Search results for: phytochemical absorption prediction model
17895 Analyzing Changes in Runoff Patterns Due to Urbanization Using SWAT Models
Authors: Asawari Ajay Avhad
Abstract:
The Soil and Water Assessment Tool (SWAT) is a hydrological model designed to predict the complex interactions within natural and human-altered watersheds. This research applies the SWAT model to the Ulhas River basin, a small watershed undergoing urbanization and characterized by bowl-like topography. Three simulation scenarios (LC17, LC22, and LC27) are investigated, each representing different land use and land cover (LULC) configurations, to assess the impact of urbanization on runoff. The LULC for the year 2027 is generated using the MOLUSCE Plugin of QGIS, incorporating various spatial factors such as DEM, Distance from Road, Distance from River, Slope, and distance from settlements. Future climate data is simulated within the SWAT model using historical data spanning 30 years. A susceptibility map for runoff across the basin is created, classifying runoff into five susceptibility levels ranging from very low to very high. Sub-basins corresponding to major urban settlements are identified as highly susceptible to runoff. With consideration of future climate projections, a slight increase in runoff is forecasted. The reliability of the methodology was validated through the identification of sub-basins known for experiencing severe flood events, which were determined to be highly susceptible to runoff. The susceptibility map successfully pinpointed these sub-basins with a track record of extreme flood occurrences, thus reinforcing the credibility of the assessment methodology. This study suggests that the methodology employed could serve as a valuable tool in flood management planning.Keywords: future land use impact, flood management, run off prediction, ArcSWAT
Procedia PDF Downloads 4517894 Optical Characterization and Surface Morphology of SnO2 Thin Films Prepared by Spin Coating Technique
Authors: J. O. Ajayi, S. S. Oluyamo, D. B. Agunbiade
Abstract:
In this work, tin oxide thin films (SnO2) were prepared using the spin coating technique. The effects of precursor concentration on the thin film properties were investigated. Tin oxide was synthesized from anhydrous Tin (II) Chloride (SnCl2) dispersed in Methanol and Acetic acid. The metallic oxide (SnO2) films deposited were characterized using the UV Spectrophotometer and the Scanning Electron Microscope (SEM). From the absorption spectra, absorption increases with decrease in precursor concentration. Absorbance in the VIS region is lower than 0 % at higher concentration. The optical transmission spectrum shows that transmission increases as the concentration of precursor decreases and the maximum transmission in visible region is about 90% for films prepared with 0.2 M. Also, there is increase in the reflectance of thin films as concentration of precursor increases. The films have high transparency (more than 85%) and low reflectance (less than 40%) in the VIS region. Investigation showed that the direct band gap value increased from 3.79eV, to 3.82eV as the precursor concentration decreased from 0.6 M to 0.2 M. Average direct bandgap energy for all the tin oxide films was estimated to be 3.80eV. The effect of precursor concentration was directly observed in crystal outgrowth and surface particle densification. They were found to increase proportionately with higher concentration.Keywords: anhydrous TIN (II) chloride, densification, NIS- VIS region, spin coating technique
Procedia PDF Downloads 26017893 Early Phase Design Study of a Sliding Door with Multibody Simulations
Authors: Erkan Talay, Mustafa Yigit Yagci
Abstract:
For the systems like sliding door, designers should predict not only strength but also dynamic behavior of the system and this prediction usually becomes more critical if design has radical changes refer to previous designs. Also, sometimes physical tests could cost more than expected, especially for rail geometry changes, since this geometry affects design of the body. The aim of the study is to observe and understand the dynamics of the sliding door in virtual environment. For this, multibody dynamic model of the sliding door was built and then affects of various parameters like rail geometry, roller diameters, or center of mass detected. Also, a design of experiment study was performed to observe interactions of these parameters.Keywords: design of experiment, minimum closing effort, multibody simulation, sliding door
Procedia PDF Downloads 13617892 Variational Explanation Generator: Generating Explanation for Natural Language Inference Using Variational Auto-Encoder
Authors: Zhen Cheng, Xinyu Dai, Shujian Huang, Jiajun Chen
Abstract:
Recently, explanatory natural language inference has attracted much attention for the interpretability of logic relationship prediction, which is also known as explanation generation for Natural Language Inference (NLI). Existing explanation generators based on discriminative Encoder-Decoder architecture have achieved noticeable results. However, we find that these discriminative generators usually generate explanations with correct evidence but incorrect logic semantic. It is due to that logic information is implicitly encoded in the premise-hypothesis pairs and difficult to model. Actually, logic information identically exists between premise-hypothesis pair and explanation. And it is easy to extract logic information that is explicitly contained in the target explanation. Hence we assume that there exists a latent space of logic information while generating explanations. Specifically, we propose a generative model called Variational Explanation Generator (VariationalEG) with a latent variable to model this space. Training with the guide of explicit logic information in target explanations, latent variable in VariationalEG could capture the implicit logic information in premise-hypothesis pairs effectively. Additionally, to tackle the problem of posterior collapse while training VariaztionalEG, we propose a simple yet effective approach called Logic Supervision on the latent variable to force it to encode logic information. Experiments on explanation generation benchmark—explanation-Stanford Natural Language Inference (e-SNLI) demonstrate that the proposed VariationalEG achieves significant improvement compared to previous studies and yields a state-of-the-art result. Furthermore, we perform the analysis of generated explanations to demonstrate the effect of the latent variable.Keywords: natural language inference, explanation generation, variational auto-encoder, generative model
Procedia PDF Downloads 14917891 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 41017890 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro-Grids
Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone
Abstract:
Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.Keywords: short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, gain
Procedia PDF Downloads 46717889 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studiesKeywords: crop yield, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 40617888 Predicting the Success of Bank Telemarketing Using Artificial Neural Network
Authors: Mokrane Selma
Abstract:
The shift towards decision making (DM) based on artificial intelligence (AI) techniques will change the way in which consumer markets and our societies function. Through AI, predictive analytics is being used by businesses to identify these patterns and major trends with the objective to improve the DM and influence future business outcomes. This paper proposes an Artificial Neural Network (ANN) approach to predict the success of telemarketing calls for selling bank long-term deposits. To validate the proposed model, we uses the bank marketing data of 41188 phone calls. The ANN attains 98.93% of accuracy which outperforms other conventional classifiers and confirms that it is credible and valuable approach for telemarketing campaign managers.Keywords: bank telemarketing, prediction, decision making, artificial intelligence, artificial neural network
Procedia PDF Downloads 15817887 Estimation of Snow and Ice Melt Contributions to Discharge from the Glacierized Hunza River Basin, Karakoram, Pakistan
Authors: Syed Hammad Ali, Rijan Bhakta Kayastha, Danial Hashmi, Richard Armstrong, Ahuti Shrestha, Iram Bano, Javed Hassan
Abstract:
This paper presents the results of a semi-distributed modified positive degree-day model (MPDDM) for estimating snow and ice melt contributions to discharge from the glacierized Hunza River basin, Pakistan. The model uses daily temperature data, daily precipitation data, and positive degree day factors for snow and ice melt. The model is calibrated for the period 1995-2001 and validated for 2002-2013, and demonstrates close agreements between observed and simulated discharge with Nash–Sutcliffe Efficiencies of 0.90 and 0.88, respectively. Furthermore, the Weather Research and Forecasting model projected temperature, and precipitation data from 2016-2050 are used for representative concentration pathways RCP4.5 and RCP8.5, and bias correction was done using a statistical approach for future discharge estimation. No drastic changes in future discharge are predicted for the emissions scenarios. The aggregate snow-ice melt contribution is 39% of total discharge in the period 1993-2013. Snow-ice melt contribution ranges from 35% to 63% during the high flow period (May to October), which constitutes 89% of annual discharge; in the low flow period (November to April) it ranges from 0.02% to 17%, which constitutes 11 % of the annual discharge. The snow-ice melt contribution to total discharge will increase gradually in the future and reach up to 45% in 2041-2050. From a sensitivity analysis, it is found that the combination of a 2°C temperature rise and 20% increase in precipitation shows a 10% increase in discharge. The study allows us to evaluate the impact of climate change in such basins and is also useful for the future prediction of discharge to define hydropower potential, inform other water resource management in the area, to understand future changes in snow-ice melt contribution to discharge, and offer a possible evaluation of future water quantity and availability.Keywords: climate variability, future discharge projection, positive degree day, regional climate model, water resource management
Procedia PDF Downloads 29017886 Molecular Insights into the 5α-Reductase Inhibitors: Quantitative Structure Activity Relationship, Pre-Absorption, Distribution, Metabolism, and Excretion and Docking Studies
Authors: Richa Dhingra, Monika, Manav Malhotra, Tilak Raj Bhardwaj, Neelima Dhingra
Abstract:
5-Alpha-reductases (5AR), a membrane bound, NADPH dependent enzyme and convert male hormone testosterone (T) into more potent androgen dihydrotestosterone (DHT). DHT is the required for the development and function of male sex organs, but its overproduction has been found to be associated with physiological conditions like Benign Prostatic Hyperplasia (BPH). Thus the inhibition of 5ARs could be a key target for the treatment of BPH. In present study, 2D and 3D Quantitative Structure Activity Relationship (QSAR) pharmacophore models have been generated for 5AR based on known inhibitory concentration (IC₅₀) values with extensive validations. The four featured 2D pharmacophore based PLS model correlated the topological interactions (–OH group connected with one single bond) (SsOHE-index); semi-empirical (Quadrupole2) and physicochemical descriptors (Mol. wt, Bromines Count, Chlorines Count) with 5AR inhibitory activity, and has the highest correlation coefficient (r² = 0.98, q² =0.84; F = 57.87, pred r² = 0.88). Internal and external validation was carried out using test and proposed set of compounds. The contribution plot of electrostatic field effects and steric interactions generated by 3D-QSAR showed interesting results in terms of internal and external predictability. The well validated 2D Partial Least Squares (PLS) and 3D k-nearest neighbour (kNN) models were used to search novel 5AR inhibitors with different chemical scaffold. To gain more insights into the molecular mechanism of action of these steroidal derivatives, molecular docking and in silico absorption, distribution, metabolism, and excretion (ADME) studies were also performed. Studies have revealed the hydrophobic and hydrogen bonding of the ligand with residues Alanine (ALA) 63A, Threonine (THR) 60A, and Arginine (ARG) 456A of 4AT0 protein at the hinge region. The results of QSAR, molecular docking, in silico ADME studies provide guideline and mechanistic scope for the identification of more potent 5-Alpha-reductase inhibitors (5ARI).Keywords: 5α-reductase inhibitor, benign prostatic hyperplasia, ligands, molecular docking, QSAR
Procedia PDF Downloads 16117885 Probabilistic Crash Prediction and Prevention of Vehicle Crash
Authors: Lavanya Annadi, Fahimeh Jafari
Abstract:
Transportation brings immense benefits to society, but it also has its costs. Costs include such as the cost of infrastructure, personnel and equipment, but also the loss of life and property in traffic accidents on the road, delays in travel due to traffic congestion and various indirect costs in terms of air transport. More research has been done to identify the various factors that affect road accidents, such as road infrastructure, traffic, sociodemographic characteristics, land use, and the environment. The aim of this research is to predict the probabilistic crash prediction of vehicles using machine learning due to natural and structural reasons by excluding spontaneous reasons like overspeeding etc., in the United States. These factors range from weather factors, like weather conditions, precipitation, visibility, wind speed, wind direction, temperature, pressure, and humidity to human made structures like road structure factors like bump, roundabout, no exit, turning loop, give away, etc. Probabilities are dissected into ten different classes. All the predictions are based on multiclass classification techniques, which are supervised learning. This study considers all crashes that happened in all states collected by the US government. To calculate the probability, multinomial expected value was used and assigned a classification label as the crash probability. We applied three different classification models, including multiclass Logistic Regression, Random Forest and XGBoost. The numerical results show that XGBoost achieved a 75.2% accuracy rate which indicates the part that is being played by natural and structural reasons for the crash. The paper has provided in-deep insights through exploratory data analysis.Keywords: road safety, crash prediction, exploratory analysis, machine learning
Procedia PDF Downloads 10917884 Numerical Modeling of the Depth-Averaged Flow over a Hill
Authors: Anna Avramenko, Heikki Haario
Abstract:
This paper reports the development and application of a 2D depth-averaged model. The main goal of this contribution is to apply the depth averaged equations to a wind park model in which the treatment of the geometry, introduced on the mathematical model by the mass and momentum source terms. The depth-averaged model will be used in future to find the optimal position of wind turbines in the wind park. K-E and 2D LES turbulence models were consider in this article. 2D CFD simulations for one hill was done to check the depth-averaged model in practise.Keywords: depth-averaged equations, numerical modeling, CFD, wind park model
Procedia PDF Downloads 60117883 Enhanced Tensor Tomographic Reconstruction: Integrating Absorption, Refraction and Temporal Effects
Authors: Lukas Vierus, Thomas Schuster
Abstract:
A general framework is examined for dynamic tensor field tomography within an inhomogeneous medium characterized by refraction and absorption, treated as an inverse source problem concerning the associated transport equation. Guided by Fermat’s principle, the Riemannian metric within the specified domain is determined by the medium's refractive index. While considerable literature exists on the inverse problem of reconstructing a tensor field from its longitudinal ray transform within a static Euclidean environment, limited inversion formulas and algorithms are available for general Riemannian metrics and time-varying tensor fields. It is established that tensor field tomography, akin to an inverse source problem for a transport equation, persists in dynamic scenarios. Framing dynamic tensor tomography as an inverse source problem embodies a comprehensive perspective within this domain. Ensuring well-defined forward mappings necessitates establishing existence and uniqueness for the underlying transport equations. However, the bilinear forms of the associated weak formulations fail to meet the coercivity condition. Consequently, recourse to viscosity solutions is taken, demonstrating their unique existence within suitable Sobolev spaces (in the static case) and Sobolev-Bochner spaces (in the dynamic case), under a specific assumption restricting variations in the refractive index. Notably, the adjoint problem can also be reformulated as a transport equation, with analogous results regarding uniqueness. Analytical solutions are expressed as integrals over geodesics, facilitating more efficient evaluation of forward and adjoint operators compared to solving partial differential equations. Certainly, here's the revised sentence in English: Numerical experiments are conducted using a Nesterov-accelerated Landweber method, encompassing various fields, absorption coefficients, and refractive indices, thereby illustrating the enhanced reconstruction achieved through this holistic modeling approach.Keywords: attenuated refractive dynamic ray transform of tensor fields, geodesics, transport equation, viscosity solutions
Procedia PDF Downloads 5017882 Solid State Drive End to End Reliability Prediction, Characterization and Control
Authors: Mohd Azman Abdul Latif, Erwan Basiron
Abstract:
A flaw or drift from expected operational performance in one component (NAND, PMIC, controller, DRAM, etc.) may affect the reliability of the entire Solid State Drive (SSD) system. Therefore, it is important to ensure the required quality of each individual component through qualification testing specified using standards or user requirements. Qualification testing is time-consuming and comes at a substantial cost for product manufacturers. A highly technical team, from all the eminent stakeholders is embarking on reliability prediction from beginning of new product development, identify critical to reliability parameters, perform full-blown characterization to embed margin into product reliability and establish control to ensure the product reliability is sustainable in the mass production. The paper will discuss a comprehensive development framework, comprehending SSD end to end from design to assembly, in-line inspection, in-line testing and will be able to predict and to validate the product reliability at the early stage of new product development. During the design stage, the SSD will go through intense reliability margin investigation with focus on assembly process attributes, process equipment control, in-process metrology and also comprehending forward looking product roadmap. Once these pillars are completed, the next step is to perform process characterization and build up reliability prediction modeling. Next, for the design validation process, the reliability prediction specifically solder joint simulator will be established. The SSD will be stratified into Non-Operating and Operating tests with focus on solder joint reliability and connectivity/component latent failures by prevention through design intervention and containment through Temperature Cycle Test (TCT). Some of the SSDs will be subjected to the physical solder joint analysis called Dye and Pry (DP) and Cross Section analysis. The result will be feedbacked to the simulation team for any corrective actions required to further improve the design. Once the SSD is validated and is proven working, it will be subjected to implementation of the monitor phase whereby Design for Assembly (DFA) rules will be updated. At this stage, the design change, process and equipment parameters are in control. Predictable product reliability at early product development will enable on-time sample qualification delivery to customer and will optimize product development validation, effective development resource and will avoid forced late investment to bandage the end-of-life product failures. Understanding the critical to reliability parameters earlier will allow focus on increasing the product margin that will increase customer confidence to product reliability.Keywords: e2e reliability prediction, SSD, TCT, solder joint reliability, NUDD, connectivity issues, qualifications, characterization and control
Procedia PDF Downloads 17017881 UBCSAND Model Calibration for Generic Liquefaction Triggering Curves
Authors: Jui-Ching Chou
Abstract:
Numerical simulation is a popular method used to evaluate the effects of soil liquefaction on a structure or the effectiveness of a mitigation plan. Many constitutive models (UBCSAND model, PM4 model, SANISAND model, etc.) were presented to model the liquefaction phenomenon. In general, inputs of a constitutive model need to be calibrated against the soil cyclic resistance before being applied to the numerical simulation model. Then, simulation results can be compared with results from simplified liquefaction potential assessing methods. In this article, inputs of the UBCSAND model, a simple elastic-plastic stress-strain model, are calibrated against several popular generic liquefaction triggering curves of simplified liquefaction potential assessing methods via FLAC program. Calibrated inputs can provide engineers to perform a preliminary evaluation of an existing structure or a new design project.Keywords: calibration, liquefaction, numerical simulation, UBCSAND Model
Procedia PDF Downloads 17117880 Study of Rehydration Process of Dried Squash (Cucurbita pepo) at Different Temperatures and Dry Matter-Water Ratios
Authors: Sima Cheraghi Dehdezi, Nasser Hamdami
Abstract:
Air-drying is the most widely employed method for preserving fruits and vegetables. Most of the dried products must be rehydrated by immersion in water prior to their use, so the study of rehydration kinetics in order to optimize rehydration phenomenon has great importance. Rehydration typically composes of three simultaneous processes: the imbibition of water into dried material, the swelling of the rehydrated products and the leaching of soluble solids to rehydration medium. In this research, squash (Cucurbita pepo) fruits were cut into 0.4 cm thick and 4 cm diameter slices. Then, squash slices were blanched in a steam chamber for 4 min. After cooling to room temperature, squash slices were dehydrated in a hot air dryer, under air flow 1.5 m/s and air temperature of 60°C up to moisture content of 0.1065 kg H2O per kg d.m. Dehydrated samples were kept in polyethylene bags and stored at 4°C. Squash slices with specified weight were rehydrated by immersion in distilled water at different temperatures (25, 50, and 75°C), various dry matter-water ratios (1:25, 1:50, and 1:100), which was agitated at 100 rpm. At specified time intervals, up to 300 min, the squash samples were removed from the water, and the weight, moisture content and rehydration indices of the sample were determined.The texture characteristics were examined over a 180 min period. The results showed that rehydration time and temperature had significant effects on moisture content, water absorption capacity (WAC), dry matter holding capacity (DHC), rehydration ability (RA), maximum force and stress in dried squash slices. Dry matter-water ratio had significant effect (p˂0.01) on all squash slice properties except DHC. Moisture content, WAC and RA of squash slices increased, whereas DHC and texture firmness (maximum force and stress) decreased with rehydration time. The maximum moisture content, WAC and RA and the minimum DHC, force and stress, were observed in squash slices rehydrated into 75°C water. The lowest moisture content, WAC and RA and the highest DHC, force and stress, were observed in squash slices immersed in water at 1:100 dry matter-water ratio. In general, for all rehydration conditions of squash slices, the highest water absorption rate occurred during the first minutes of process. Then, this rate decreased. The highest rehydration rate and amount of water absorption occurred in 75°C.Keywords: dry matter-water ratio, squash, maximum force, rehydration ability
Procedia PDF Downloads 31217879 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic
Authors: Fei Gao, Rodolfo C. Raga Jr.
Abstract:
This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle
Procedia PDF Downloads 7317878 Developing a Web-Based Workflow Management System in Cloud Computing Platforms
Authors: Wang Shuen-Tai, Lin Yu-Ching, Chang Hsi-Ya
Abstract:
Cloud computing is the innovative and leading information technology model for enabling convenient, on-demand network access to a shared pool of configurable computing resources that can be rapidly provisioned and released with minimal management effort. In this paper, we aim at the development of workflow management system for cloud computing platforms based on our previous research on the dynamic allocation of the cloud computing resources and its workflow process. We took advantage of the HTML 5 technology and developed web-based workflow interface. In order to enable the combination of many tasks running on the cloud platform in sequence, we designed a mechanism and developed an execution engine for workflow management on clouds. We also established a prediction model which was integrated with job queuing system to estimate the waiting time and cost of the individual tasks on different computing nodes, therefore helping users achieve maximum performance at lowest payment. This proposed effort has the potential to positively provide an efficient, resilience and elastic environment for cloud computing platform. This development also helps boost user productivity by promoting a flexible workflow interface that lets users design and control their tasks' flow from anywhere.Keywords: web-based, workflow, HTML5, Cloud Computing, Queuing System
Procedia PDF Downloads 30717877 Application of Artificial Neural Network for Prediction of High Tensile Steel Strands in Post-Tensioned Slabs
Authors: Gaurav Sancheti
Abstract:
This study presents an impacting approach of Artificial Neural Networks (ANNs) in determining the quantity of High Tensile Steel (HTS) strands required in post-tensioned (PT) slabs. Various PT slab configurations were generated by varying the span and depth of the slab. For each of these slab configurations, quantity of required HTS strands were recorded. ANNs with backpropagation algorithm and varying architectures were developed and their performance was evaluated in terms of Mean Square Error (MSE). The recorded data for the quantity of HTS strands was used as a feeder database for training the developed ANNs. The networks were validated using various validation techniques. The results show that the proposed ANNs have a great potential with good prediction and generalization capability.Keywords: artificial neural networks, back propagation, conceptual design, high tensile steel strands, post tensioned slabs, validation techniques
Procedia PDF Downloads 22117876 Predicting Bridge Pier Scour Depth with SVM
Authors: Arun Goel
Abstract:
Prediction of maximum local scour is necessary for the safety and economical design of the bridges. A number of equations have been developed over the years to predict local scour depth using laboratory data and a few pier equations have also been proposed using field data. Most of these equations are empirical in nature as indicated by the past publications. In this paper, attempts have been made to compute local depth of scour around bridge pier in dimensional and non-dimensional form by using linear regression, simple regression and SVM (Poly and Rbf) techniques along with few conventional empirical equations. The outcome of this study suggests that the SVM (Poly and Rbf) based modeling can be employed as an alternate to linear regression, simple regression and the conventional empirical equations in predicting scour depth of bridge piers. The results of present study on the basis of non-dimensional form of bridge pier scour indicates the improvement in the performance of SVM (Poly and Rbf) in comparison to dimensional form of scour.Keywords: modeling, pier scour, regression, prediction, SVM (Poly and Rbf kernels)
Procedia PDF Downloads 45017875 Investigation of the Acoustic Properties of Recycled Felt Panels and Their Application in Classrooms and Multi-Purpose Halls
Authors: Ivanova B. Natalia, Djambova Т. Svetlana, Hristev S. Ivailo
Abstract:
The acoustic properties of recycled felt panels have been investigated using various methods. Experimentally, the sound insulation of the panels has been evaluated for frequencies in the range of 600 Hz to 4000 Hz, utilizing a small-sized acoustic chamber. Additionally, the sound absorption coefficient for the frequency range of 63 Hz to 4000 Hz was measured according to the EN ISO 354 standard in a laboratory reverberation room. This research was deemed necessary after conducting reverberation time measurements of a university classroom following the EN ISO 3382-2 standard. The measurements indicated values of 2.86 s at 500 Hz, 3.23 s at 1000 Hz, and 2.53 s at 2000 Hz, which significantly exceeded the requirements set by the national regulatory framework (0.6s) for such premises. For this reason, recycled felt panels have been investigated in the laboratory, showing very good acoustic properties at high frequencies. To enhance performance in the low frequencies, the influence of the distance of the panel spacing was examined. Furthermore, the sound insulation of the panels was studied to expand the possibilities of their application, both for the acoustic treatment of educational and multifunctional halls and for sound insulation purposes (e.g., a suspended ceiling with an air gap passing from room to room). As a conclusion, a theoretical acoustic design of the classroom has been carried out with suggestions for improvements to achieve the necessary acoustic and aesthetic parameters for such rooms.Keywords: acoustic panels, recycled felt, sound absorption, sound insulation, classroom acoustics
Procedia PDF Downloads 8817874 Geometric Imperfections in Lattice Structures: A Simulation Strategy to Predict Strength Variability
Authors: Xavier Lorang, Ahmadali Tahmasebimoradi, Chetra Mang, Sylvain Girard
Abstract:
The additive manufacturing processes (e.g. selective laser melting) allow us to produce lattice structures which have less weight, higher impact absorption capacity, and better thermal exchange property compared to the classical structures. Unfortunately, geometric imperfections (defects) in the lattice structures are by-products results of the manufacturing process. These imperfections decrease the lifetime and the strength of the lattice structures and alternate their mechanical responses. The objective of the paper is to present a simulation strategy which allows us to take into account the effect of the geometric imperfections on the mechanical response of the lattice structure. In the first part, an identification method of geometric imperfection parameters of the lattice structure based on point clouds is presented. These point clouds are based on tomography measurements. The point clouds are fed into the platform LATANA (LATtice ANAlysis) developed by IRT-SystemX to characterize the geometric imperfections. This is done by projecting the point clouds of each microbeam along the beam axis onto a 2D surface. Then, by fitting an ellipse to the 2D projections of the points, the geometric imperfections are characterized by introducing three parameters of an ellipse; semi-major/minor axes and angle of rotation. With regard to the calculated parameters of the microbeam geometric imperfections, a statistical analysis is carried out to determine a probability density law based on a statistical hypothesis. The microbeam samples are randomly drawn from the density law and are used to generate lattice structures. In the second part, a finite element model for the lattice structure with the simplified geometric imperfections (ellipse parameters) is presented. This numerical model is used to simulate the generated lattice structures. The propagation of the uncertainties of geometric imperfections is shown through the distribution of the computed mechanical responses of the lattice structures.Keywords: additive manufacturing, finite element model, geometric imperfections, lattice structures, propagation of uncertainty
Procedia PDF Downloads 18317873 Constructing a Physics Guided Machine Learning Neural Network to Predict Tonal Noise Emitted by a Propeller
Authors: Arthur D. Wiedemann, Christopher Fuller, Kyle A. Pascioni
Abstract:
With the introduction of electric motors, small unmanned aerial vehicle designers have to consider trade-offs between acoustic noise and thrust generated. Currently, there are few low-computational tools available for predicting acoustic noise emitted by a propeller into the far-field. Artificial neural networks offer a highly non-linear and adaptive model for predicting isolated and interactive tonal noise. But neural networks require large data sets, exceeding practical considerations in modeling experimental results. A methodology known as physics guided machine learning has been applied in this study to reduce the required data set to train the network. After building and evaluating several neural networks, the best model is investigated to determine how the network successfully predicts the acoustic waveform. Lastly, a post-network transfer function is developed to remove discontinuity from the predicted waveform. Overall, methodologies from physics guided machine learning show a notable improvement in prediction performance, but additional loss functions are necessary for constructing predictive networks on small datasets.Keywords: aeroacoustics, machine learning, propeller, rotor, neural network, physics guided machine learning
Procedia PDF Downloads 22717872 A Crop Growth Subroutine for Watershed Resources Management (WRM) Model 1: Description
Authors: Kingsley Nnaemeka Ogbu, Constantine Mbajiorgu
Abstract:
Vegetation has a marked effect on runoff and has become an important component in hydrologic model. The watershed Resources Management (WRM) model, a process-based, continuous, distributed parameter simulation model developed for hydrologic and soil erosion studies at the watershed scale lack a crop growth component. As such, this model assumes a constant parameter values for vegetation and hydraulic parameters throughout the duration of hydrologic simulation. Our approach is to develop a crop growth algorithm based on the original plant growth model used in the Environmental Policy Integrated Climate Model (EPIC) model. This paper describes the development of a single crop growth model which has the capability of simulating all crops using unique parameter values for each crop. Simulated crop growth processes will reflect the vegetative seasonality of the natural watershed system. An existing model was employed for evaluating vegetative resistance by hydraulic and vegetative parameters incorporated into the WRM model. The improved WRM model will have the ability to evaluate the seasonal variation of the vegetative roughness coefficient with depth of flow and further enhance the hydrologic model’s capability for accurate hydrologic studies.Keywords: runoff, roughness coefficient, PAR, WRM model
Procedia PDF Downloads 37417871 Prediction of Heavy-Weight Impact Noise and Vibration of Floating Floor Using Modified Impact Spectrum
Authors: Ju-Hyung Kim, Dae-Ho Mun, Hong-Gun Park
Abstract:
When an impact is applied to a floating floor, noise and vibration response of high-frequency range is reduced effectively, while amplifies the response at low-frequency range. This means floating floor can make worse noise condition when heavy-weight impact is applied. The amplified response is the result of interaction between finishing layer (mortar plate) and concrete slab. Because an impact force is not directly delivered to concrete slab, the impact force waveform or spectrum can be changed. In this paper, the changed impact spectrum was derived from several floating floor vibration tests. Based on the measured data, numerical modeling can describe the floating floor response, especially at low-frequency range. As a result, heavy-weight impact noise can be predicted using modified impact spectrum.Keywords: floating floor, heavy-weight impact, prediction, vibration
Procedia PDF Downloads 37017870 Structural Strength Potentials of Nigerian Groundnut Husk Ash as Partial Cement Replacement in Mortar
Authors: F. A. Olutoge, O.R. Olulope, M. O. Odelola
Abstract:
This study investigates the strength potentials of groundnut husk ash as partial cement replacement in mortar and also develops a predictive model using Artificial Neural Network. Groundnut husks sourced from Ogbomoso, Nigeria, was sun dried, calcined to ash in a furnace at a controlled temperature of 600⁰ C for a period of 6 hours, and sieved through the 75 microns. The ash was subjected to chemical analysis and setting time test. Fine aggregate (sand) for the mortar was sourced from Ado Ekiti, Nigeria. The cement: GHA constituents were blended in ratios 100:0, 95:5, 90:10, 85:15 and 80:20 %. The sum of SiO₂, Al₂O₃, and Fe₂O₃ content in GHA is 26.98%. The compressive strength for mortars PC, GHA5, GHA10, GHA15, and GHA20 ranged from 6.3-10.2 N/mm² at 7days, 7.5-12.3 N/mm² at 14 days, 9.31-13.7 N/mm² at 28 days, 10.4-16.7 N/mm² at 56days and 13.35- 22.3 N/mm² at 90 days respectively, PC, GHA5 and GHA10 had competitive values up to 28 days, but GHA10 gave the highest values at 56 and 90 days while GHA20 had the lowest values at all ages due to dilution effect. Flexural strengths values at 28 days ranged from 1.08 to 1.87 N/mm² and increased to a range of 1.53-4.10 N/mm² at 90 days. The ANN model gave good prediction for compressive strength of the mortars. This study has shown that groundnut husk ash as partial cement replacement improves the strength properties of mortar.Keywords: compressive strength, groundnut husk ash, mortar, pozzolanic index
Procedia PDF Downloads 15217869 Optimization of Springback Prediction in U-Channel Process Using Response Surface Methodology
Authors: Muhamad Sani Buang, Shahrul Azam Abdullah, Juri Saedon
Abstract:
There is not much effective guideline on development of design parameters selection on springback for advanced high strength steel sheet metal in U-channel process during cold forming process. This paper presents the development of predictive model for springback in U-channel process on advanced high strength steel sheet employing Response Surface Methodology (RSM). The experimental was performed on dual phase steel sheet, DP590 in U-channel forming process while design of experiment (DoE) approach was used to investigates the effects of four factors namely blank holder force (BHF), clearance (C) and punch travel (Tp) and rolling direction (R) were used as input parameters using two level values by applying Full Factorial design (24). From a statistical analysis of variant (ANOVA), result showed that blank holder force (BHF), clearance (C) and punch travel (Tp) displayed significant effect on springback of flange angle (β2) and wall opening angle (β1), while rolling direction (R) factor is insignificant. The significant parameters are optimized in order to reduce the springback behavior using Central Composite Design (CCD) in RSM and the optimum parameters were determined. A regression model for springback was developed. The effect of individual parameters and their response was also evaluated. The results obtained from optimum model are in agreement with the experimental valuesKeywords: advance high strength steel, u-channel process, springback, design of experiment, optimization, response surface methodology (rsm)
Procedia PDF Downloads 54017868 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters
Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini
Abstract:
The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.Keywords: curcumin, HSPs, prediction, solvates, solubility
Procedia PDF Downloads 6117867 Thermodynamics of Aqueous Solutions of Organic Molecule and Electrolyte: Use Cloud Point to Obtain Better Estimates of Thermodynamic Parameters
Authors: Jyoti Sahu, Vinay A. Juvekar
Abstract:
Electrolytes are often used to bring about salting-in and salting-out of organic molecules and polymers (e.g. polyethylene glycols/proteins) from the aqueous solutions. For quantification of these phenomena, a thermodynamic model which can accurately predict activity coefficient of electrolyte as a function of temperature is needed. The thermodynamics models available in the literature contain a large number of empirical parameters. These parameters are estimated using lower/upper critical solution temperature of the solution in the electrolyte/organic molecule at different temperatures. Since the number of parameters is large, inaccuracy can bethe creep in during their estimation, which can affect the reliability of prediction beyond the range in which these parameters are estimated. Cloud point of solution is related to its free energy through temperature and composition derivative. Hence, the Cloud point measurement can be used for accurate estimation of the temperature and composition dependence of parameters in the model for free energy. Hence, if we use a two pronged procedure in which we first use cloud point of solution to estimate some of the parameters of the thermodynamic model and determine the rest using osmotic coefficient data, we gain on two counts. First, since the parameters, estimated in each of the two steps, are fewer, we achieve higher accuracy of estimation. The second and more important gain is that the resulting model parameters are more sensitive to temperature. This is crucial when we wish to use the model outside temperatures window within which the parameter estimation is sought. The focus of the present work is to prove this proposition. We have used electrolyte (NaCl/Na2CO3)-water-organic molecule (Iso-propanol/ethanol) as the model system. The model of Robinson-Stokes-Glukauf is modified by incorporating the temperature dependent Flory-Huggins interaction parameters. The Helmholtz free energy expression contains, in addition to electrostatic and translational entropic contributions, three Flory-Huggins pairwise interaction contributions viz., and (w-water, p-polymer, s-salt). These parameters depend both on temperature and concentrations. The concentration dependence is expressed in the form of a quadratic expression involving the volume fractions of the interacting species. The temperature dependence is expressed in the form .To obtain the temperature-dependent interaction parameters for organic molecule-water and electrolyte-water systems, Critical solution temperature of electrolyte -water-organic molecules is measured using cloud point measuring apparatus The temperature and composition dependent interaction parameters for electrolyte-water-organic molecule are estimated through measurement of cloud point of solution. The model is used to estimate critical solution temperature (CST) of electrolyte water-organic molecules solution. We have experimentally determined the critical solution temperature of different compositions of electrolyte-water-organic molecule solution and compared the results with the estimates based on our model. The two sets of values show good agreement. On the other hand when only osmotic coefficients are used for estimation of the free energy model, CST predicted using the resulting model show poor agreement with the experiments. Thus, the importance of the CST data in the estimation of parameters of the thermodynamic model is confirmed through this work.Keywords: concentrated electrolytes, Debye-Hückel theory, interaction parameters, Robinson-Stokes-Glueckauf model, Flory-Huggins model, critical solution temperature
Procedia PDF Downloads 39117866 Photocatalytic Degradation of Methylene Blue Dye Using Pure and Ag-Doped SnO₂ Nanoparticles as Catalyst
Authors: M. S. Abd El-Sadek, Mahmoud A. Omar, Gharib M. Taha
Abstract:
Photodegradation of methylene blue in the presence of tin dioxide (SnO₂) nanoparticles under solar light irradiation are known to be an effective photocatalytic process. In this study, pure and silver (Ag) doped tin dioxide (SnO₂) nanoparticles were prepared at calcination temperature (800ºC) by a modified sol-gel method and studied for their photocatalytic activity with methylene blue as a test contaminant. The characterization of undoped and doped SnO₂ photocatalyst was studied by X-rays diffraction patterns (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FT-IR) and Energy Dispersive X-ray Microanalysis (EDX). The catalytic degradation of methylene blue in aqueous media was studied using UV-Vis spectrophotometer to monitor the degradation process by measuring its absorption spectra. The main absorption peak of methylene blue is observed at λ= 664 nm. The change in the percent of silver in the catalyst affects the photoactivity of SnO₂ on the degradation of methylene blue. The photoactivity of pure SnO₂ was found to be a maximum at dose 0.2 gm of the catalyst with 100 ml of 5 ppm methylene blue in the water. Within 210 min of photodegradation (under sunlight) after leaving the reaction for 90 minutes in the dark to avoid the effect of adsorption, the pure SnO₂ at calcination temperature 800ºC exhibited the best photocatalytic degradation with removal percentage of 93.66% on methylene blue degradation under solar light.Keywords: SnO₂ nanoparticles, methylene blue degradation, photocatalysis, silver doped-SnO₂
Procedia PDF Downloads 140