Search results for: task replication
813 Self-Efficacy and Attitude of the Graduating Pre-Service Teachers as Influenced in Their Student Teaching Performance
Authors: Sonia Arradaza-Pajaron, Maria Aida Manila
Abstract:
Teaching is considered the noblest yet believed to be one of the most complicated and challenging professions. Along this view, every teacher-producing institution should look into producing quality pre-service graduates who are efficacious enough with the right attitude and to deal with the task accorded to them. This study investigated the association between self-efficacy and attitude of graduating pre-service teachers with their actual student teaching performance. Survey questionnaires on self-efficacy and attitude toward practice teaching were fielded to the 90 actual respondents while their practice teaching grade was extracted to serve as the other main variable. Data were analyzed and treated statistically utilizing weighted mean and Pearson r to determine the relationship of variables of the study. Findings revealed that attitude of respondents of the three curricular programs was favorable, and they are self-efficacious. Their practice teaching performance was interpreted as very good. Results further showed a significant positive relationship between their self-efficacy and practice teaching performance. It showed that their rating was a manifestation of self- efficacious group. Although they exude positive attitude towards practice teaching, yet no significant relationship was seen with their attitude and performance. Moreover, data manifested that most of them can pay attention during their conduct of lessons in the class, as well as, listen attentively to their cooperating teachers during post conferences. They can perform student teaching tasks better even when there were other interesting things to do. Most of all, they can regulate or suppress not so pleasant thoughts or feelings and take things lightly even in most challenging situations. As gleaned from the results, it can be concluded that there was an association between self-efficacy and practice teaching performance of the respondents.Keywords: academic achievement, attitude, self-efficacy, student teaching performance
Procedia PDF Downloads 316812 A Questionnaire-Based Survey: Therapists Response towards Upper Limb Disorder Learning Tool
Authors: Noor Ayuni Che Zakaria, Takashi Komeda, Cheng Yee Low, Kaoru Inoue, Fazah Akhtar Hanapiah
Abstract:
Previous studies have shown that there are arguments regarding the reliability and validity of the Ashworth and Modified Ashworth Scale towards evaluating patients diagnosed with upper limb disorders. These evaluations depended on the raters’ experiences. This initiated us to develop an upper limb disorder part-task trainer that is able to simulate consistent upper limb disorders, such as spasticity and rigidity signs, based on the Modified Ashworth Scale to improve the variability occurring between raters and intra-raters themselves. By providing consistent signs, novice therapists would be able to increase training frequency and exposure towards various levels of signs. A total of 22 physiotherapists and occupational therapists participated in the study. The majority of the therapists agreed that with current therapy education, they still face problems with inter-raters and intra-raters variability (strongly agree 54%; n = 12/22, agree 27%; n = 6/22) in evaluating patients’ conditions. The therapists strongly agreed (72%; n = 16/22) that therapy trainees needed to increase their frequency of training; therefore believe that our initiative to develop an upper limb disorder training tool will help in improving the clinical education field (strongly agree and agree 63%; n = 14/22).Keywords: upper limb disorder, clinical education tool, inter/intra-raters variability, spasticity, modified Ashworth scale
Procedia PDF Downloads 311811 Analysis of the Engineering Judgement Influence on the Selection of Geotechnical Parameters Characteristic Values
Authors: K. Ivandic, F. Dodigovic, D. Stuhec, S. Strelec
Abstract:
A characteristic value of certain geotechnical parameter results from an engineering assessment. Its selection has to be based on technical principles and standards of engineering practice. It has been shown that the results of engineering assessment of different authors for the same problem and input data are significantly dispersed. A survey was conducted in which participants had to estimate the force that causes a 10 cm displacement at the top of a axially in-situ compressed pile. Fifty experts from all over the world took part in it. The lowest estimated force value was 42% and the highest was 133% of measured force resulting from a mentioned static pile load test. These extreme values result in significantly different technical solutions to the same engineering task. In case of selecting a characteristic value of a geotechnical parameter the importance of the influence of an engineering assessment can be reduced by using statistical methods. An informative annex of Eurocode 1 prescribes the method of selecting the characteristic values of material properties. This is followed by Eurocode 7 with certain specificities linked to selecting characteristic values of geotechnical parameters. The paper shows the procedure of selecting characteristic values of a geotechnical parameter by using a statistical method with different initial conditions. The aim of the paper is to quantify an engineering assessment in the example of determining a characteristic value of a specific geotechnical parameter. It is assumed that this assessment is a random variable and that its statistical features will be determined. For this purpose, a survey research was conducted among relevant experts from the field of geotechnical engineering. Conclusively, the results of the survey and the application of statistical method were compared.Keywords: characteristic values, engineering judgement, Eurocode 7, statistical methods
Procedia PDF Downloads 297810 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations
Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay
Abstract:
Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.Keywords: machining, milling operation, tool condition monitoring, tool wear prediction
Procedia PDF Downloads 303809 Refined Edge Detection Network
Authors: Omar Elharrouss, Youssef Hmamouche, Assia Kamal Idrissi, Btissam El Khamlichi, Amal El Fallah-Seghrouchni
Abstract:
Edge detection is represented as one of the most challenging tasks in computer vision, due to the complexity of detecting the edges or boundaries in real-world images that contains objects of different types and scales like trees, building as well as various backgrounds. Edge detection is represented also as a key task for many computer vision applications. Using a set of backbones as well as attention modules, deep-learning-based methods improved the detection of edges compared with the traditional methods like Sobel and Canny. However, images of complex scenes still represent a challenge for these methods. Also, the detected edges using the existing approaches suffer from non-refined results while the image output contains many erroneous edges. To overcome this, n this paper, by using the mechanism of residual learning, a refined edge detection network is proposed (RED-Net). By maintaining the high resolution of edges during the training process, and conserving the resolution of the edge image during the network stage, we make the pooling outputs at each stage connected with the output of the previous layer. Also, after each layer, we use an affined batch normalization layer as an erosion operation for the homogeneous region in the image. The proposed methods are evaluated using the most challenging datasets including BSDS500, NYUD, and Multicue. The obtained results outperform the designed edge detection networks in terms of performance metrics and quality of output images.Keywords: edge detection, convolutional neural networks, deep learning, scale-representation, backbone
Procedia PDF Downloads 103808 The Impact of Maternity Leave Reforms: Evidence from Finland
Authors: Claudia Troccoli
Abstract:
Childbearing constitutes one of the key factors affecting labour market differences between men and women, accounting for almost a quarter of the gender wage gap. Family leave policies, such as maternity, paternity, and parental leave, represent potential key policy tools to address these inequalities, as they can promote mothers' job continuity and career progression. This paper analyses four major reforms implemented in Finland between the 1960s and the early 1980s. It studies the effects of these maternity and parental leave extensions on mothers' short- and long-run labour market outcomes. Eligibility to longer leave was determined on the basis of the child's date of birth. Therefore, estimation of the causal effects of the reforms is possible by exploiting random variation in children's birthdates and comparing the outcomes of mothers giving birth just before and just after the reform cutoff date. Overall, the three maternity leave reforms did not significantly improve mothers' earnings or employment rates. On the contrary, the estimates, although imprecise, seem to indicate negative effects on women's labour market outcomes. The extension of parental leave is, on the other hand, the only reform that improved mothers' short- and long-term labour market outcomes, both in terms of earnings and employment rate. At the same time, fathers appeared to be negatively affected by the reform. These results provide suggestive evidence that shareable parental leave might have more beneficial effects on mothers' job continuity, as it weakens the connotation of childcare as a task reserved for mothers.Keywords: family policies, Finland, maternal labour market outcomes, maternity leave
Procedia PDF Downloads 137807 Anomaly Detection of Log Analysis using Data Visualization Techniques for Digital Forensics Audit and Investigation
Authors: Mohamed Fadzlee Sulaiman, Zainurrasyid Abdullah, Mohd Zabri Adil Talib, Aswami Fadillah Mohd Ariffin
Abstract:
In common digital forensics cases, investigation may rely on the analysis conducted on specific and relevant exhibits involved. Usually the investigation officer may define and advise digital forensic analyst about the goals and objectives to be achieved in reconstructing the trail of evidence while maintaining the specific scope of investigation. With the technology growth, people are starting to realize the importance of cyber security to their organization and this new perspective creates awareness that digital forensics auditing must come in place in order to measure possible threat or attack to their cyber-infrastructure. Instead of performing investigation on incident basis, auditing may broaden the scope of investigation to the level of anomaly detection in daily operation of organization’s cyber space. While handling a huge amount of data such as log files, performing digital forensics audit for large organization proven to be onerous task for the analyst either to analyze the huge files or to translate the findings in a way where the stakeholder can clearly understand. Data visualization can be emphasized in conducting digital forensic audit and investigation to resolve both needs. This study will identify the important factors that should be considered to perform data visualization techniques in order to detect anomaly that meet the digital forensic audit and investigation objectives.Keywords: digital forensic, data visualization, anomaly detection , log analysis, forensic audit, visualization techniques
Procedia PDF Downloads 287806 Knowledge Based Behaviour Modelling and Execution in Service Robotics
Authors: Suraj Nair, Aravindkumar Vijayalingam, Alexander Perzylo, Alois Knoll
Abstract:
In the last decade robotics research and development activities have grown rapidly, especially in the domain of service robotics. Integrating service robots into human occupied spaces such as homes, offices, hospitals, etc. has become increasingly worked upon. The primary motive is to ease daily lives of humans by taking over some of the household/office chores. However, several challenges remain in systematically integrating such systems in human shared work-spaces. In addition to sensing and indoor-navigation challenges, programmability of such systems is a major hurdle due to the fact that the potential user cannot be expected to have knowledge in robotics or similar mechatronic systems. In this paper, we propose a cognitive system for service robotics which allows non-expert users to easily model system behaviour in an underspecified manner through abstract tasks and objects associated with them. The system uses domain knowledge expressed in the form of an ontology along with logical reasoning mechanisms to infer all the missing pieces of information required for executing the tasks. Furthermore, the system is also capable of recovering from failed tasks arising due to on-line disturbances by using the knowledge base and inferring alternate methods to execute the same tasks. The system is demonstrated through a coffee fetching scenario in an office environment using a mobile robot equipped with sensors and software capabilities for autonomous navigation and human-interaction through natural language.Keywords: cognitive robotics, reasoning, service robotics, task based systems
Procedia PDF Downloads 244805 Automated User Story Driven Approach for Web-Based Functional Testing
Authors: Mahawish Masud, Muhammad Iqbal, M. U. Khan, Farooque Azam
Abstract:
Manual writing of test cases from functional requirements is a time-consuming task. Such test cases are not only difficult to write but are also challenging to maintain. Test cases can be drawn from the functional requirements that are expressed in natural language. However, manual test case generation is inefficient and subject to errors. In this paper, we have presented a systematic procedure that could automatically derive test cases from user stories. The user stories are specified in a restricted natural language using a well-defined template. We have also presented a detailed methodology for writing our test ready user stories. Our tool “Test-o-Matic” automatically generates the test cases by processing the restricted user stories. The generated test cases are executed by using open source Selenium IDE. We evaluate our approach on a case study, which is an open source web based application. Effectiveness of our approach is evaluated by seeding faults in the open source case study using known mutation operators. Results show that the test case generation from restricted user stories is a viable approach for automated testing of web applications.Keywords: automated testing, natural language, restricted user story modeling, software engineering, software testing, test case specification, transformation and automation, user story, web application testing
Procedia PDF Downloads 388804 Machine Learning Strategies for Data Extraction from Unstructured Documents in Financial Services
Authors: Delphine Vendryes, Dushyanth Sekhar, Baojia Tong, Matthew Theisen, Chester Curme
Abstract:
Much of the data that inform the decisions of governments, corporations and individuals are harvested from unstructured documents. Data extraction is defined here as a process that turns non-machine-readable information into a machine-readable format that can be stored, for instance, in a database. In financial services, introducing more automation in data extraction pipelines is a major challenge. Information sought by financial data consumers is often buried within vast bodies of unstructured documents, which have historically required thorough manual extraction. Automated solutions provide faster access to non-machine-readable datasets, in a context where untimely information quickly becomes irrelevant. Data quality standards cannot be compromised, so automation requires high data integrity. This multifaceted task is broken down into smaller steps: ingestion, table parsing (detection and structure recognition), text analysis (entity detection and disambiguation), schema-based record extraction, user feedback incorporation. Selected intermediary steps are phrased as machine learning problems. Solutions leveraging cutting-edge approaches from the fields of computer vision (e.g. table detection) and natural language processing (e.g. entity detection and disambiguation) are proposed.Keywords: computer vision, entity recognition, finance, information retrieval, machine learning, natural language processing
Procedia PDF Downloads 114803 Light-Weight Network for Real-Time Pose Estimation
Authors: Jianghao Hu, Hongyu Wang
Abstract:
The effective and efficient human pose estimation algorithm is an important task for real-time human pose estimation on mobile devices. This paper proposes a light-weight human key points detection algorithm, Light-Weight Network for Real-Time Pose Estimation (LWPE). LWPE uses light-weight backbone network and depthwise separable convolutions to reduce parameters and lower latency. LWPE uses the feature pyramid network (FPN) to fuse the high-resolution, semantically weak features with the low-resolution, semantically strong features. In the meantime, with multi-scale prediction, the predicted result by the low-resolution feature map is stacked to the adjacent higher-resolution feature map to intermediately monitor the network and continuously refine the results. At the last step, the key point coordinates predicted in the highest-resolution are used as the final output of the network. For the key-points that are difficult to predict, LWPE adopts the online hard key points mining strategy to focus on the key points that hard predicting. The proposed algorithm achieves excellent performance in the single-person dataset selected in the AI (artificial intelligence) challenge dataset. The algorithm maintains high-precision performance even though the model only contains 3.9M parameters, and it can run at 225 frames per second (FPS) on the generic graphics processing unit (GPU).Keywords: depthwise separable convolutions, feature pyramid network, human pose estimation, light-weight backbone
Procedia PDF Downloads 154802 Voice Liveness Detection Using Kolmogorov Arnold Networks
Authors: Arth J. Shah, Madhu R. Kamble
Abstract:
Voice biometric liveness detection is customized to certify an authentication process of the voice data presented is genuine and not a recording or synthetic voice. With the rise of deepfakes and other equivalently sophisticated spoofing generation techniques, it’s becoming challenging to ensure that the person on the other end is a live speaker or not. Voice Liveness Detection (VLD) system is a group of security measures which detect and prevent voice spoofing attacks. Motivated by the recent development of the Kolmogorov-Arnold Network (KAN) based on the Kolmogorov-Arnold theorem, we proposed KAN for the VLD task. To date, multilayer perceptron (MLP) based classifiers have been used for the classification tasks. We aim to capture not only the compositional structure of the model but also to optimize the values of univariate functions. This study explains the mathematical as well as experimental analysis of KAN for VLD tasks, thereby opening a new perspective for scientists to work on speech and signal processing-based tasks. This study emerges as a combination of traditional signal processing tasks and new deep learning models, which further proved to be a better combination for VLD tasks. The experiments are performed on the POCO and ASVSpoof 2017 V2 database. We used Constant Q-transform, Mel, and short-time Fourier transform (STFT) based front-end features and used CNN, BiLSTM, and KAN as back-end classifiers. The best accuracy is 91.26 % on the POCO database using STFT features with the KAN classifier. In the ASVSpoof 2017 V2 database, the lowest EER we obtained was 26.42 %, using CQT features and KAN as a classifier.Keywords: Kolmogorov Arnold networks, multilayer perceptron, pop noise, voice liveness detection
Procedia PDF Downloads 44801 Design of a Permanent Magnet Based Focusing Lens for a Miniature Klystron
Authors: Kumud Singh, Janvin Itteera, Priti Ukarde, Sanjay Malhotra, P. PMarathe, Ayan Bandyopadhay, Rakesh Meena, Vikram Rawat, L. M. Joshi
Abstract:
Application of Permanent magnet technology to high frequency miniature klystron tubes to be utilized for space applications improves the efficiency and operational reliability of these tubes. But nevertheless the task of generating magnetic focusing forces to eliminate beam divergence once the beam crosses the electrostatic focusing regime and enters the drift region in the RF section of the tube throws several challenges. Building a high quality magnet focusing lens to meet beam optics requirement in cathode gun and RF interaction region is considered to be one of the critical issues for these high frequency miniature tubes. In this paper, electromagnetic design and particle trajectory studies in combined electric and magnetic field for optimizing the magnetic circuit using 3D finite element method (FEM) analysis software is presented. A rectangular configuration of the magnet was constructed to accommodate apertures for input and output waveguide sections and facilitate coupling of electromagnetic fields into the input klystron cavity and out from output klystron cavity through coupling loops. Prototype lenses have been built and have been tested after integration with the klystron tube. We discuss the design requirements and challenges, and the results from beam transmission of the prototype lens.Keywords: beam transmission, Brillouin, confined flow, miniature klystron
Procedia PDF Downloads 446800 Woodcast Is Ecologically Sound and Tolerated by Majority of Patients
Authors: R. Hassan, J. Duncombe, E. Darke, A. Dias, K. Anderson, R. G. Middleton
Abstract:
Background: NHS England has set itself the task of delivering a “Net Zero” National Health service by 2040. It is incumbent upon all health care practioners to work towards this goal. Orthopaedic surgeons are no exception. Distal radial fractures are the most common fractures sustained by the adult population. However, studiesare shortcoming on individual patient experience. The aim of this study was to assess the patient’ssatisfaction and outcomes with woodcast used in the conservative management of distal radius fractures. Methods: For all patients managed with woodcast in our unit, we undertook a structured questionnairethat included the Patient Rated Wrist Evaluation (PRWE) score, The EQ-5D-5L score, and the pain numerical score at the time of injury and six weeks after. Results: 30 patients were initially managed with woodcast.80% of patients tolerated woodcast for the full duration of their treatment. Of these, 20% didn’t tolerate woodcast and had their casts removed within 48 hours. Of the remaining, 79.1% were satisfied about woodcast comfort, 66% were very satisfied about woodcast weight, 70% were satisfied with temperature and sweatiness, 62.5% were very satisfied about the smell/odour, and 75% were satisfied about the level of support woodcast provided. During their treatment, 83.3% of patients rated their pain as five or less. Conclusion: For those who completed their treatment in woodcast, none required any further intervention or utilised the open appointment because of ongoing wrist problems. In conclusion, when woodcast is tolerated, patients’ satisfaction and outcome levels were good. However, we acknowledged 20% of patients in our series were not able to tolerate woodacst, Therefore, we suggest a comparison between the widely used synthetic plaster of Pariscasting and woodcast to come in order.Keywords: distal radius fractures, ecological cast, sustainability, woodcast
Procedia PDF Downloads 85799 Raising Linguistic Awareness through Metalinguistic Written Corrective Feedback
Authors: Orit Zeevy-Solovey
Abstract:
Grammar has traditionally been taught for its own sake, emphasizing rules and drills. However, in recent years, more emphasis is given to communicative competence. Current research suggests that form-focused instruction is notably efficient when incorporated in a meaningful communicative context. It is maintained that writing tasks related to the students’ academic fields will encourage them to express themselves openly in topics that are close to their hearts, without feeling too uneasy about grammatical forms. The teacher can further reduce students’ apprehension of grammar by announcing that credit will be given for merely doing the task and that grammar mistakes will not affect the grade. Students’ linguistic errors can then be corrected by giving metalinguistic feedback which involves providing learners with some kind of explicit remark about the nature of the errors they have made. Research has also shown that learners’ developmental readiness is an important factor influencing the effectiveness of written corrective feedback. Larger effect sizes appear as the proficiency level is higher. The purposes of this paper are to demonstrate how grammar can be taught indirectly through writing tasks, and more specifically, how the use of metalinguistic written corrective feedback given to advanced English as a Foreign Language (EFL) students can raise their linguistic awareness. Since errors are not directly corrected, the students have to work out the corrections needed through exploring grammar books and websites. Longitudinal studies of metalinguistic written corrective feedback comparing the number of errors in students’ first and fourth compositions have shown a decrease in errors.Keywords: EFL, linguistic awareness, metalinguistic corrective feedback, teaching grammar through writing
Procedia PDF Downloads 135798 Using Cyclic Structure to Improve Inference on Network Community Structure
Authors: Behnaz Moradijamei, Michael Higgins
Abstract:
Identifying community structure is a critical task in analyzing social media data sets often modeled by networks. Statistical models such as the stochastic block model have proven to explain the structure of communities in real-world network data. In this work, we develop a goodness-of-fit test to examine community structure's existence by using a distinguishing property in networks: cyclic structures are more prevalent within communities than across them. To better understand how communities are shaped by the cyclic structure of the network rather than just the number of edges, we introduce a novel method for deciding on the existence of communities. We utilize these structures by using renewal non-backtracking random walk (RNBRW) to the existing goodness-of-fit test. RNBRW is an important variant of random walk in which the walk is prohibited from returning back to a node in exactly two steps and terminates and restarts once it completes a cycle. We investigate the use of RNBRW to improve the performance of existing goodness-of-fit tests for community detection algorithms based on the spectral properties of the adjacency matrix. Our proposed test on community structure is based on the probability distribution of eigenvalues of the normalized retracing probability matrix derived by RNBRW. We attempt to make the best use of asymptotic results on such a distribution when there is no community structure, i.e., asymptotic distribution under the null hypothesis. Moreover, we provide a theoretical foundation for our statistic by obtaining the true mean and a tight lower bound for RNBRW edge weights variance.Keywords: hypothesis testing, RNBRW, network inference, community structure
Procedia PDF Downloads 152797 The Difference in Basic Skills among Different Positional Players in Football
Authors: Habib Sk, Ashoke Kumar Biswas
Abstract:
Football is a team game. Eleven players of each team are arranged in different positions of play to serve the specific task during a game situation. Some such basic positions in a soccer game are (i) goal keepers (ii) defenders (iii) midfielders and (iv) forwards. Irrespective of the position, it is required for all football players to learn and get skilled in basic soccer skills like passing, receiving, heading, throwing, dribbling, etc. The purpose of the study was to find out the difference in these basic soccer skills among positional players in football if any. A total of thirty-nine (39) teen aged football players between 13 to 19 years were selected from Hooghly district in West Bengal, India, as subjects. Out of them, there were seven (7) goal keepers, twelve (12) defenders, thirteen (13) midfielders, and seven (7) forwards. Passing, dribbling, tackling, heading, and receiving were the selected basic soccer skills. The performance of the subjects of different positional groups in different selected soccer skills was tested using a standard test for each. On the basis of results obtained through statistical analysis of data, following results were obtained: i) there was significant difference among the groups in passing, dribbling and heading but not in receiving; ii) the goal keepers and defenders were the weakest in all selected soccer skills; iii) midfielders were found better in receiving than other three skills of passing, dribbling and heading; and iv) the forward group of players was found to be the better in passing, dribbling and heading but weakest in receiving than other groups.Keywords: performance, difference, skill, fundamental, soccer, position
Procedia PDF Downloads 146796 An Analysis of L1 Effects on the Learning of EFL: A Case Study of Undergraduate EFL Learners at Universities in Pakistan
Authors: Nadir Ali Mugheri, Shaukat Ali Lohar
Abstract:
In a multilingual society like Pakistan, code switching is commonly observed in different contexts. Mostly people use L1 (Native Languages) and L2 for common communications and L3 (i.e. English, Urdu, Sindhi) in formal contexts and for academic writings. Such a frequent code switching does affect EFL learners' acquisition of grammar and lexis of the target language which in the long run result in different types of errors in their writings. The current study is to investigate and identify common elements of L1 and L2 (spoken by students of the Universities in Pakistan) which create hindrances for EFL learners. Case study method was used for this research. Formal writings of 400 EFL learners (as participants from various Universities of the country) were observed. Among 400 participants, 200 were female and 200 were male EFL learners having different academic backgrounds. Errors found were categorized into different types according to grammatical items, the difference in meanings, structure of sentences and identifiers of tenses of L1 or L2 in comparison with those of the target language. The findings showed that EFL learners in Pakistani varsities have serious problems in their writings and they committed serious errors related to the grammar and meanings of the target language. After analysis of the committed errors, the results were found in the affirmation of the hypothesis that L1 or L2 does affect EFL learners. The research suggests in the end to adopt natural ways in pedagogy like task-based learning or communicative methods using contextualized material so as to avoid impediments of L1 or L2 in acquisition the target language.Keywords: multilingualism, L2 acquisition, code switching, language acquisition, communicative language teaching
Procedia PDF Downloads 291795 Impact of Story-Telling through Indian Textiles: Mata Ni Pachedi and Pabuji Ki Phad
Authors: Lavina N. Bhaskar, Ashima Tiwari
Abstract:
In the endeavour of connecting culture to stories, textile to narratives and people to material, authors analyse the impact of narratives in two popular Indian textiles namely - Mata Ni Pachedi and Pabuji Ki Phad. These textiles narrate people’s tale or Folk tale. Each textile has a style or format in which the story is told (and it is visual). Mata Ni Pachedi, when translated into the English language literally means behind the mother goddess. Mata Ni Pachedi is an Indian textile from the province of Gujarat which constitutes an entire temple of the goddess, with the idol herself in it. On the other hand, Pabuji ki Phad is scroll painting of folk deities of Rajasthan, narrated by Bhopas (the Priest singers of Rajasthan). These textiles narrate stories of ordinary people with extraordinary courage, of social reform, and people’s belief in the divine. Authors take to task their years of craft-cluster study conducted in the past and use existing literature to map their journey in the preliminary phase of research. And then carried out an ethnographic study by visiting the origins of these textiles in Rajasthan and Gujrat (in India), met artisans and their families who are still practicing these dying art form, in order to understand the format and impact of textile story-telling. This research paper talks about the narrative in Indian textiles; the stories in them, artisans and their life as metaphorical representations of the People in Mata Ni Pachedi and Pabuji Ki Phad.Keywords: cultural derivatives, folk-tale, Indo-Narratives, Indology
Procedia PDF Downloads 408794 An Approach to Secure Mobile Agent Communication in Multi-Agent Systems
Authors: Olumide Simeon Ogunnusi, Shukor Abd Razak, Michael Kolade Adu
Abstract:
Inter-agent communication manager facilitates communication among mobile agents via message passing mechanism. Until now, all Foundation for Intelligent Physical Agents (FIPA) compliant agent systems are capable of exchanging messages following the standard format of sending and receiving messages. Previous works tend to secure messages to be exchanged among a community of collaborative agents commissioned to perform specific tasks using cryptosystems. However, the approach is characterized by computational complexity due to the encryption and decryption processes required at the two ends. The proposed approach to secure agent communication allows only agents that are created by the host agent server to communicate via the agent communication channel provided by the host agent platform. These agents are assumed to be harmless. Therefore, to secure communication of legitimate agents from intrusion by external agents, a 2-phase policy enforcement system was developed. The first phase constrains the external agent to run only on the network server while the second phase confines the activities of the external agent to its execution environment. To implement the proposed policy, a controller agent was charged with the task of screening any external agent entering the local area network and preventing it from migrating to the agent execution host where the legitimate agents are running. On arrival of the external agent at the host network server, an introspector agent was charged to monitor and restrain its activities. This approach secures legitimate agent communication from Man-in-the Middle and Replay attacks.Keywords: agent communication, introspective agent, isolation of agent, policy enforcement system
Procedia PDF Downloads 298793 Using Assessment Criteria as a Pedagogic Tool to Develop Argumentative Essay Writing
Authors: Sruti Akula
Abstract:
Assessment criteria are mostly used for assessing skills like writing and speaking. However, they could be used as a pedagogic tool to develop writing skills. A study was conducted with higher secondary learners (Class XII Kendriya Vidyalaya) to investigate the effectiveness of assessment criteria to develop argumentative essay writing. In order to raise awareness about the features of argumentative essay, assessment criteria were shared with the learners. Along with that, self-evaluation checklists were given to the learners to guide them through the writing process. During the study learners wrote multiple drafts with the help of assessment criteria, self-evaluation checklists and teacher feedback at different stages of their writing. It was observed that learners became more aware of the features of argumentative essay which in turn improved their argumentative essay writing. In addition the self evaluation checklists imporved their ability to reflect on their work there by increasing learner autonomy in the class. Hence, it can be claimed that both assessment criteria and self evaluation checklists are effective pedagogic tools to develop argumentative essay writing. Thus, teachers can be trained to create and use tools like assessment criteria and self-evaluation checklists to develop learners’ writing skills in an effective way. The presentation would discuss the approach adopted in the study to teach argumentative essay writing along with the rationale. The tools used in the study would be shared and the data collected in the form of written scripts, self-evaluation checklists and student interviews will be analyzed to validate the claims. Finally, the practical implication of the study like the ways of using assessment criteria and checklists to raise learner awareness and autonomy, using such tools to keep the learners informed about the task requirements and genre features, and the like will be put forward.Keywords: argumentative essay writing, assessment criteria, self evaluation checklists, pedagogic
Procedia PDF Downloads 513792 Decision-Making Under Uncertainty in Obsessive-Compulsive Disorder
Authors: Helen Pushkarskaya, David Tolin, Lital Ruderman, Ariel Kirshenbaum, J. MacLaren Kelly, Christopher Pittenger, Ifat Levy
Abstract:
Obsessive-Compulsive Disorder (OCD) produces profound morbidity. Difficulties with decision making and intolerance of uncertainty are prominent clinical features of OCD. The nature and etiology of these deficits are poorly understood. We used a well-validated choice task, grounded in behavioral economic theory, to investigate differences in valuation and value-based choice during decision making under uncertainty in 20 unmedicated participants with OCD and 20 matched healthy controls. Participants’ choices were used to assess individual decision-making characteristics. Compared to controls, individuals with OCD were less consistent in their choices and less able to identify options that were unambiguously preferable. These differences correlated with symptom severity. OCD participants did not differ from controls in how they valued uncertain options when outcome probabilities were known (risk) but were more likely than controls to avoid uncertain options when these probabilities were imprecisely specified (ambiguity). These results suggest that the underlying neural mechanisms of valuation and value-based choices during decision-making are abnormal in OCD. Individuals with OCD show elevated intolerance of uncertainty, but only when outcome probabilities are themselves uncertain. Future research focused on the neural valuation network, which is implicated in value-based computations, may provide new neurocognitive insights into the pathophysiology of OCD. Deficits in decision-making processes may represent a target for therapeutic intervention.Keywords: obsessive compulsive disorder, decision-making, uncertainty intolerance, risk aversion, ambiguity aversion, valuation
Procedia PDF Downloads 616791 Valence and Arousal-Based Sentiment Analysis: A Comparative Study
Authors: Usama Shahid, Muhammad Zunnurain Hussain
Abstract:
This research paper presents a comprehensive analysis of a sentiment analysis approach that employs valence and arousal as its foundational pillars, in comparison to traditional techniques. Sentiment analysis is an indispensable task in natural language processing that involves the extraction of opinions and emotions from textual data. The valence and arousal dimensions, representing the intensity and positivity/negativity of emotions, respectively, enable the creation of four quadrants, each representing a specific emotional state. The study seeks to determine the impact of utilizing these quadrants to identify distinct emotional states on the accuracy and efficiency of sentiment analysis, in comparison to traditional techniques. The results reveal that the valence and arousal-based approach outperforms other approaches, particularly in identifying nuanced emotions that may be missed by conventional methods. The study's findings are crucial for applications such as social media monitoring and market research, where the accurate classification of emotions and opinions is paramount. Overall, this research highlights the potential of using valence and arousal as a framework for sentiment analysis and offers invaluable insights into the benefits of incorporating specific types of emotions into the analysis. These findings have significant implications for researchers and practitioners in the field of natural language processing, as they provide a basis for the development of more accurate and effective sentiment analysis tools.Keywords: sentiment analysis, valence and arousal, emotional states, natural language processing, machine learning, text analysis, sentiment classification, opinion mining
Procedia PDF Downloads 102790 Cultural Stereotypes in EFL Classrooms and Their Implications on English Language Procedures in Cameroon
Authors: Eric Enongene Ekembe
Abstract:
Recent calls on EFL teaching posit the centrality of context factors and argue for a correlation between effectiveness in teaching with the learners’ culture in the EFL classroom. Context is not everything; it is defined with indicators of learners’ cultural artifacts and stereotypes in meaningful interactions in the language classroom. In keeping with this, it is difficult to universalise pedagogic procedures given that appropriate procedures are context-sensitive- and contexts differ. It is necessary to investigate what counts as cultural specificities or stereotypes of specific learners to reflect on how different language learning contexts affect or are affected by English language teaching procedures, most especially in under-represented cultures, which have appropriated the English language. This paper investigates cultural stereotypes of EFL learners in the culturally diverse Cameroon to examine how they mediate teaching and learning. Data collected on mixed-method basis from 83 EFL teachers and 1321 learners in Cameroon reveal a strong presence of typical cultural artifacts and stereotypes. Statistical analysis and thematic coding demonstrate that teaching procedures in place were insensitive to the cultural artifacts and stereotypes, resulting in trending tension between teachers and learners. The data equally reveal a serious contradiction between the communicative goals of language teaching and learning: what teachers held as effective teaching was diametrically opposed to success in learning. In keeping with this, the paper argues for a ‘decentred’ teacher preparation in Cameroon that is informed by systemic learners’ feedback. On this basis, applied linguistics has the urgent task of exploring dimensions of what actually counts as contextualized practice in ELT.Keywords: cultural stereotypes, EFL, implications, procedures
Procedia PDF Downloads 129789 Developing Proof Demonstration Skills in Teaching Mathematics in the Secondary School
Authors: M. Rodionov, Z. Dedovets
Abstract:
The article describes the theoretical concept of teaching secondary school students proof demonstration skills in mathematics. It describes in detail different levels of mastery of the concept of proof-which correspond to Piaget’s idea of there being three distinct and progressively more complex stages in the development of human reflection. Lessons for each level contain a specific combination of the visual-figurative components and deductive reasoning. It is vital at the transition point between levels to carefully and rigorously recalibrate teaching to reflect the development of more complex reflective understanding. This can apply even within the same age range, since students will develop at different speeds and to different potential. The authors argue that this requires an aware and adaptive approach to lessons to reflect this complexity and variation. The authors also contend that effective teaching which enables students to properly understand the implementation of proof arguments must develop specific competences. These are: understanding of the importance of completeness and generality in making a valid argument; being task focused; having an internalised locus of control and being flexible in approach and evaluation. These criteria must be correlated with the systematic application of corresponding methodologies which are best likely to achieve success. The particular pedagogical decisions which are made to deliver this objective are illustrated by concrete examples from the existing secondary school mathematics courses. The proposed theoretical concept formed the basis of the development of methodological materials which have been tested in 47 secondary schools.Keywords: education, teaching of mathematics, proof, deductive reasoning, secondary school
Procedia PDF Downloads 242788 The Effectiveness of Using Functional Rehabilitation with Children of Cerebral Palsy
Authors: Bara Yousef
Abstract:
The development of independency and functional participation is an important therapeutic goal for many children with cerebral palsy,They was many therapeutic approach have been used for treatment those children like neurodevelopment treatment, balance training strengthening and stretching exercise. More recently, therapy for children with cerebral palsy has focused on achieving functional goals using task-oriented interventions and summer camping model, which focus on activities that relevant and meaningful to the child, to learn more efficient and effective motor skills. We explore the effectiveness of using functional rehabilitation comparing with regular rehabilitation among 40 Saudi children with cerebral palsy in pediatric unit at Sultan Bin Abdul Aziz Humanitarian City-Ksa ,where 20 children randomly assign in control group who received rehabilitation based on regular therapy approach and other 20 children assign on experiment group who received rehabilitation based on functional therapy approach with an average of 45min OT treatment and 45 min PT treatment- daily within a period of 6 week. Our finding reported that children in experiment group has improved in gross motor function with an average from 49.4 to 57.6 based on GMFM 66 as primary outcome measure and improved in WeeFIM with an average from 52 to 62 while children in control group has improved with an average from 48.4 to 53.7 in GMFM and from 53 to and 58 in WeeFIM. Consequently, there has been growing interest in determining the effects of functional training programs as promising approach for these children.Keywords: Cerebral Palsy (CP), gross motor function measure (GMFM66), pediatric Functional Independent Measure (WeeFIM), rehabilitation, disability
Procedia PDF Downloads 382787 Big Data in Telecom Industry: Effective Predictive Techniques on Call Detail Records
Authors: Sara ElElimy, Samir Moustafa
Abstract:
Mobile network operators start to face many challenges in the digital era, especially with high demands from customers. Since mobile network operators are considered a source of big data, traditional techniques are not effective with new era of big data, Internet of things (IoT) and 5G; as a result, handling effectively different big datasets becomes a vital task for operators with the continuous growth of data and moving from long term evolution (LTE) to 5G. So, there is an urgent need for effective Big data analytics to predict future demands, traffic, and network performance to full fill the requirements of the fifth generation of mobile network technology. In this paper, we introduce data science techniques using machine learning and deep learning algorithms: the autoregressive integrated moving average (ARIMA), Bayesian-based curve fitting, and recurrent neural network (RNN) are employed for a data-driven application to mobile network operators. The main framework included in models are identification parameters of each model, estimation, prediction, and final data-driven application of this prediction from business and network performance applications. These models are applied to Telecom Italia Big Data challenge call detail records (CDRs) datasets. The performance of these models is found out using a specific well-known evaluation criteria shows that ARIMA (machine learning-based model) is more accurate as a predictive model in such a dataset than the RNN (deep learning model).Keywords: big data analytics, machine learning, CDRs, 5G
Procedia PDF Downloads 140786 Unlocking the Puzzle of Borrowing Adult Data for Designing Hybrid Pediatric Clinical Trials
Authors: Rajesh Kumar G
Abstract:
A challenging aspect of any clinical trial is to carefully plan the study design to meet the study objective in optimum way and to validate the assumptions made during protocol designing. And when it is a pediatric study, there is the added challenge of stringent guidelines and difficulty in recruiting the necessary subjects. Unlike adult trials, there is not much historical data available for pediatrics, which is required to validate assumptions for planning pediatric trials. Typically, pediatric studies are initiated as soon as approval is obtained for a drug to be marketed for adults, so with the adult study historical information and with the available pediatric pilot study data or simulated pediatric data, the pediatric study can be well planned. Generalizing the historical adult study for new pediatric study is a tedious task; however, it is possible by integrating various statistical techniques and utilizing the advantage of hybrid study design, which will help to achieve the study objective in a smoother way even with the presence of many constraints. This research paper will explain how well the hybrid study design can be planned along with integrated technique (SEV) to plan the pediatric study; In brief the SEV technique (Simulation, Estimation (using borrowed adult data and applying Bayesian methods)) incorporates the use of simulating the planned study data and getting the desired estimates to Validate the assumptions.This method of validation can be used to improve the accuracy of data analysis, ensuring that results are as valid and reliable as possible, which allow us to make informed decisions well ahead of study initiation. With professional precision, this technique based on the collected data allows to gain insight into best practices when using data from historical study and simulated data alike.Keywords: adaptive design, simulation, borrowing data, bayesian model
Procedia PDF Downloads 77785 Women in Teaching Profession: Impacts and Challenges
Authors: A. M. Sultana, Norhirdawati Binti Mhd Zahir, Norzalan Hadi Yaacob
Abstract:
Recently in Malaysia, women's participation in teaching profession has increased. The increasing trend of women’s participation in the teaching profession poses challenges in families, especially in the developing countries like Malaysia. One of these challenges, concerns in balancing their role between family and job responsibility that faced by many women teachers. The purpose of this study is to discover how women teachers' impact on family happiness and the challenges faced by them in balancing their role between family and job responsibility. The findings presented in this study are based on survey research in a secondary school Dato’ Bijaya Setia in the district of Gugusan Manjoi which is located in Kedah, Malaysia. The study found that employment of women in economic activity has several beneficial impacts of improving the economic condition of the family. The results also revealed that in low income earning families, both husbands and wives’ employment contribute to the family income that less likely to experience of family poverty. The study also showed despite women's teachers’ significant role towards the overall development of the family, the majority of women teachers encountered a number of difficulties in balancing their role between family and job responsibility especially when they need to work more than the normal working time. Therefore, it is common for the majority of women suffering from psychological stress when they are unable to complete the task at a fixed time. The present study also suggests implication of family friendly policy and its appropriate practice to support the women teachers who are significantly contributing to family, community and the country.Keywords: emotional exhaustion, family friendly policy, work family conflict, women teacher
Procedia PDF Downloads 433784 Simulation of a Three-Link, Six-Muscle Musculoskeletal Arm Activated by Hill Muscle Model
Authors: Nafiseh Ebrahimi, Amir Jafari
Abstract:
The study of humanoid character is of great interest to researchers in the field of robotics and biomechanics. One might want to know the forces and torques required to move a limb from an initial position to the desired destination position. Inverse dynamics is a helpful method to compute the force and torques for an articulated body limb. It enables us to know the joint torques required to rotate a link between two positions. Our goal in this study was to control a human-like articulated manipulator for a specific task of path tracking. For this purpose, the human arm was modeled with a three-link planar manipulator activated by Hill muscle model. Applying a proportional controller, values of force and torques applied to the joints were calculated by inverse dynamics, and then joints and muscle forces trajectories were computed and presented. To be more accurate to say, the kinematics of the muscle-joint space was formulated by which we defined the relationship between the muscle lengths and the geometry of the links and joints. Secondary, the kinematic of the links was introduced to calculate the position of the end-effector in terms of geometry. Then, we considered the modeling of Hill muscle dynamics, and after calculation of joint torques, finally, we applied them to the dynamics of the three-link manipulator obtained from the inverse dynamics to calculate the joint states, find and control the location of manipulator’s end-effector. The results show that the human arm model was successfully controlled to take the designated path of an ellipse precisely.Keywords: arm manipulator, hill muscle model, six-muscle model, three-link lodel
Procedia PDF Downloads 142