonlinear effect is obviously enhanced in the noise like pulse regime and broadband spectrum generated owing to enhanced stimulated Raman scattering effect. When the pump power is 210 mW, the central wavelength is 1030 nm, and the corresponding 1st order Raman scattering stokes wave generates and locates at 1075 nm. When the pump power is 370 mW, the 1st and 2nd order Raman scattering stokes wave generate and locate at 1080 nm, 1126 nm respectively. When the pump power is 600 mW, the Raman continuum is generated with cascaded multi-order stokes waves, and the spectrum extends to 1188 nm. The total flat spectrum is from 1000nm to 1200nm. The maximum output average power and pulse energy are 18.0W and 14.75nJ, respectively.

Keywords: fiber laser, mode-locking, nonlinear polarization rotation, Raman scattering

Procedia PDF Downloads 216
1402 LiTa2PO8-based Composite Solid Polymer Electrolytes for High-Voltage Cathodes in Lithium-Metal Batteries

Authors: Kumlachew Zelalem Walle, Chun-Chen Yang

Abstract:

Solid-state Lithium metal batteries (SSLMBs) that contain polymer and ceramic solid electrolytes have received considerable attention as an alternative to substitute liquid electrolytes in lithium metal batteries (LMBs) for highly safe, excellent energy storage performance and stability under elevated temperature situations. Here, a novel fast Li-ion conducting material, LiTa₂PO₈ (LTPO), was synthesized and electrochemical performance of as-prepared powder and LTPO-incorporated composite solid polymer electrolyte (LTPO-CPE) membrane were investigated. The as-prepared LTPO powder was homogeneously dispersed in polymer matrices, and a hybrid solid electrolyte membrane was synthesized via a simple solution-casting method. The room temperature total ionic conductivity (σt) of the LTPO pellet and LTPO-CPE membrane were 0.14 and 0.57 mS cm-1, respectively. A coin battery with NCM811 cathode is cycled under 1C between 2.8 to 4.5 V at room temperature, achieving a Coulombic efficiency of 99.3% with capacity retention of 74.1% after 300 cycles. Similarly, the LFP cathode also delivered an excellent performance at 0.5C with an average Coulombic efficiency of 100% without virtually capacity loss (the maximum specific capacity is at 27th: 138 mAh g−1 and 500th: 131.3 mAh g−1). These results demonstrates the feasibility of a high Li-ion conductor LTPO as a filler, and the developed polymer/ceramic hybrid electrolyte has potential to be a high-performance electrolyte for high-voltage cathodes, which may provide a fresh platform for developing more advanced solid-state electrolytes.

Keywords: li-ion conductor, lithium-metal batteries, composite solid electrolytes, liTa2PO8, high-voltage cathode

Procedia PDF Downloads 60
1401 Shifting Contexts and Shifting Identities: Campus Race-related Experiences, Racial Identity, and Achievement Motivation among Black College Students during the Transition to College

Authors: Tabbye Chavous, Felecia Webb, Bridget Richardson, Gloryvee Fonseca-Bolorin, Seanna Leath, Robert Sellers

Abstract:

There has been recent renewed attention to Black students’ experiences at predominantly White U.S. universities (PWIs), e.g., the #BBUM (“Being Black at the University of Michigan”), “I too am Harvard” social media campaigns, and subsequent student protest activities nationwide. These campaigns illuminate how many minority students encounter challenges to their racial/ethnic identities as they enter PWI contexts. Students routinely report experiences such as being ignored or treated as a token in classes, receiving messages of low academic expectations by faculty and peers, being questioned about their academic qualifications or belonging, being excluded from academic and social activities, and being racially profiled and harassed in the broader campus community due to race. Researchers have linked such racial marginalization and stigma experiences to student motivation and achievement. One potential mechanism is through the impact of college experiences on students’ identities, given the relevance of the college context for students’ personal identity development, including personal beliefs systems around social identities salient in this context. However, little research examines the impact of the college context on Black students’ racial identities. This study examined change in Black college students’ (N=329) racial identity beliefs over the freshman year at three predominantly White U.S. universities. Using cluster analyses, we identified profile groups reflecting different patterns of stability and change in students’ racial centrality (importance of race to overall self-concept), private regard (personal group affect/group pride), and public regard (perceptions of societal views of Blacks) from beginning of year (Time 1) to end of year (Time 2). Multinomial logit regression analyses indicated that the racial identity change clusters were predicted by pre-college background (racial composition of high school and neighborhood), as well as college-based experiences (racial discrimination, interracial friendships, and perceived campus racial climate). In particular, experiencing campus racial discrimination related to high, stable centrality, and decreases in private regard and public regard. Perceiving racial climates norms of institutional support for intergroup interactions on campus related to maintaining low and decreasing in private and public regard. Multivariate Analyses of Variance results showed change cluster effects on achievement motivation outcomes at the end of students’ academic year. Having high, stable centrality and high private regard related to more positive outcomes overall (academic competence, positive academic affect, academic curiosity and persistence). Students decreasing in private regard and public regard were particularly vulnerable to negative motivation outcomes. Findings support scholarship indicating both stability in racial identity beliefs and the importance of critical context transitions in racial identity development and adjustment outcomes among emerging adults. Findings also are consistent with research suggesting promotive effects of a strong, positive racial identity on student motivation, as well as research linking awareness of racial stigma to decreased academic engagement.

Keywords: diversity, motivation, learning, ethnic minority achievement, higher education

Procedia PDF Downloads 510
1400 Cloud-Based Multiresolution Geodata Cube for Efficient Raster Data Visualization and Analysis

Authors: Lassi Lehto, Jaakko Kahkonen, Juha Oksanen, Tapani Sarjakoski

Abstract:

The use of raster-formatted data sets in geospatial analysis is increasing rapidly. At the same time, geographic data are being introduced into disciplines outside the traditional domain of geoinformatics, like climate change, intelligent transport, and immigration studies. These developments call for better methods to deliver raster geodata in an efficient and easy-to-use manner. Data cube technologies have traditionally been used in the geospatial domain for managing Earth Observation data sets that have strict requirements for effective handling of time series. The same approach and methodologies can also be applied in managing other types of geospatial data sets. A cloud service-based geodata cube, called GeoCubes Finland, has been developed to support online delivery and analysis of most important geospatial data sets with national coverage. The main target group of the service is the academic research institutes in the country. The most significant aspects of the GeoCubes data repository include the use of multiple resolution levels, cloud-optimized file structure, and a customized, flexible content access API. Input data sets are pre-processed while being ingested into the repository to bring them into a harmonized form in aspects like georeferencing, sampling resolutions, spatial subdivision, and value encoding. All the resolution levels are created using an appropriate generalization method, selected depending on the nature of the source data set. Multiple pre-processed resolutions enable new kinds of online analysis approaches to be introduced. Analysis processes based on interactive visual exploration can be effectively carried out, as the level of resolution most close to the visual scale can always be used. In the same way, statistical analysis can be carried out on resolution levels that best reflect the scale of the phenomenon being studied. Access times remain close to constant, independent of the scale applied in the application. The cloud service-based approach, applied in the GeoCubes Finland repository, enables analysis operations to be performed on the server platform, thus making high-performance computing facilities easily accessible. The developed GeoCubes API supports this kind of approach for online analysis. The use of cloud-optimized file structures in data storage enables the fast extraction of subareas. The access API allows for the use of vector-formatted administrative areas and user-defined polygons as definitions of subareas for data retrieval. Administrative areas of the country in four levels are available readily from the GeoCubes platform. In addition to direct delivery of raster data, the service also supports the so-called virtual file format, in which only a small text file is first downloaded. The text file contains links to the raster content on the service platform. The actual raster data is downloaded on demand, from the spatial area and resolution level required in each stage of the application. By the geodata cube approach, pre-harmonized geospatial data sets are made accessible to new categories of inexperienced users in an easy-to-use manner. At the same time, the multiresolution nature of the GeoCubes repository facilitates expert users to introduce new kinds of interactive online analysis operations.

Keywords: cloud service, geodata cube, multiresolution, raster geodata

Procedia PDF Downloads 129
1399 Micro-Transformation Strategy Of Residential Transportation Space Based On The Demand Of Residents: Taking A Residential District In Wuhan, China As An Example

Authors: Hong Geng, Zaiyu Fan

Abstract:

With the acceleration of urbanization and motorization in China, the scale of cities and the travel distance of residents are constantly expanding, and the number of cars is continuously increasing, so the urban traffic problem is more and more serious. Traffic congestion, environmental pollution, energy consumption, travel safety and direct interference between traffic and other urban activities are increasingly prominent problems brought about by motorized development. This not only has a serious impact on the lives of the residents but also has a major impact on the healthy development of the city. The paper found that, in order to solve the development of motorization, a number of problems will arise; urban planning and traffic planning and design in residential planning often take into account the development of motorized traffic but neglects the demand for street life. This kind of planning has resulted in the destruction of the traditional communication space of the residential area, the pollution of noise and exhaust gas, and the potential safety risks of the residential area, which has disturbed the previously quiet and comfortable life of the residential area, resulting in the inconvenience of residents' life and the loss of street vitality. Based on these facts, this paper takes a residential area in Wuhan as the research object, through the actual investigation and research, from the perspective of micro-transformation analysis, combined with the concept of traffic micro-reconstruction governance. And research puts forward the residential traffic optimization strategies such as strengthening the interaction and connection between the residential area and the urban street system, street traffic classification and organization.

Keywords: micro-transformation, residential traffic, residents demand, traffic microcirculation

Procedia PDF Downloads 111
1398 Impact of Aging on Fatigue Performance of Novel Hybrid HMA

Authors: Faizan Asghar, Mohammad Jamal Khattak

Abstract:

Aging, in general, refers to changes in rheological characteristics of asphalt mixture due to changes in chemical composition over the course of construction and service life of the pavement. The main goal of this study was to investigate the impact of oxidation on fatigue characteristics of a novel HMA composite fabricated with a combination of crumb rubber (CRM) and polyvinyl alcohol (PVA) fiber subject to aging of 7 and 14 days. A flexural beam fatigue test was performed to evaluate several characteristics of control, CRM modified, PVA reinforced, and novel rubber-fiber HMA composite. Experimental results revealed that aging had a significant impact on the fatigue performance of novel HMA composite. It was found that a suitable proportion of CRM and PVA radically affected the performance of novel rubber-fiber HMA in resistance to fracture and fatigue cracking when subjected to long-term aging. The developed novel HMA composite containing 2% CRM and 0.2% PVA presented around 29 times higher resistance to fatigue cracking for a period of 7 days of aging. To develop a cumulative plastic deformation level of 250 micros, such a mixture required over 50 times higher cycles than control HMA. Moreover, the crack propagation rate was reduced by over 90%, with over 12 times higher energy required to propagate a unit crack length in such a mixture compared to conventional HMA. Further, digital imaging correlation analyses revealed a more twisted and convoluted fracture path and higher strain distribution in rubber-fiber HMA composite. The fatigue performance after long-term aging of such novel HMA composite explicitly validates the ability to withstand load repetition that could lead to an extension in the service life of pavement infrastructure and reduce taxpayers’ dollars spent.

Keywords: crumb rubber, PVA fibers, dry process, aging, performance testing, fatigue life

Procedia PDF Downloads 62
1397 Fabrication and Characterization Analysis of La-Sr-Co-Fe-O Perovskite Hollow Fiber Catalyst for Oxygen Removal in Landfill Gas

Authors: Seong Woon Lee, Soo Min Lim, Sung Sik Jeong, Jung Hoon Park

Abstract:

The atmospheric concentration of greenhouse gas (GHG, Green House Gas) is increasing continuously as a result of the combustion of fossil fuels and industrial development. In response to this trend, many researches have been conducted on the reduction of GHG. Landfill gas (LFG, Land Fill Gas) is one of largest sources of GHG emissions containing the methane (CH₄) as a major constituent and can be considered renewable energy sources as well. In order to use LFG by connecting to the city pipe network, it required a process for removing impurities. In particular, oxygen must be removed because it can cause corrosion of pipes and engines. In this study, methane oxidation was used to eliminate oxygen from LFG and perovskite-type ceramic catalysts of La-Sr-Co-Fe-O composition was selected as a catalyst. Hollow fiber catalysts (HFC, Hollow Fiber Catalysts) have attracted attention as a new concept alternative because they have high specific surface area and mechanical strength compared to other types of catalysts. HFC was prepared by a phase-inversion/sintering technique using commercial La-Sr-Co-Fe-O powder. In order to measure the catalysts' activity, simulated LFG was used for feed gas and complete oxidation reaction of methane was confirmed. Pore structure of the HFC was confirmed by SEM image and perovskite structure of single phase was analyzed by XRD. In addition, TPR analysis was performed to verify the oxygen adsorption mechanism of the HFC. Acknowledgement—The project is supported by the ‘Global Top Environment R&D Program’ in the ‘R&D Center for reduction of Non-CO₂ Greenhouse gases’ (Development and demonstration of oxygen removal technology of landfill gas) funded by Korea Ministry of Environment (ME).

Keywords: complete oxidation, greenhouse gas, hollow fiber catalyst, land fill gas, oxygen removal, perovskite catalyst

Procedia PDF Downloads 113
1396 Characterization and Monitoring of the Yarn Faults Using Diametric Fault System

Authors: S. M. Ishtiaque, V. K. Yadav, S. D. Joshi, J. K. Chatterjee

Abstract:

The DIAMETRIC FAULTS system has been developed that captures a bi-directional image of yarn continuously in sequentially manner and provides the detailed classification of faults. A novel mathematical framework developed on the acquired bi-directional images forms the basis of fault classification in four broad categories, namely, Thick1, Thick2, Thin and Normal Yarn. A discretised version of Radon transformation has been used to convert the bi-directional images into one-dimensional signals. Images were divided into training and test sample sets. Karhunen–Loève Transformation (KLT) basis is computed for the signals from the images in training set for each fault class taking top six highest energy eigen vectors. The fault class of the test image is identified by taking the Euclidean distance of its signal from its projection on the KLT basis for each sample realization and fault class in the training set. Euclidean distance applied using various techniques is used for classifying an unknown fault class. An accuracy of about 90% is achieved in detecting the correct fault class using the various techniques. The four broad fault classes were further sub classified in four sub groups based on the user set boundary limits for fault length and fault volume. The fault cross-sectional area and the fault length defines the total volume of fault. A distinct distribution of faults is found in terms of their volume and physical dimensions which can be used for monitoring the yarn faults. It has been shown from the configurational based characterization and classification that the spun yarn faults arising out of mass variation, exhibit distinct characteristics in terms of their contours, sizes and shapes apart from their frequency of occurrences.

Keywords: Euclidean distance, fault classification, KLT, Radon Transform

Procedia PDF Downloads 257
1395 Coupled Hydro-Geomechanical Modeling of Oil Reservoir Considering Non-Newtonian Fluid through a Fracture

Authors: Juan Huang, Hugo Ninanya

Abstract:

Oil has been used as a source of energy and supply to make materials, such as asphalt or rubber for many years. This is the reason why new technologies have been implemented through time. However, research still needs to continue increasing due to new challenges engineers face every day, just like unconventional reservoirs. Various numerical methodologies have been applied in petroleum engineering as tools in order to optimize the production of reservoirs before drilling a wellbore, although not all of these have the same efficiency when talking about studying fracture propagation. Analytical methods like those based on linear elastic fractures mechanics fail to give a reasonable prediction when simulating fracture propagation in ductile materials whereas numerical methods based on the cohesive zone method (CZM) allow to represent the elastoplastic behavior in a reservoir based on a constitutive model; therefore, predictions in terms of displacements and pressure will be more reliable. In this work, a hydro-geomechanical coupled model of horizontal wells in fractured rock was developed using ABAQUS; both extended element method and cohesive elements were used to represent predefined fractures in a model (2-D). A power law for representing the rheological behavior of fluid (shear-thinning, power index <1) through fractures and leak-off rate permeating to the matrix was considered. Results have been showed in terms of aperture and length of the fracture, pressure within fracture and fluid loss. It was showed a high infiltration rate to the matrix as power index decreases. A sensitivity analysis is conclusively performed to identify the most influential factor of fluid loss.

Keywords: fracture, hydro-geomechanical model, non-Newtonian fluid, numerical analysis, sensitivity analysis

Procedia PDF Downloads 199
1394 Modeling and Simulation of Honeycomb Steel Sandwich Panels under Blast Loading

Authors: Sayed M. Soleimani, Nader H. Ghareeb, Nourhan H. Shaker, Muhammad B. Siddiqui

Abstract:

Honeycomb sandwich panels have been widely used as protective structural elements against blast loading. The main advantages of these panels include their light weight due to the presence of voids, as well as their energy absorption capability. Terrorist activities have imposed new challenges to structural engineers to design protective measures for vital structures. Since blast loading is not usually considered in the load combinations during the design process of a structure, researchers around the world have been motivated to study the behavior of potential elements capable of resisting sudden loads imposed by the detonation of explosive materials. One of the best candidates for this objective is the honeycomb sandwich panel. Studying the effects of explosive materials on the panels requires costly and time-consuming experiments. Moreover, these type of experiments need permission from defense organizations which can become a hurdle. As a result, modeling and simulation using an appropriate tool can be considered as a good alternative. In this research work, the finite element package ABAQUS® is used to study the behavior of hexagonal and squared honeycomb steel sandwich panels under the explosive effects of different amounts of trinitrotoluene (TNT). The results of finite element modeling of a specific honeycomb configuration are initially validated by comparing them with the experimental results from literature. Afterwards, several configurations including different geometrical properties of the honeycomb wall are investigated and the results are compared with the original model. Finally, the effectiveness of the core shape and wall thickness are discussed, and conclusions are made.

Keywords: Abaqus, blast loading, finite element modeling, steel honeycomb sandwich panel

Procedia PDF Downloads 347
1393 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production

Authors: Behnam Mahdiyan Nasl

Abstract:

In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.

Keywords: biogas, cheese whey, cattle manure, energy

Procedia PDF Downloads 325
1392 Photocatalytic Hydrogen Production, Effect of Metal Particle Size and Their Electronic/Optical Properties on the Reaction

Authors: Hicham Idriss

Abstract:

Hydrogen production from water is one of the most promising methods to secure renewable sources or vectors of energy for societies in general and for chemical industries in particular. At present over 90% of the total amount of hydrogen produced in the world is made from non-renewable fossil fuels (via methane reforming). There are many methods for producing hydrogen from water and these include reducible oxide materials (solar thermal production), combined PV/electrolysis, artificial photosynthesis and photocatalysis. The most promising of these processes is the one relying on photocatalysis; yet serious challenges are hindering its success so far. In order to make this process viable considerable improvement of the photon conversion is needed. Among the key studies that our group has been conducting in the last few years are those focusing on synergism between the semiconductor phases, photonic band gap materials, pn junctions, plasmonic resonance responses, charge transfer to metal cations, in addition to metal dispersion and band gap engineering. In this work results related to phase transformation of the anatase to rutile in the case of TiO2 (synergism), of Au and Ag dispersion (electron trapping and hydrogen-hydrogen recombination centers) as well as their plasmon resonance response (visible light conversion) are presented and discussed. It is found for example that synergism between the two common phases of TiO2 (anatase and rutile) is sensitive to the initial particle size. It is also found, in agreement with previous results, that the rate is very sensitive to the amount of metals (with similar particle size) on the surface unlike the case of thermal heterogeneous catalysis.

Keywords: photo-catalysis, hydrogen production, water splitting, plasmonic

Procedia PDF Downloads 248
1391 Optimal Uses of Rainwater to Maintain Water Level in Gomti Nagar, Uttar Pradesh, India

Authors: Alok Saini, Rajkumar Ghosh

Abstract:

Water is nature's important resource for survival of all living things, but freshwater scarcity exists in some parts of world. This study has predicted that Gomti Nagar area (49.2 sq. km.) will harvest about 91110 ML of rainwater till 2051 (assuming constant and present annual rainfall). But 17.71 ML of rainwater was harvested from only 53 buildings in Gomti Nagar area in the year 2021. Water level will be increased (rise) by 13 cm in Gomti Nagar from such groundwater recharge. The total annual groundwater abstraction from Gomti Nagar area was 35332 ML (in 2021). Due to hydrogeological constraints and lower annual rainfall, groundwater recharge is less than groundwater abstraction. The recent scenario is only 0.07% of rainwater recharges by RTRWHs in Gomti Nagar. But if RTRWHs would be installed in all buildings then 12.39% of rainwater could recharge groundwater table in Gomti Nagar area. But if RTRWHs would be installed in all buildings then 12.39% of rainwater could recharge groundwater table in Gomti Nagar area. Gomti Nagar is situated in 'Zone–A' (water distribution area) and groundwater is the primary source of freshwater supply. Current scenario indicates only 0.07% of rainwater recharges by RTRWHs in Gomti Nagar. In Gomti Nagar, the difference between groundwater abstraction and recharge will be 735570 ML in 30 yrs. Statistically, all buildings at Gomti Nagar (new and renovated) could harvest 3037 ML of rainwater through RTRWHs annually. The most recent monsoonal recharge in Gomti Nagar was 10813 ML/yr. Harvested rainwater collected from RTRWHs can be used for rooftop irrigation, and residential kitchen and gardens (home grown fruit and vegetables). According to bylaws, RTRWH installations are required in both newly constructed and existing buildings plot areas of 300 sq. m or above. Harvested rainwater is of higher quality than contaminated groundwater. Harvested rainwater from RTRWHs can be considered water self-sufficient. Rooftop Rainwater Harvesting Systems (RTRWHs) are least expensive, eco-friendly, most sustainable, and alternative water resource for artificial recharge. This study also predicts about 3.9 m of water level rise in Gomti Nagar area till 2051, only when all buildings will install RTRWHs and harvest for groundwater recharging. As a result, this current study responds to an impact assessment study of RTRWHs implementation for the water scarcity problem in the Gomti Nagar area (1.36 sq.km.). This study suggests that common storage tanks (recharge wells) should be built for a group of at least ten (10) households and optimal amount of harvested rainwater will be stored annually. Artificial recharge from alternative water sources will be required to improve the declining water level trend and balance the groundwater table in this area. This over-exploitation of groundwater may lead to land subsidence, and development of vertical cracks.

Keywords: aquifer, aquitard, artificial recharge, bylaws, groundwater, monsoon, rainfall, rooftop rainwater harvesting system, RTRWHs water table, water level

Procedia PDF Downloads 85
1390 Experimental Research of Smoke Impact on the Performance of Cylindrical Eight Channel Cyclone

Authors: Pranas Baltrėnas, Dainius Paliulis

Abstract:

Cyclones are widely used for separating particles from gas in energy production objects. Efficiency of normal centrifugal air cleaning devices ranges from 85 to 90%, but weakness of many cyclones is low collection efficiency of particles less than 10 μm in diameter. Many factors have impact on cyclone efficiency – humidity, temperature, gas (air) composition, airflow velocity and etc. Many scientists evaluated only effect of origin and size of PM on cyclone efficiency. Effect of gas (air) composition and temperature on cyclone efficiency still demands contributions. Complex experimental research on efficiency of cylindrical eight-channel system with adjustable half-rings for removing fine dispersive particles (< 20 μm) was carried out. The impact of gaseous smoke components on removal of wood ashes was analyzed. Gaseous components, present in the smoke mixture, with the dynamic viscosity lower than that of same temperature air, decrease the d50 value, simultaneously increasing the overall particulate matter removal efficiency in the cyclone, i.e. this effect is attributed to CO2 and CO, while O2 and NO have the opposite effect. Air temperature influences the d50 value, an increase in air temperature yields an increase in d50 value, i.e. the overall particulate matter removal efficiency declines, the reason for this being an increasing dynamic air viscosity. At 120 °C temperature the d50 value is approximately 11.8 % higher than at air temperature of 20 °C. With an increase in smoke (gas) temperature from 20 °C to 50 °C, the aerodynamic resistance in a 1-tier eight-channel cylindrical cyclone drops from 1605 to 1380 Pa, from 1660 to 1420 Pa in a 2-tier eight-channel cylindrical cyclone, from 1715 to 1450 Pa in a 3-tier eight-channel cylindrical cyclone. The reason for a decline in aerodynamic resistance is the declining gas density. The aim of the paper is to analyze the impact of gaseous smoke components on the eight–channel cyclone with tangential inlet.

Keywords: cyclone, adjustable half-rings, particulate matter, efficiency, gaseous compounds, smoke

Procedia PDF Downloads 282