Search results for: peak power tracking
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8195

Search results for: peak power tracking

6695 Facial Recognition and Landmark Detection in Fitness Assessment and Performance Improvement

Authors: Brittany Richardson, Ying Wang

Abstract:

For physical therapy, exercise prescription, athlete training, and regular fitness training, it is crucial to perform health assessments or fitness assessments periodically. An accurate assessment is propitious for tracking recovery progress, preventing potential injury and making long-range training plans. Assessments include necessary measurements, height, weight, blood pressure, heart rate, body fat, etc. and advanced evaluation, muscle group strength, stability-mobility, and movement evaluation, etc. In the current standard assessment procedures, the accuracy of assessments, especially advanced evaluations, largely depends on the experience of physicians, coaches, and personal trainers. And it is challenging to track clients’ progress in the current assessment. Unlike the tradition assessment, in this paper, we present a deep learning based face recognition algorithm for accurate, comprehensive and trackable assessment. Based on the result from our assessment, physicians, coaches, and personal trainers are able to adjust the training targets and methods. The system categorizes the difficulty levels of the current activity for the client or user, furthermore make more comprehensive assessments based on tracking muscle group over time using a designed landmark detection method. The system also includes the function of grading and correcting the form of the clients during exercise. Experienced coaches and personal trainer can tell the clients' limit based on their facial expression and muscle group movements, even during the first several sessions. Similar to this, using a convolution neural network, the system is trained with people’s facial expression to differentiate challenge levels for clients. It uses landmark detection for subtle changes in muscle groups movements. It measures the proximal mobility of the hips and thoracic spine, the proximal stability of the scapulothoracic region and distal mobility of the glenohumeral joint, as well as distal mobility, and its effect on the kinetic chain. This system integrates data from other fitness assistant devices, including but not limited to Apple Watch, Fitbit, etc. for a improved training and testing performance. The system itself doesn’t require history data for an individual client, but the history data of a client can be used to create a more effective exercise plan. In order to validate the performance of the proposed work, an experimental design is presented. The results show that the proposed work contributes towards improving the quality of exercise plan, execution, progress tracking, and performance.

Keywords: exercise prescription, facial recognition, landmark detection, fitness assessments

Procedia PDF Downloads 134
6694 On the Accuracy of Basic Modal Displacement Method Considering Various Earthquakes

Authors: Seyed Sadegh Naseralavi, Sadegh Balaghi, Ehsan Khojastehfar

Abstract:

Time history seismic analysis is supposed to be the most accurate method to predict the seismic demand of structures. On the other hand, the required computational time of this method toward achieving the result is its main deficiency. While being applied in optimization process, in which the structure must be analyzed thousands of time, reducing the required computational time of seismic analysis of structures makes the optimization algorithms more practical. Apparently, the invented approximate methods produce some amount of errors in comparison with exact time history analysis but the recently proposed method namely, Complete Quadratic Combination (CQC) and Sum Root of the Sum of Squares (SRSS) drastically reduces the computational time by combination of peak responses in each mode. In the present research, the Basic Modal Displacement (BMD) method is introduced and applied towards estimation of seismic demand of main structure. Seismic demand of sampled structure is estimated by calculation of modal displacement of basic structure (in which the modal displacement has been calculated). Shear steel sampled structures are selected as case studies. The error applying the introduced method is calculated by comparison of the estimated seismic demands with exact time history dynamic analysis. The efficiency of the proposed method is demonstrated by application of three types of earthquakes (in view of time of peak ground acceleration).

Keywords: time history dynamic analysis, basic modal displacement, earthquake-induced demands, shear steel structures

Procedia PDF Downloads 355
6693 Acute Kidney Injury in Severe Trauma Patients: Clinical Presentation and Risk Factor Analysis

Authors: Inkyong Yi

Abstract:

Acute kidney injury (AKI) in trauma patients is known to be associated with multiple factors, especially shock and consequent inadequate renal perfusion, yet its clinical presentation is little known in severe trauma patients. Our aim was to investigate the clinical presentation of acute kidney injury and its outcome in severe trauma patients at a level I trauma center. A total of 93 consecutive adult trauma patients with an injury severity score (ISS) of more than 15 were analyzed retrospectively from our Level I trauma center data base. Patients with direct renal injury were excluded. Patients were dichotomized into two groups, according to the presence of AKI. Various clinical parameters were compared between two groups, with Student’s T test and Mann-Whitney’s U test. The AKI group was further dichotomized into patients who recovered within seven days, and those who required more than 7days for recovery or those who did not recover at all. Various clinical parameters associated with outcome were further analyzed. Patients with AKI (n=33, 35%) presented with significantly higher age (61.4±17.3 vs. 45.4±17.3, p < 0.0001), incidence of comorbidities (hypertension; 51.5% vs. 13.3%, OR 6.906 95%CI 2.515-18.967, diabetes; 27.3% vs. 6.7%, OR 5.250, 95%CI 1.472-18.722), odds of head and neck trauma (69.7% vs. 41.7%, OR 3.220, 95%CI 1.306-7.942) and presence of shock during emergency room care (66.7% vs 21.7% OR 7.231, 95%CI, 2.798-18.687). Among AKI patients, patients who recovered within 1 week showed lower peak lactate (4.7mmol/L, 95%CI 2.9-6.5 vs 7.3mmol/L, 95%CI 5.0-9.6, p < 0.0287), lesser units of transfusion during first 24 hours (pRBC; 20.4unit, 95%CI 12.5-28.3 vs. 58.9unit, 95%CI 39.4-78.5, p=0.0003, FFP; 16.6unit, 95%CI 6.8-26.4 vs. 56.1unit, 95%CI 26.9-85.2, p=0.0027). In severe trauma patients, patients with AKI showed different clinical presentations and worse outcomes. Initial presence of shock and higher DIC profiles may be important risk factors for AKI in severe trauma patients. In patients with AKI, peak lactate level and amounts of transfusion are related to recovery.

Keywords: acute kidney injury, lactate, transfusion, trauma

Procedia PDF Downloads 203
6692 Utilization of Fly Ash as Backfilling Material in Indian Coal Mines

Authors: P. Venkata Karthik, B. Kranthi Kumar

Abstract:

Fly ash is a solid waste product of coal based electric power generating plants. Fly ash is the finest of coal ash particles and it is transported from the combustion chamber by exhaust gases. Fly ash is removed by particulate emission control devices such as electrostatic precipitators or filter fabric bag-houses. It is a fine material with spherical particles. Large quantities of fly ash discharged from coal-fired power stations are a major problem not only in terms of scarcity of land available for its disposal, but also in environmental aspects. Fly ash can be one of the alternatives and can be a viable option to use as a filling material. This paper contains the problems associated with fly ash generation, need for its management and the efficacy of fly ash composite as a backfilling material. By conducting suitable geotechnical investigations and numerical modelling techniques, the fly ash composite material was tested. It also contains case studies of typical Indian opencast and underground coal mines.

Keywords: backfilling, fly ash, high concentration slurry disposal, power plant, void infilling

Procedia PDF Downloads 253
6691 Impact of Egypt’s Energy Demand on Oil and Gas Power Systems Environment

Authors: Moustafa Osman Mohamed

Abstract:

This paper will explore the influence of energy sector in Arab Republic of Egypt which has shared its responsibilities of many environmental challenges as the second largest economy in the Middle East (after Iran). Air and water pollution, desertification, inadequate disposal of solid waste and damage to coral reefs are serious problems that influence environmental management in Egypt. The intensive reliance of high population density and strong industrial growth are wearing Egypt's resources, and the rapidly-growing population has forced Egypt to breakdown agricultural land to residential and relevant use of commercial ingestion. The depletion effects of natural resources impose the government to apply innovation techniques in emission control and focus on sustainability. The cogeneration will be presented to control thermal losses and increase efficiency of energy power system.

Keywords: cogeneration, environmental management, power electricity, energy indicators

Procedia PDF Downloads 274
6690 Deciphering Electrochemical and Optical Properties of Folic Acid for the Applications of Tissue Engineering and Biofuel Cell

Authors: Sharda Nara, Bansi Dhar Malhotra

Abstract:

Investigation of the vitamins as an electron transfer mediator could significantly assist in merging the area of tissue engineering and electronics required for the implantable therapeutic devices. The present study report that the molecules of folic acid released by Providencia rettgeri via fermentation route under the anoxic condition of the microbial fuel cell (MFC) exhibit characteristic electrochemical and optical properties, as indicated by absorption spectroscopy, photoluminescence (PL), and cyclic voltammetry studies. The absorption spectroscopy has depicted an absorption peak at 263 nm with a small bulge around 293 nm on day two of bacterial culture, whereas an additional peak was observed at 365 nm on the twentieth day. Furthermore, the PL spectra has indicated that the maximum emission occurred at various wavelengths 420, 425, 440, and 445 nm when excited by 310, 325, 350, and 365 nm. The change of emission spectra with varying excitation wavelength might be indicating the presence of tunable optical bands in the folic acid molecules co-related with the redox activity of the molecules. The results of cyclic voltammetry studies revealed that the oxidation and reduction occurred at 0.25V and 0.12V, respectively, indicating the electrochemical behavior of the folic acid. This could be inferred that the released folic acid molecules in a MFC might undergo inter as well as intra molecular electron transfer forming different intermediate states while transferring electrons to the electrode surface. Synchronization of electrochemical and optical properties of folic acid molecules could be potentially promising for the designing of electroactive scaffold and biocompatible conductive surface for the applications of tissue engineering and biofuel cells, respectively.

Keywords: biofuel cell, electroactivity, folic acid, tissue engineering

Procedia PDF Downloads 131
6689 The Integrated Methodological Development of Reliability, Risk and Condition-Based Maintenance in the Improvement of the Thermal Power Plant Availability

Authors: Henry Pariaman, Iwa Garniwa, Isti Surjandari, Bambang Sugiarto

Abstract:

Availability of a complex system of thermal power plant is strongly influenced by the reliability of spare parts and maintenance management policies. A reliability-centered maintenance (RCM) technique is an established method of analysis and is the main reference for maintenance planning. This method considers the consequences of failure in its implementation, but does not deal with further risk of down time that associated with failures, loss of production or high maintenance costs. Risk-based maintenance (RBM) technique provides support strategies to minimize the risks posed by the failure to obtain maintenance task considering cost effectiveness. Meanwhile, condition-based maintenance (CBM) focuses on monitoring the application of the conditions that allow the planning and scheduling of maintenance or other action should be taken to avoid the risk of failure prior to the time-based maintenance. Implementation of RCM, RBM, CBM alone or combined RCM and RBM or RCM and CBM is a maintenance technique used in thermal power plants. Implementation of these three techniques in an integrated maintenance will increase the availability of thermal power plants compared to the use of maintenance techniques individually or in combination of two techniques. This study uses the reliability, risks and conditions-based maintenance in an integrated manner to increase the availability of thermal power plants. The method generates MPI (Priority Maintenance Index) is RPN (Risk Priority Number) are multiplied by RI (Risk Index) and FDT (Failure Defense Task) which can generate the task of monitoring and assessment of conditions other than maintenance tasks. Both MPI and FDT obtained from development of functional tree, failure mode effects analysis, fault-tree analysis, and risk analysis (risk assessment and risk evaluation) were then used to develop and implement a plan and schedule maintenance, monitoring and assessment of the condition and ultimately perform availability analysis. The results of this study indicate that the reliability, risks and conditions-based maintenance methods, in an integrated manner can increase the availability of thermal power plants.

Keywords: integrated maintenance techniques, availability, thermal power plant, MPI, FDT

Procedia PDF Downloads 794
6688 Synthesis of Visible-Light-Driven Magnetically Recoverable N-TiO2@SiO2@Fe3O4 Nanophotocatalyst for Enhanced Degradation of Ibuprofen

Authors: Ashutosh Kumar, Irene M. C. Lo

Abstract:

Ever since the discovery of TiO2 for decomposition of cyanide in water, it has been investigated extensively for the photocatalytic degradation of environmental pollutants, and became the most practical and prevalent photocatalyst. The superiority of TiO2 is due to its chemical and biological inertness, nontoxicity, strong oxidizing power and cost-effectiveness. However, during degradation of pollutants in wastewater, it suffers from problems, such as (a) separation after use, and (b) its poor photocatalytic performance under visible light irradiation (~45% of the solar spectrum). In order to bridge the research gaps, N-TiO2@SiO2@Fe3O4 nanophotocatalysts of average size 19 nm and effective surface area 47 m2 gm-1 were synthesized using sol-gel method. The characterization was performed using BET, TEM-EDX, VSM and XRD. The performance was improved by considering different factors involved during the synthesis, such as calcination temperature, amount of Fe3O4 nanoparticles used and amount of urea used for N-doping. The final nanophotocatalyst was calcined at 500 °C which was able to degrade 94% of the ibuprofen within 5 h of irradiation time. Under the influence of ~200 mT electromagnetic field, 95% nanophotocatalysts separation efficiency was achieved within 20-25 min. Moreover, the effect of different visible light source of similar irradiance, such as compact fluorescent lamp (CFL) and light emitting diode (LED), is also investigated in this research. The performance of nanophotocatalysts was found to be comparatively higher under ~310 µW cm-2 irradiance with peak emissive wavelengths of 543 nm emitted by CFL. Therefore, a promising visible-light-driven magnetically separable TiO2-based nanophotocatalysts was synthesized for the efficient degradation of ibuprofen.

Keywords: ibuprofen, magnetic N-TiO2, photocatalysis, visible light sources

Procedia PDF Downloads 248
6687 Principal Creative Leadership for Teacher Learning and School Culture

Authors: Yashi Ye

Abstract:

Principles play vital roles in shaping the school culture and promoting teachers' professional learning by exerting their leadership. In the changing time of the 21st century, the creative leadership of school leaders is increasingly important in cultivating the professional learning communities of teachers for eventually improving student performance in every continent. This study examines under what conditions and how principal creative leadership contributes to teachers’ professional learning and school culture. Data collected from 632 teachers in 30 primary and middle schools in the cities of Chengdu and Chongqing in mainland China are analyzed using structural equation modeling and bootstrapping tests. A moderated mediation model of principle creative leadership effects is used to analyze professional teacher learning and school culture in which the mediator will be school culture and the moderator will be power distance orientation. The results indicate that principal creative leadership has significant direct and indirect effects on teachers' professional learning. A positive correlation between principal creative leadership, professional teacher learning, and school culture is observed. Further model testing found that teacher power distance orientation moderated the significant effect of principal creative leadership on school culture. When teachers perceived higher power distance in teacher-principal relations, the effects of principal creative leadership were stronger than for those who perceived low power distance. The results indicate the “culture change” in the young generation of teachers in China, and further implications to understanding the cultural context in the field of educational leadership are discussed.

Keywords: power distance orientation, principal creative leadership, school culture, teacher professional learning

Procedia PDF Downloads 142
6686 Characterization of Anisotropic Deformation in Sandstones Using Micro-Computed Tomography Technique

Authors: Seyed Mehdi Seyed Alizadeh, Christoph Arns, Shane Latham

Abstract:

Geomechanical characterization of rocks in detail and its possible implications on flow properties is an important aspect of reservoir characterization workflow. In order to gain more understanding of the microstructure evolution of reservoir rocks under stress a series of axisymmetric triaxial tests were performed on two different analogue rock samples. In-situ compression tests were coupled with high resolution micro-Computed Tomography to elucidate the changes in the pore/grain network of the rocks under pressurized conditions. Two outcrop sandstones were chosen in the current study representing a various cementation status of well-consolidated and weakly-consolidated granular system respectively. High resolution images were acquired while the rocks deformed in a purpose-built compression cell. A detailed analysis of the 3D images in each series of step-wise compression tests (up to the failure point) was conducted which includes the registration of the deformed specimen images with the reference pristine dry rock image. Digital Image Correlation (DIC) technique based on the intensity of the registered 3D subsets and particle tracking are utilized to map the displacement fields in each sample. The results suggest the complex architecture of the localized shear zone in well-cemented Bentheimer sandstone whereas for the weakly-consolidated Castlegate sandstone no discernible shear band could be observed even after macroscopic failure. Post-mortem imaging a sister plug from the friable rock upon undergoing continuous compression reveals signs of a shear band pattern. This suggests that for friable sandstones at small scales loading mode may affect the pattern of deformation. Prior to mechanical failure, the continuum digital image correlation approach can reasonably capture the kinematics of deformation. As failure occurs, however, discrete image correlation (i.e. particle tracking) reveals superiority in both tracking the grains as well as quantifying their kinematics (in terms of translations/rotations) with respect to any stage of compaction. An attempt was made to quantify the displacement field in compression using continuum Digital Image Correlation which is based on the reference and secondary image intensity correlation. Such approach has only been previously applied to unconsolidated granular systems under pressure. We are applying this technique to sandstones with various degrees of consolidation. Such element of novelty will set the results of this study apart from previous attempts to characterize the deformation pattern in consolidated sands.

Keywords: deformation mechanism, displacement field, shear behavior, triaxial compression, X-ray micro-CT

Procedia PDF Downloads 189
6685 Experimental and Numerical Analysis of Built-In Thermoelectric Generator Modules with Elliptical Pin-Fin Heat Sink

Authors: J. Y Jang, C. Y. Tseng

Abstract:

A three-dimensional numerical model of thermoelectric generator (TEG) modules attached to a large chimney plate is proposed and solved numerically using a control volume based finite difference formulation. The TEG module consists of a thermoelectric generator, an elliptical pin-fin heat sink, and a cold plate for water cooling. In the chimney, the temperature of flue gases is 450-650K. Therefore, the effects of convection and radiation heat transfer are considered. Although the TEG hot-side temperature and thus the electric power output can be increased by inserting an elliptical pin-fin heat sink into the chimney tunnel to increase the heat transfer area, the pin fin heat sink would cause extra pumping power at the same time. The main purpose of this study is to analyze the effects of geometrical parameters on the electric power output and chimney pressure drop characteristics. In addition, the effects of different operating conditions, including various inlet velocities (Vin = 1, 3, 5 m/s) and inlet temperatures (Tgas = 450, 550, 650K) are discussed in detail. The predicted numerical data for the power vs. current (P-I) curve are in good agreement (within 11%) with the experimental data.

Keywords: thermoelectric generator, waste heat recovery, pin-fin heat sink, experimental and numerical analysis

Procedia PDF Downloads 382
6684 The Effect of Power of Isolation Transformer on the Lamps in Airfield Ground Lighting Systems

Authors: Hossein Edrisi

Abstract:

To study the impact of the amount and volume of power of isolation transformer on the lamps in airfield Ground Lighting Systems. A test was conducted in Persian Gulf International Airport, This airport is situated in the south of Iran and it is one of the most cutting-edge airports, the same one that owns modern devices. Iran uses materials and auxiliary equipment which are made by ADB Company from Belgium. Airfield ground lighting (AGL) systems are responsible for providing visual issue to aircrafts and helicopters in the runways. In an AGL system a great deal of lamps are connected in serial circuits to each other and each ring has its individual constant current regulators (CCR), which through that provide energy to the lamps. Control of lamps is crucial for maintenance and operation in the AGL systems. Thanks to the Programmable Logic Controller (PLC) that is a cutting-edge technology can help the system to connect the elements from substations and ATC (TOWER). For this purpose, a test in real conditions of the airport done for all element that used in the airport such as isolation transformer in different power capacity and different consuming power and brightness of the lamps. The data were analyzed with Lux meter and Multimeter. The results had shown that the increase in the power of transformer caused a significant increase in brightness. According to the Ohm’s law and voltage division, without changing the characteristics of the light bulb, it is not possible to change the voltage, just need to change the amount of transformer with which it connects to the lamps. When the voltage is increased, the current through the bulb has to increase as well, because of Ohm's law: I=V/R and I=V/R which means that if V increases, so do I increase. The output voltage on the constant current regulator emerges between the lamps and the transformers.

Keywords: AGL, CCR, lamps, transformer, Ohm’s law

Procedia PDF Downloads 248
6683 Voltage Profile Enhancement in the Unbalanced Distribution Systems during Fault Conditions

Authors: K. Jithendra Gowd, Ch. Sai Babu, S. Sivanagaraju

Abstract:

Electric power systems are daily exposed to service interruption mainly due to faults and human accidental interference. Short circuit currents are responsible for several types of disturbances in power systems. The fault currents are high and the voltages are reduced at the time of fault. This paper presents two suitable methods, consideration of fault resistance and Distributed Generator are implemented and analyzed for the enhancement of voltage profile during fault conditions. Fault resistance is a critical parameter of electric power systems operation due to its stochastic nature. If not considered, this parameter may interfere in fault analysis studies and protection scheme efficiency. The effect of Distributed Generator is also considered. The proposed methods are tested on the IEEE 37 bus test systems and the results are compared.

Keywords: distributed generation, electrical distribution systems, fault resistance

Procedia PDF Downloads 515
6682 A Robust Visual Simultaneous Localization and Mapping for Indoor Dynamic Environment

Authors: Xiang Zhang, Daohong Yang, Ziyuan Wu, Lei Li, Wanting Zhou

Abstract:

Visual Simultaneous Localization and Mapping (VSLAM) uses cameras to collect information in unknown environments to realize simultaneous localization and environment map construction, which has a wide range of applications in autonomous driving, virtual reality and other related fields. At present, the related research achievements about VSLAM can maintain high accuracy in static environment. But in dynamic environment, due to the presence of moving objects in the scene, the movement of these objects will reduce the stability of VSLAM system, resulting in inaccurate localization and mapping, or even failure. In this paper, a robust VSLAM method was proposed to effectively deal with the problem in dynamic environment. We proposed a dynamic region removal scheme based on semantic segmentation neural networks and geometric constraints. Firstly, semantic extraction neural network is used to extract prior active motion region, prior static region and prior passive motion region in the environment. Then, the light weight frame tracking module initializes the transform pose between the previous frame and the current frame on the prior static region. A motion consistency detection module based on multi-view geometry and scene flow is used to divide the environment into static region and dynamic region. Thus, the dynamic object region was successfully eliminated. Finally, only the static region is used for tracking thread. Our research is based on the ORBSLAM3 system, which is one of the most effective VSLAM systems available. We evaluated our method on the TUM RGB-D benchmark and the results demonstrate that the proposed VSLAM method improves the accuracy of the original ORBSLAM3 by 70%˜98.5% under high dynamic environment.

Keywords: dynamic scene, dynamic visual SLAM, semantic segmentation, scene flow, VSLAM

Procedia PDF Downloads 116
6681 An Improved Total Variation Regularization Method for Denoising Magnetocardiography

Authors: Yanping Liao, Congcong He, Ruigang Zhao

Abstract:

The application of magnetocardiography signals to detect cardiac electrical function is a new technology developed in recent years. The magnetocardiography signal is detected with Superconducting Quantum Interference Devices (SQUID) and has considerable advantages over electrocardiography (ECG). It is difficult to extract Magnetocardiography (MCG) signal which is buried in the noise, which is a critical issue to be resolved in cardiac monitoring system and MCG applications. In order to remove the severe background noise, the Total Variation (TV) regularization method is proposed to denoise MCG signal. The approach transforms the denoising problem into a minimization optimization problem and the Majorization-minimization algorithm is applied to iteratively solve the minimization problem. However, traditional TV regularization method tends to cause step effect and lacks constraint adaptability. In this paper, an improved TV regularization method for denoising MCG signal is proposed to improve the denoising precision. The improvement of this method is mainly divided into three parts. First, high-order TV is applied to reduce the step effect, and the corresponding second derivative matrix is used to substitute the first order. Then, the positions of the non-zero elements in the second order derivative matrix are determined based on the peak positions that are detected by the detection window. Finally, adaptive constraint parameters are defined to eliminate noises and preserve signal peak characteristics. Theoretical analysis and experimental results show that this algorithm can effectively improve the output signal-to-noise ratio and has superior performance.

Keywords: constraint parameters, derivative matrix, magnetocardiography, regular term, total variation

Procedia PDF Downloads 153
6680 Nanotechnolgy for Energy Harvesting Applications

Authors: Eiman Nour

Abstract:

The rising interest in harvesting power is because of the capabilities application of expanding self-powered systems based on nanostructures. Using renewable and self-powered sources is necessary for the growth of green electronics and could be of the capability to wireless sensor networks. The ambient mechanical power is among the ample sources for various power harvesting device configurations that are published. In this work, we design and fabricate a paper-based nanogenerator (NG) utilizing piezoelectric zinc oxide (ZnO) nanowires (NWs) grown hydrothermally on a paper substrate. The fabricated NG can harvest ambient mechanical energy from various kinds of human motions, such as handwriting. The fabricated NG from a single ZnO NWs/PVDF-TrFE NG has been used firstly as handwriting-driven NG. The mechanical pressure applied on the paper platform while handwriting is harvested by the NG to deliver electrical energy; depending on the mode of handwriting, a maximum harvested voltage of 4.8 V was obtained.

Keywords: nanostructure, zinc oxide, nanogenerator, energy harvesting

Procedia PDF Downloads 63
6679 Efficient Use of Power Light-Emitting Diode Chips in the Main Lighting System and in Generating Heat in Intelligent Buildings

Authors: Siamak Eskandari, Neda Ebadi

Abstract:

Among common electronic parts which have been invented and have made a great revolution in the lighting system through the world, certainly LEDs have no rival. These small parts with their very low power consumption, very dazzling and powerful light and small size and with their extremely high lifetime- compared to incandescent bulbs and compact fluorescent lamp (CFLs) have undoubtedly revolutionized the lighting industry of the world. Based on conducted studies and experiments, in addition to their acceptable light and low power consumption -compared to incandescent bulbs and CFLs-, they have very low and in some cases zero environmental pollution and negative effects on human beings. Because of their longevity, in the case of using high-quality circuits and proper and consistent use of LEDs in conventional and intelligent buildings, there will be no need to replace the burnout lamps, for a long time (10 years). In this study which was conducted on 10-watt power LEDs with suitable heatsink/cooling, considerable amount of heat was generated during lighting after 5 minutes and 45 seconds. The temperature rose to above 99 degrees Celsius and this amount of heat can raise the water temperature to 60 degrees Celsius and more. Based on conducted experiments, this can provide the heat required for bathing, washing, radiators (in cold seasons) easily and only by imposing very low cost and it will be a big step in the optimization of energy consumption in the future.

Keywords: energy, light, water, optimization of power LED

Procedia PDF Downloads 153
6678 A Biophysical Study of the Dynamic Properties of Glucagon Granules in α Cells by Imaging-Derived Mean Square Displacement and Single Particle Tracking Approaches

Authors: Samuele Ghignoli, Valentina de Lorenzi, Gianmarco Ferri, Stefano Luin, Francesco Cardarelli

Abstract:

Insulin and glucagon are the two essential hormones for maintaining proper blood glucose homeostasis, which is disrupted in Diabetes. A constantly growing research interest has been focused on the study of the subcellular structures involved in hormone secretion, namely insulin- and glucagon-containing granules, and on the mechanisms regulating their behaviour. Yet, while several successful attempts were reported describing the dynamic properties of insulin granules, little is known about their counterparts in α cells, the glucagon-containing granules. To fill this gap, we used αTC1 clone 9 cells as a model of α cells and ZIGIR as a fluorescent Zinc chelator for granule labelling. We started by using spatiotemporal fluorescence correlation spectroscopy in the form of imaging-derived mean square displacement (iMSD) analysis. This afforded quantitative information on the average dynamical and structural properties of glucagon granules having insulin granules as a benchmark. Interestingly, the iMSD sensitivity to average granule size allowed us to confirm that glucagon granules are smaller than insulin ones (~1.4 folds, further validated by STORM imaging). To investigate possible heterogeneities in granule dynamic properties, we moved from correlation spectroscopy to single particle tracking (SPT). We developed a MATLAB script to localize and track single granules with high spatial resolution. This enabled us to classify the glucagon granules, based on their dynamic properties, as ‘blocked’ (i.e., trajectories corresponding to immobile granules), ‘confined/diffusive’ (i.e., trajectories corresponding to slowly moving granules in a defined region of the cell), or ‘drifted’ (i.e., trajectories corresponding to fast-moving granules). In cell-culturing control conditions, results show this average distribution: 32.9 ± 9.3% blocked, 59.6 ± 9.3% conf/diff, and 7.4 ± 3.2% drifted. This benchmarking provided us with a foundation for investigating selected experimental conditions of interest, such as the glucagon-granule relationship with the cytoskeleton. For instance, if Nocodazole (10 μM) is used for microtubule depolymerization, the percentage of drifted motion collapses to 3.5 ± 1.7% while immobile granules increase to 56.0 ± 10.7% (remaining 40.4 ± 10.2% of conf/diff). This result confirms the clear link between glucagon-granule motion and cytoskeleton structures, a first step towards understanding the intracellular behaviour of this subcellular compartment. The information collected might now serve to support future investigations on glucagon granules in physiology and disease. Acknowledgment: This work has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 866127, project CAPTUR3D).

Keywords: glucagon granules, single particle tracking, correlation spectroscopy, ZIGIR

Procedia PDF Downloads 109
6677 Competition and Cooperation of Prosumers in Cournot Games with Uncertainty

Authors: Yong-Heng Shi, Peng Hao, Bai-Chen Xie

Abstract:

Solar prosumers are playing increasingly prominent roles in the power system. However, its uncertainty affects the outcomes and functions of the power market, especially in the asymmetric information environment. Therefore, an important issue is how to take effective measures to reduce the impact of uncertainty on market equilibrium. We propose a two-level stochastic differential game model to explore the Cournot decision problem of prosumers. In particular, we study the impact of punishment and cooperation mechanisms on the efficiency of the Cournot game in which prosumers face uncertainty. The results show that under the penalty mechanism of fixed and variable rates, producers and consumers tend to take conservative actions to hedge risks, and the variable rates mechanism is more reasonable. Compared with non-cooperative situations, prosumers can improve the efficiency of the game through cooperation, which we attribute to the superposition of market power and uncertainty reduction. In addition, the market environment of asymmetric information intensifies the role of uncertainty. It reduces social welfare but increases the income of prosumers. For regulators, promoting alliances is an effective measure to realize the integration, optimization, and stable grid connection of producers and consumers.

Keywords: Cournot games, power market, uncertainty, prosumer cooperation

Procedia PDF Downloads 107
6676 Optimization of Pumping Power of Water between Reservoir Using Ant Colony System

Authors: Thiago Ribeiro De Alencar, Jacyro Gramulia Junior, Patricia Teixeira Leite Asano

Abstract:

The area of the electricity sector that deals with energy needs by the hydropower and thermoelectric in a coordinated way is called Planning Operating Hydrothermal Power Systems. The aim of this area is to find a political operative to provide electrical power to the system in a specified period with minimization of operating cost. This article proposes a computational tool for solving the planning problem. In addition, this article will be introducing a methodology to find new transfer points between reservoirs increasing energy production in hydroelectric power plants cascade systems. The computational tool proposed in this article applies: i) genetic algorithms to optimize the water transfer and operation of hydroelectric plants systems; and ii) Ant Colony algorithm to find the trajectory with the least energy pumping for the construction of pipes transfer between reservoirs considering the topography of the region. The computational tool has a database consisting of 35 hydropower plants and 41 reservoirs, which are part of the southeastern Brazilian system, which has been implemented in an individualized way.

Keywords: ant colony system, genetic algorithms, hydroelectric, hydrothermal systems, optimization, water transfer between rivers

Procedia PDF Downloads 326
6675 Simulation-Based Investigation of Ferroresonance in Different Transformer Configurations

Authors: George Eduful, Yuanyuan Fan, Ahmed Abu-Siada

Abstract:

Ferroresonance poses a substantial threat to the quality and reliability of power distribution systems due to its inherent characteristics of sustained overvoltages and currents. This paper aims to enhance the understanding and reduce the ferroresonance threat by investigating the susceptibility of different transformer configurations using MATLAB/Simulink simulations. To achieve this, four 200 kVA transformers with different vector groups (D-Yn, Yg-Yg, Yn-Yn, and Y-D11) and core types (3-limb, 5-limb, single-phase) were systematically exposed to controlled ferroresonance conditions. The impact of varying the length of the 11 kV cable connected to the transformers was also examined. Through comprehensive voltage, current, and total harmonic distortion analyses, the performance of each configuration was evaluated and compared. The results of the study indicate that transformers with Y-D11 and Yg-Yg configurations exhibited lower susceptibility to ferroresonance, in comparison to those with D-Y11 and Yg-Yg configurations. This implies that the Y-D11 and Yg-Yg transformers are better suited for applications with high risks of ferroresonance. The insights provided by this study are of significant value for the strategic selection and deployment of transformers in power systems, particularly in settings prone to ferroresonance. By identifying and recommending transformer configurations that demonstrate better resilience, this paper contributes to enhancing the overall robustness and reliability of power grid infrastructure.

Keywords: about cable-connected, core type, ferroresonance, over voltages, power transformer, vector group

Procedia PDF Downloads 40
6674 A Review of Magnesium Air Battery Systems: From Design Aspects to Performance Characteristics

Authors: R. Sharma, J. K. Bhatnagar, Poonam, R. C. Sharma

Abstract:

Metal–air batteries have been designed and developed as an essential source of electric power to propel automobiles, make electronic equipment functional, and use them as the source of power in remote areas and space. High energy and power density, lightweight, easy recharge capabilities, and low cost are essential features of these batteries. Both primary and rechargeable magnesium air batteries are highly promising. Our focus will be on the basics of electrode reaction kinetics of Mg–air cell in this paper. Design and development of Mg or Mg alloys as anode materials, design and composition of air cathode, and promising electrolytes for Mg–air batteries have been reviewed. A brief note on the possible and proposed improvements in design and functionality is also incorporated. This article may serve as the primary and premier document in the critical research area of Mg-air battery systems.

Keywords: air cathode, battery design, magnesium air battery, magnesium anode, rechargeable magnesium air battery

Procedia PDF Downloads 243
6673 Analysis of Co2 Emission from Thailand's Thermal Power Sector by Divisia Decomposition Approach

Authors: Isara Muangthai, Lin Sue Jane

Abstract:

Electricity is vital to every country’s economy in the world. For Thailand, the electricity generation sector plays an important role in the economic system, and it is the largest source of CO2 emissions. The aim of this paper is to use the decomposition analysis to investigate the key factors contributing to the changes of CO2 emissions from the electricity sector. The decomposition analysis has been widely used to identify and assess the contributors to the changes in emission trends. Our study adopted the Divisia index decomposition to identify the key factors affecting the evolution of CO2 emissions from Thailand’s thermal power sector during 2000-2011. The change of CO2 emissions were decomposed into five factors, including: Emission coefficient, heat rate, fuel intensity, electricity intensity, and economic growth. Results have shown that CO2 emission in Thailand’s thermal power sector increased 29,173 thousand tons during 2000-2011. Economic growth was found to be the primary factor for increasing CO2 emissions, while the electricity intensity played a dominant role in decreasing CO2 emissions. The increasing effect of economic growth was up to 55,924 million tons of CO2 emissions because the growth and development of the economy relied on a large electricity supply. On the other hand, the shifting of fuel structure towards a lower-carbon content resulted in CO2 emission decline. Since the CO2 emissions released from Thailand’s electricity generation are rapidly increasing, the Thailand government will be required to implement a CO2 reduction plan in the future. In order to cope with the impact of CO2 emissions related to the power sector and to achieve sustainable development, this study suggests that Thailand’s government should focus on restructuring the fuel supply in power generation towards low carbon fuels by promoting the use of renewable energy for electricity, improving the efficiency of electricity use by reducing electricity transmission and the distribution of line losses, implementing energy conservation strategies by enhancing the purchase of energy-saving products, substituting the new power plant technology in the old power plants, promoting a shift of economic structure towards less energy-intensive services and orienting Thailand’s power industry towards low carbon electricity generation.

Keywords: co2 emission, decomposition analysis, electricity generation, energy consumption

Procedia PDF Downloads 482
6672 Pragmatic Analysis of the Effectiveness of a Power Conditioning Device (DC-DC Converters) in a Simple Photovoltaics System

Authors: Asowata Osamede

Abstract:

Solar radiation provides the largest renewable energy potential on earth and photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduce dependence on fossil fuels. The aim of this paper is to evaluate the efficiency of power conditioning devices with a focus on the Buck and Boost DC-DC converters (12 V, 24 V and 48 V) in a basic off grid PV system with a varying load profile. This would assist in harnessing more of the available solar energy. The practical setup consists of a PV panel that is set to an orientation angle of 0º N, with corresponding tilt angles. Preliminary results, which include data analysis showing the power loss in the system and efficiency, indicate that the 12V DC-DC converter coupled with the load profile had the highest efficiency for a latitude of 26º S throughout the year.

Keywords: poly-crystalline PV panels, DC-DC converters, tilt and orientation angles, direct solar radiation, load profile

Procedia PDF Downloads 162
6671 Comprehensive Multilevel Practical Condition Monitoring Guidelines for Power Cables in Industries: Case Study of Mobarakeh Steel Company in Iran

Authors: S. Mani, M. Kafil, E. Asadi

Abstract:

Condition Monitoring (CM) of electrical equipment has gained remarkable importance during the recent years; due to huge production losses, substantial imposed costs and increases in vulnerability, risk and uncertainty levels. Power cables feed numerous electrical equipment such as transformers, motors, and electric furnaces; thus their condition assessment is of a very great importance. This paper investigates electrical, structural and environmental failure sources, all of which influence cables' performances and limit their uptimes; and provides a comprehensive framework entailing practical CM guidelines for maintenance of cables in industries. The multilevel CM framework presented in this study covers performance indicative features of power cables; with a focus on both online and offline diagnosis and test scenarios, and covers short-term and long-term threats to the operation and longevity of power cables. The study, after concisely overviewing the concept of CM, thoroughly investigates five major areas of power quality, Insulation Quality features of partial discharges, tan delta and voltage withstand capabilities, together with sheath faults, shield currents and environmental features of temperature and humidity; and elaborates interconnections and mutual impacts between those areas; using mathematical formulation and practical guidelines. Detection, location, and severity identification methods for every threat or fault source are also elaborated. Finally, the comprehensive, practical guidelines presented in the study are presented for the specific case of Electric Arc Furnace (EAF) feeder MV power cables in Mobarakeh Steel Company (MSC), the largest steel company in MENA region, in Iran. Specific technical and industrial characteristics and limitations of a harsh industrial environment like MSC EAF feeder cable tunnels are imposed on the presented framework; making the suggested package more practical and tangible.

Keywords: condition monitoring, diagnostics, insulation, maintenance, partial discharge, power cables, power quality

Procedia PDF Downloads 228
6670 Design and Implementation of Control System in Underwater Glider of Ganeshblue

Authors: Imam Taufiqurrahman, Anugrah Adiwilaga, Egi Hidayat, Bambang Riyanto Trilaksono

Abstract:

Autonomous Underwater Vehicle glider is one of the renewal of underwater vehicles. This vehicle is one of the autonomous underwater vehicles that are being developed in Indonesia. Glide ability is obtained by controlling the buoyancy and attitude of the vehicle using the movers within the vehicle. The glider motion mechanism is expected to provide energy resistance from autonomous underwater vehicles so as to increase the cruising range of rides while performing missions. The control system on the vehicle consists of three parts: controlling the attitude of the pitch, the buoyancy engine controller and the yaw controller. The buoyancy and pitch controls on the vehicle are sequentially referring to the finite state machine with pitch angle and depth of diving inputs to obtain a gliding cycle. While the yaw control is done through the rudder for the needs of the guide system. This research is focused on design and implementation of control system of Autonomous Underwater Vehicle glider based on PID anti-windup. The control system is implemented on an ARM TS-7250-V2 device along with a mathematical model of the vehicle in MATLAB using the hardware-in-the-loop simulation (HILS) method. The TS-7250-V2 is chosen because it complies industry standards, has high computing capability, minimal power consumption. The results show that the control system in HILS process can form glide cycle with depth and angle of operation as desired. In the implementation using half control and full control mode, from the experiment can be concluded in full control mode more precision when tracking the reference. While half control mode is considered more efficient in carrying out the mission.

Keywords: control system, PID, underwater glider, marine robotics

Procedia PDF Downloads 374
6669 Optimal Beam for Accelerator Driven Systems

Authors: M. Paraipan, V. M. Javadova, S. I. Tyutyunnikov

Abstract:

The concept of energy amplifier or accelerator driven system (ADS) involves the use of a particle accelerator coupled with a nuclear reactor. The accelerated particle beam generates a supplementary source of neutrons, which allows the subcritical functioning of the reactor, and consequently a safe exploitation. The harder neutron spectrum realized ensures a better incineration of the actinides. The almost generalized opinion is that the optimal beam for ADS is represented by protons with energy around 1 GeV (gigaelectronvolt). In the present work, a systematic analysis of the energy gain for proton beams with energy from 0.5 to 3 GeV and ion beams from deuteron to neon with energies between 0.25 and 2 AGeV is performed. The target is an assembly of metallic U-Pu-Zr fuel rods in a bath of lead-bismuth eutectic coolant. The rods length is 150 cm. A beryllium converter with length 110 cm is used in order to maximize the energy released in the target. The case of a linear accelerator is considered, with a beam intensity of 1.25‧10¹⁶ p/s, and a total accelerator efficiency of 0.18 for proton beam. These values are planned to be achieved in the European Spallation Source project. The energy gain G is calculated as the ratio between the energy released in the target to the energy spent to accelerate the beam. The energy released is obtained through simulation with the code Geant4. The energy spent is calculating by scaling from the data about the accelerator efficiency for the reference particle (proton). The analysis concerns the G values, the net power produce, the accelerator length, and the period between refueling. The optimal energy for proton is 1.5 GeV. At this energy, G reaches a plateau around a value of 8 and a net power production of 120 MW (megawatt). Starting with alpha, ion beams have a higher G than 1.5 GeV protons. A beam of 0.25 AGeV(gigaelectronvolt per nucleon) ⁷Li realizes the same net power production as 1.5 GeV protons, has a G of 15, and needs an accelerator length 2.6 times lower than for protons, representing the best solution for ADS. Beams of ¹⁶O or ²⁰Ne with energy 0.75 AGeV, accelerated in an accelerator with the same length as 1.5 GeV protons produce approximately 900 MW net power, with a gain of 23-25. The study of the evolution of the isotopes composition during irradiation shows that the increase in power production diminishes the period between refueling. For a net power produced of 120 MW, the target can be irradiated approximately 5000 days without refueling, but only 600 days when the net power reaches 1 GW (gigawatt).

Keywords: accelerator driven system, ion beam, electrical power, energy gain

Procedia PDF Downloads 140
6668 Power and Representation in Female Autobiographies

Authors: Shafag Dadashova

Abstract:

The study discusses relativity of perception and interpretation of power, its interdependence with conformity level of an individual. It describes an autobiography as a form of epiphany. It is suggested that life-writing helps the author analyze the past and define the borders of his personal power and sources of empowerment. As all life-writings deal with behaviors, values, attitudes, relationships and emotions, their investigation requires qualitative methods to understand social norms, gender roles, religion, and their role in empowerment and disempowerment of the author. The study consists of two parts. The first part is theoretical and interrogates the notion of personal power and how writing the own life can bring to conscious empowerment. The second part presents two autobiographies by female authors from two different Muslim cultures who negotiate between the larger nationalist agenda and their own personal concerns. These autobiographies (Tehmina Durrani, Pakistani author ‘My Feudal Lord’, Banine, Azerbaijani writer 'Caucasian days' and 'Parisian days') are the end of their authors’ long silence, their revolt against the conventional norms, their decision to have an agency to confess and protest. These autobiographies are the authors’ attempts to break the established matrix of perceptions, imposed norms, and gain power to build the real picture of their identity. The study sums up with the conclusion that in spite of very similar motifs of female authors to get empowered through self-analysis, different cultures and time create specific subjectivities associated with particular historical events and geographical location.

Keywords: conformity level, empowerment, female autobiography, self-identity

Procedia PDF Downloads 257
6667 Optimal Wind Based DG Placement Considering Monthly Changes Modeling in Wind Speed

Authors: Belal Mohamadi Kalesar, Raouf Hasanpour

Abstract:

Proper placement of Distributed Generation (DG) units such as wind turbine generators in distribution system are still very challenging issue for obtaining their maximum potential benefits because inappropriate placement may increase the system losses. This paper proposes Particle Swarm Optimization (PSO) technique for optimal placement of wind based DG (WDG) in the primary distribution system to reduce energy losses and voltage profile improvement with four different wind levels modeling in year duration. Also, wind turbine is modeled as a DFIG that will be operated at unity power factor and only one wind turbine tower will be considered to install at each bus of network. Finally, proposed method will be implemented on widely used 69 bus power distribution system in MATLAB software environment under four scenario (without, one, two and three WDG units) and for capability test of implemented program it is supposed that all buses of standard system can be candidate for WDG installing (large search space), though this program can consider predetermined number of candidate location in WDG placement to model financial limitation of project. Obtained results illustrate that wind speed increasing in some months will increase output power generated but this can increase / decrease power loss in some wind level, also results show that it is required about 3MW WDG capacity to install in different buses but when this is distributed in overall network (more number of WDG) it can cause better solution from point of view of power loss and voltage profile.

Keywords: wind turbine, DG placement, wind levels effect, PSO algorithm

Procedia PDF Downloads 448
6666 Review of Various Designs and Development in Hydropower Turbines

Authors: Fatemeh Behrouzi, Adi Maimun, Mehdi Nakisa

Abstract:

The growth of population, rising fossil fuel prices which the fossil fuels are limited and decreased day by day, pollution problem due to use of fossil fuels and electrical demand are important role to encourage of using the green energy and renewable technologies. Among different renewable energy technologies, hydro power generation (large and small scale) is the prime choice in terms of contribution to the world's electricity generation by using water current turbines. Nowadays, researchers focus on design and development of different kind of turbines to capture hydro-power electricity generation as clean and reliable energy. This article is review about statues of water current turbines carried out to generate electricity from hydro-kinetic energy especially places that they do not have electricity, but they have access to the current water.

Keywords: water current turbine, renewable energy, hydro-power, mechanic

Procedia PDF Downloads 479