Search results for: partial least square regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5798

Search results for: partial least square regression

4298 Islamic Banking and Finance in Nigeria: Challenges and Opportunities

Authors: Ya'u Saidu

Abstract:

The introduction of the non-interest banking system in Nigeria was part of the regulators efforts to increase the inclusion of other stakeholders into the financial sector who have stayed out of the sector for some reasons. However, the concept has been misunderstood by various stakeholders within the country where some view it as a Muslim affair which exclude the non-Muslims from gaining despite its existence in advance countries of the world. This paper attempts to fill-in the gap created by the literature especially with regards to the proper education and enlightenment of the Nigerian citizens. Survey research method was employed where primary data was collected using questionnaire and convenience sampling was used to select 100 respondents. The data was analysed using Chi-square. It was found that lack of knowledge on Islamic banking has significant effect on its prospects.

Keywords: finance, non-interest, sustainability, enlightenment

Procedia PDF Downloads 446
4297 Effective Factors on Farmers' Attitude toward Multifunctional Agriculture

Authors: Mohammad Sadegh Allahyari, Sorush Marzban

Abstract:

The main aim of this study was to investigate the factors affecting farmers' attitude of the Shanderman District in Masal (Guilan Province in the north of Iran), towards the concepts of multifunctional agriculture. The statistical population consisted of all 4908 in Shanderman.The sample of the present study consisted of 209 subjects who were selected from the total population using the Bartlett et al. Table. Questionnaire as the main tool of data collection was divided in two parts. The first part of questionnaire consisted of farmers' profiles regarding individual, technical-agronomic, economic and social characteristics. The second part included items to identify the farmers’ attitudes regarding different aspects of multifunctional agriculture. The validity of the questionnaire was assessed by professors and experts. Cronbach's alpha was used to determine the reliability (α= 0.844), which is considered an acceptable reliability value. Overall, the average scores of attitudes towards multifunctional agriculture show a positive tendency towards multifunctional agriculture, considering farmers' attitudes of the Shanderman district (SD = 0.53, M = 3.81). Results also highlight a significant difference between farmers' income source levels (F = 0.049) and agricultural literature review (F = 0.022) toward farmers' attitudes considering multifunctional agriculture (p < 0.05). Pearson correlations also indicated that there is a positive relationship between positive attitudes and family size (r = 0.154), farmers' experience (r = 0.246), size of land under cultivation (r = 0.186), income (r = 0.227), and social contribution activities (r = 0.224). The results of multiple regression analyses showed that the variation in the dependent variable depended on the farmers' experience in agricultural activities and their social contribution activities. This means that the variables included in the regression analysis are estimated to explain 12 percent of the variation in the dependent variable.

Keywords: multifunctional agriculture, attitude, effective factor, sustainable agriculture

Procedia PDF Downloads 236
4296 Machine Learning Techniques for Estimating Ground Motion Parameters

Authors: Farid Khosravikia, Patricia Clayton

Abstract:

The main objective of this study is to evaluate the advantages and disadvantages of various machine learning techniques in forecasting ground-motion intensity measures given source characteristics, source-to-site distance, and local site condition. Intensity measures such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Estimating these variables for future earthquake events is a key step in seismic hazard assessment and potentially subsequent risk assessment of different types of structures. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as a statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The algorithms are adjusted to quantify event-to-event and site-to-site variability of the ground motions by implementing them as random effects in the proposed models to reduce the aleatory uncertainty. All the algorithms are trained using a selected database of 4,528 ground-motions, including 376 seismic events with magnitude 3 to 5.8, recorded over the hypocentral distance range of 4 to 500 km in Oklahoma, Kansas, and Texas since 2005. The main reason of the considered database stems from the recent increase in the seismicity rate of these states attributed to petroleum production and wastewater disposal activities, which necessities further investigation in the ground motion models developed for these states. Accuracy of the models in predicting intensity measures, generalization capability of the models for future data, as well as usability of the models are discussed in the evaluation process. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available.

Keywords: artificial neural network, ground-motion models, machine learning, random forest, support vector machine

Procedia PDF Downloads 122
4295 Assessment of the Work-Related Stress and Associated Factors among Sanitation Workers in Public Hospitals during COVID-19, Addis Ababa, Ethiopia

Authors: Zerubabel Mihret

Abstract:

Background: Work-related stress is a pattern of reactions to work demands unmatched by worker’s knowledge, skills, or abilities. Healthcare institutions are considered high-risk and intensive work areas for work-related stress. However, there is the nonexistence of clear and strong data about the magnitude of work-related stress on sanitation workers in hospitals in Ethiopia. The aim of this study was to determine the magnitude of work-related stress among sanitation workers in public hospitals during COVID-19 in Addis Ababa, Ethiopia. Methods: Institution-based cross-sectional study was conducted from October 2021 to February 2022 among 494 sanitation workers who were selected from 4 hospitals. HSE (Health and Safety Executive of UK) standard data collection tool was used, and an interviewer-administered questionnaire was used to collect the data using KOBO collect application. The collected data were cleaned and analyzed using SPSS version 20.0. Both binary and multivariable logistic regression analyses were done to identify important factors having an association with work-related stress. Variables with p-value ≤ 0.25 in the bivariate analysis were entered into the multivariable logistic regression model. A statistically significant level was declared at a p-value ≤ 0.05. Results: This study revealed that the magnitude of work-related stress among sanitation workers was 49.2% (95% CI 45-54). Significant proportions (72.7%) of sanitation workers were dissatisfied with their current job. Sex, age, experience, and chewing khat were significantly associated with work-related stress. Conclusion: Work-related stress is significantly high among sanitation workers. Sex, age, experience, and chewing khat were identified as factors associated with work-related stress. Intervention program focusing on the prevention and control of stress is desired by hospitals.

Keywords: work-related stress, sanitation workers, Likert scale, public hospitals, Ethiopia

Procedia PDF Downloads 83
4294 An Investigation about the Health-Promoting Lifestyle of 1389 Emergency Nurses in China

Authors: Lei Ye, Min Liu, Yong-Li Gao, Jun Zhang

Abstract:

Purpose: The aims of the study are to investigate the status of health-promoting lifestyle and to compare the healthy lifestyle of emergency nurses in different levels of hospitals in Sichuan province, China. The investigation is mainly about the health-promoting lifestyle, including spiritual growth, health responsibility, physical activity, nutrition, interpersonal relations, stress management. Then the factors were analyzed influencing the health-promoting lifestyle of emergency nurses in hospitals of Sichuan province in order to find the relevant models to provide reference evidence for intervention. Study Design: A cross-sectional research method was adopted. Stratified cluster sampling, based on geographical location, was used to select the health facilities of 1389 emergency nurses in 54 hospitals from Sichuan province in China. Method: The 52-item, six-factor structure Health-Promoting Lifestyle Profile II (HPLP- II) instrument was used to explore participants’ self-reported health-promoting behaviors and measure the dimensions of health responsibility, physical activity, nutrition, interpersonal relations, spiritual growth, and stress management. Demographic characteristics, education, work duration, emergency nursing work duration and self-rated health status were documented. Analysis: Data were analyzed through SPSS software ver. 17.0. Frequency, percentage, mean ± standard deviation were used to describe the general information, while the Nonparametric Test was used to compare the constituent ratio of general data of different hospitals. One-way ANOVA was used to compare the scores of health-promoting lifestyle in different levels hospital. A multiple linear regression model was established. P values which were less than 0.05 determined statistical significance in all analyses. Result: The survey showed that the total score of health-promoting lifestyle of nurses at emergency departments in Sichuan Province was 120.49 ± 21.280. The relevant dimensions are ranked by scores in descending order: interpersonal relations, nutrition, health responsibility, physical activity, stress management, spiritual growth. The total scores of the three-A hospital were the highest (121.63 ± 0.724), followed by the senior class hospital (119.7 ± 1.362) and three-B hospital (117.80 ± 1.255). The difference was statistically significant (P=0.024). The general data of nurses was used as the independent variable which includes age, gender, marital status, living conditions, nursing income, hospital level, Length of Service in nursing, Length of Service in emergency, Professional Title, education background, and the average number of night shifts. The total score of health-promoting lifestyle was used as dependent variable; Multiple linear regression analysis method was adopted to establish the regression model. The regression equation F = 20.728, R2 = 0.061, P < 0.05, the age, gender, nursing income, turnover intention and status of coping stress affect the health-promoting lifestyle of nurses in emergency department, the result was statistically significant (P < 0.05 ). Conclusion: The results of the investigation indicate that it will help to develop health promoting interventions for emergency nurses in all levels of hospital in Sichuan Province through further research. Managers need to pay more attention to emergency nurses’ exercise, stress management, self-realization, and conduct intervention in nurse training programs.

Keywords: emergency nurse, health-promoting lifestyle profile II, health behaviors, lifestyle

Procedia PDF Downloads 282
4293 A Five-Year Follow-up Survey Using Regression Analysis Finds Only Maternal Age to Be a Significant Medical Predictor for Infertility Treatment

Authors: Lea Stein, Sabine Rösner, Alessandra Lo Giudice, Beate Ditzen, Tewes Wischmann

Abstract:

For many couples bearing children is a consistent life goal; however, it cannot always be fulfilled. Undergoing infertility treatment does not guarantee pregnancies and live births. Couples have to deal with miscarriages and sometimes even discontinue infertility treatment. Significant medical predictors for the outcome of infertility treatment have yet to be fully identified. To further our understanding, a cross-sectional five-year follow-up survey was undertaken, in which 95 women and 82 men that have been treated at the Women’s Hospital of Heidelberg University participated. Binary logistic regressions, parametric and non-parametric methods were used for our sample to determine the relevance of biological (infertility diagnoses, maternal and paternal age) and lifestyle factors (smoking, drinking, over- and underweight) on the outcome of infertility treatment (clinical pregnancy, live birth, miscarriage, dropout rate). During infertility treatment, 72.6% of couples became pregnant and 69.5% were able to give birth. Suffering from miscarriages 27.5% of couples and 20.5% decided to discontinue an unsuccessful fertility treatment. The binary logistic regression models for clinical pregnancies, live births and dropouts were statistically significant for the maternal age, whereas the paternal age in addition to maternal and paternal BMI, smoking, infertility diagnoses and infections, showed no significant predicting effect on any of the outcome variables. The results confirm an effect of maternal age on infertility treatment, whereas the relevance of other medical predictors remains unclear. Further investigations should be considered to increase our knowledge of medical predictors.

Keywords: advanced maternal age, assisted reproductive technology, female factor, male factor, medical predictors, infertility treatment, reproductive medicine

Procedia PDF Downloads 110
4292 Torrefaction of Biomass Pellets: Modeling of the Process in a Fixed Bed Reactor

Authors: Ekaterina Artiukhina, Panagiotis Grammelis

Abstract:

Torrefaction of biomass pellets is considered as a useful pretreatment technology in order to convert them into a high quality solid biofuel that is more suitable for pyrolysis, gasification, combustion and co-firing applications. In the course of torrefaction the temperature varies across the pellet, and therefore chemical reactions proceed unevenly within the pellet. However, the uniformity of the thermal distribution along the pellet is generally assumed. The torrefaction process of a single cylindrical pellet is modeled here, accounting for heat transfer coupled with chemical kinetics. The drying sub-model was also introduced. The non-stationary process of wood pellet decomposition is described by the system of non-linear partial differential equations over the temperature and mass. The model captures well the main features of the experimental data.

Keywords: torrefaction, biomass pellets, model, heat, mass transfer

Procedia PDF Downloads 480
4291 Beyond Adoption: Econometric Analysis of Impacts of Farmer Innovation Systems and Improved Agricultural Technologies on Rice Yield in Ghana

Authors: Franklin N. Mabe, Samuel A. Donkoh, Seidu Al-Hassan

Abstract:

In order to increase and bridge the differences in rice yield, many farmers have resorted to adopting Farmer Innovation Systems (FISs) and Improved Agricultural Technologies (IATs). This study econometrically analysed the impacts of adoption of FISs and IATs on rice yield using multinomial endogenous switching regression (MESR). Nine-hundred and seven (907) rice farmers from Guinea Savannah Zone (GSZ), Forest Savannah Transition Zone (FSTZ) and Coastal Savannah Zone (CSZ) were used for the study. The study used both primary and secondary data. FBO advice, rice farming experience and distance from farming communities to input markets increase farmers’ adoption of only FISs. Factors that increase farmers’ probability of adopting only IATs are access to extension advice, credit, improved seeds and contract farming. Farmers located in CSZ have higher probability of adopting only IATs than their counterparts living in other agro-ecological zones. Age and access to input subsidy increase the probability of jointly adopting FISs and IATs. FISs and IATs have heterogeneous impact on rice yield with adoption of only IATs having the highest impact followed by joint adoption of FISs and IATs. It is important for stakeholders in rice subsector to champion the provision of improved rice seeds, the intensification of agricultural extension services and contract farming concept. Researchers should endeavour to researched into FISs.

Keywords: farmer innovation systems, improved agricultural technologies, multinomial endogenous switching regression, treatment effect

Procedia PDF Downloads 426
4290 An Accurate Method for Phylogeny Tree Reconstruction Based on a Modified Wild Dog Algorithm

Authors: Essam Al Daoud

Abstract:

This study solves a phylogeny problem by using modified wild dog pack optimization. The least squares error is considered as a cost function that needs to be minimized. Therefore, in each iteration, new distance matrices based on the constructed trees are calculated and used to select the alpha dog. To test the suggested algorithm, ten homologous genes are selected and collected from National Center for Biotechnology Information (NCBI) databanks (i.e., 16S, 18S, 28S, Cox 1, ITS1, ITS2, ETS, ATPB, Hsp90, and STN). The data are divided into three categories: 50 taxa, 100 taxa and 500 taxa. The empirical results show that the proposed algorithm is more reliable and accurate than other implemented methods.

Keywords: least square, neighbor joining, phylogenetic tree, wild dog pack

Procedia PDF Downloads 320
4289 Role of Foreign Direct Investment in Economic Growth of Pakistan

Authors: Nayyra Zeb, Fu Qiang, Sundas Rauf

Abstract:

Foreign Direct Investment (FDI) is often seen as a significant factor of economic development in developing countries like Pakistan. The aim of this article is to investigate the effect of FDI on Pakistan’s economic growth during 1972–2012. Besides FDI, three other variables such as trade openness, political instability and terrorist attacks are also used in this study. The least square method has been applied to check the effect of these variables on GDP of Pakistan. The results show that FDI has a positive significant effect on economic growth of Pakistan.

Keywords: FDI inflows, trade openness, political instability, terrorist attacks

Procedia PDF Downloads 459
4288 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 161
4287 Meta Model for Optimum Design Objective Function of Steel Frames Subjected to Seismic Loads

Authors: Salah R. Al Zaidee, Ali S. Mahdi

Abstract:

Except for simple problems of statically determinate structures, optimum design problems in structural engineering have implicit objective functions where structural analysis and design are essential within each searching loop. With these implicit functions, the structural engineer is usually enforced to write his/her own computer code for analysis, design, and searching for optimum design among many feasible candidates and cannot take advantage of available software for structural analysis, design, and searching for the optimum solution. The meta-model is a regression model used to transform an implicit objective function into objective one and leads in turn to decouple the structural analysis and design processes from the optimum searching process. With the meta-model, well-known software for structural analysis and design can be used in sequence with optimum searching software. In this paper, the meta-model has been used to develop an explicit objective function for plane steel frames subjected to dead, live, and seismic forces. Frame topology is assumed as predefined based on architectural and functional requirements. Columns and beams sections and different connections details are the main design variables in this study. Columns and beams are grouped to reduce the number of design variables and to make the problem similar to that adopted in engineering practice. Data for the implicit objective function have been generated based on analysis and assessment for many design proposals with CSI SAP software. These data have been used later in SPSS software to develop a pure quadratic nonlinear regression model for the explicit objective function. Good correlations with a coefficient, R2, in the range from 0.88 to 0.99 have been noted between the original implicit functions and the corresponding explicit functions generated with meta-model.

Keywords: meta-modal, objective function, steel frames, seismic analysis, design

Procedia PDF Downloads 243
4286 Quintic Spline Solution of Fourth-Order Parabolic Equations Arising in Beam Theory

Authors: Reza Mohammadi, Mahdieh Sahebi

Abstract:

We develop a method based on polynomial quintic spline for numerical solution of fourth-order non-homogeneous parabolic partial differential equation with variable coefficient. By using polynomial quintic spline in off-step points in space and finite difference in time directions, we obtained two three level implicit methods. Stability analysis of the presented method has been carried out. We solve four test problems numerically to validate the derived method. Numerical comparison with other methods shows the superiority of presented scheme.

Keywords: fourth-order parabolic equation, variable coefficient, polynomial quintic spline, off-step points

Procedia PDF Downloads 352
4285 Design Aspects for Developing a Microfluidics Diagnostics Device Used for Low-Cost Water Quality Monitoring

Authors: Wenyu Guo, Malachy O’Rourke, Mark Bowkett, Michael Gilchrist

Abstract:

Many devices for real-time monitoring of surface water have been developed in the past few years to provide early warning of pollutions and so to decrease the risk of environmental pollution efficiently. One of the most common methodologies used in the detection system is a colorimetric process, in which a container with fixed volume is filled with target ions and reagents to combine a colorimetric dye. The colorimetric ions can sensitively absorb a specific-wavelength radiation beam, and its absorbance rate is proportional to the concentration of the fully developed product, indicating the concentration of target nutrients in the pre-mixed water samples. In order to achieve precise and rapid detection effect, channels with dimensions in the order of micrometers, i.e., microfluidic systems have been developed and introduced into these diagnostics studies. Microfluidics technology largely reduces the surface to volume ratios and decrease the samples/reagents consumption significantly. However, species transport in such miniaturized channels is limited by the low Reynolds numbers in the regimes. Thus, the flow is extremely laminar state, and diffusion is the dominant mass transport process all over the regimes of the microfluidic channels. The objective of this present work has been to analyse the mixing effect and chemistry kinetics in a stop-flow microfluidic device measuring Nitride concentrations in fresh water samples. In order to improve the temporal resolution of the Nitride microfluidic sensor, we have used computational fluid dynamics to investigate the influence that the effectiveness of the mixing process between the sample and reagent within a microfluidic device exerts on the time to completion of the resulting chemical reaction. This computational approach has been complemented by physical experiments. The kinetics of the Griess reaction involving the conversion of sulphanilic acid to a diazonium salt by reaction with nitrite in acidic solution is set in the Laminar Finite-rate chemical reaction in the model. Initially, a methodology was developed to assess the degree of mixing of the sample and reagent within the device. This enabled different designs of the mixing channel to be compared, such as straight, square wave and serpentine geometries. Thereafter, the time to completion of the Griess reaction within a straight mixing channel device was modeled and the reaction time validated with experimental data. Further simulations have been done to compare the reaction time to effective mixing within straight, square wave and serpentine geometries. Results show that square wave channels can significantly improve the mixing effect and provides a low standard deviations of the concentrations of nitride and reagent, while for straight channel microfluidic patterns the corresponding values are 2-3 orders of magnitude greater, and consequently are less efficiently mixed. This has allowed us to design novel channel patterns of micro-mixers with more effective mixing that can be used to detect and monitor levels of nutrients present in water samples, in particular, Nitride. Future generations of water quality monitoring and diagnostic devices will easily exploit this technology.

Keywords: nitride detection, computational fluid dynamics, chemical kinetics, mixing effect

Procedia PDF Downloads 202
4284 A New Computational Method for the Solution of Nonlinear Burgers' Equation Arising in Longitudinal Dispersion Phenomena in Fluid Flow through Porous Media

Authors: Olayiwola Moruf Oyedunsi

Abstract:

This paper discusses the Modified Variational Iteration Method (MVIM) for the solution of nonlinear Burgers’ equation arising in longitudinal dispersion phenomena in fluid flow through porous media. The method is an elegant combination of Taylor’s series and the variational iteration method (VIM). Using Maple 18 for implementation, it is observed that the procedure provides rapidly convergent approximation with less computational efforts. The result shows that the concentration C(x,t) of the contaminated water decreases as distance x increases for the given time t.

Keywords: modified variational iteration method, Burger’s equation, porous media, partial differential equation

Procedia PDF Downloads 321
4283 Determinants of Walking among Middle-Aged and Older Overweight and Obese Adults: Demographic, Health, and Socio-Environmental Factors

Authors: Samuel N. Forjuoh, Marcia G. Ory, Jaewoong Won, Samuel D. Towne, Suojin Wang, Chanam Lee

Abstract:

The public health burden of obesity is well established as is the influence of physical activity (PA) on the health and wellness of individuals who are obese. This study examined the influence of selected demographic, health, and socioenvironmental factors on the walking behaviors of middle-aged and older overweight and obese adults. Online and paper surveys were administered to community-dwelling overweight and obese adults aged ≥ 50 years residing in four cities in central Texas and seen by a family physician in the primary care clinic from October 2013 to June 2014. Descriptive statistics were used to characterize participants’ anthropometric and demographic data as well as their health conditions and walking, socioenvironmental, and more broadly defined PA behaviors. Then Pearson chi-square tests were used to assess differences between participants who reported walking the recommended ≥ 150 minutes for any purpose in a typical week as a proxy to meeting the U.S. Centers for Disease Control and Prevention’s PA guidelines and those who did not. Finally, logistic regression was used to predict walking the recommended ≥ 150 minutes for any purpose, controlling for covariates. The analysis was conducted in 2016. Of the total sample (n=253, survey response rate of 6.8%), the majority were non-Hispanic white (81.7%), married (74.5%), male (53.5%), and reported an annual household income of ≥ $50,000 (65.7%). Approximately, half were employed (49.6%), or had at least a college degree (51.8%). Slightly more than 1 in 5 (n=57, 22.5%) reported walking the recommended ≥150 minutes for any purpose in a typical week. The strongest predictors of walking the recommended ≥ 150 minutes for any purpose in a typical week in adjusted analysis were related to education and a high favorable perception of the neighborhood environment. Compared to those with a high school diploma or some college, participants with at least a college degree were five times as likely to walk the recommended ≥ 150 minutes for any purpose (OR=5.55, 95% CI=1.79-17.25). Walking the recommended ≥ 150 minutes for any purpose was significantly associated with participants who disagreed that there were many distracted drivers (e.g., on the cell phone while driving) in their neighborhood (OR=4.08, 95% CI=1.47-11.36) and those who agreed that there are sidewalks or protected walkways (e.g., walking trails) in their neighborhood (OR=3.55, 95% CI=1.10-11.49). Those employed were less likely to walk the recommended ≥ 150 minutes for any purpose compared to those unemployed (OR=0.31, 95% CI=0.11-0.85) as were those who reported some difficulty walking for a quarter of a mile (OR=0.19, 95% CI=0.05-0.77). Other socio-environmental factors such as having care-giver responsibilities for elders, someone to walk with, or a dog in the household as well as Walk Score™ were not significantly associated with walking the recommended ≥ 150 minutes for any purpose in a typical week. Neighborhood perception appears to be an important factor associated with the walking behaviors of middle-aged and older overweight and obese individuals. Enhancing the neighborhood environment (e.g., providing walking trails) may promote walking among these individuals.

Keywords: determinants of walking, obesity, older adults, physical activity

Procedia PDF Downloads 259
4282 Opinions of Pre-Service Teachers on Online Language Teaching: COVID-19 Pandemic Perspective

Authors: Neha J. Nandaniya

Abstract:

In the present research paper researcher put focuses on the opinions of pre-service teachers have been taken regarding online language teaching, which was held during the COVID-19 pandemic and is still going on. The researcher developed a three-point rating scale in Google Forms to find out the views of trainees on online language learning, in which 167 B. Ed. trainees having language content and method gave their responses. After scoring the responses obtained by the investigator, the chi-square value was calculated, and the findings were concluded. The major finding of the study is language learning is not as effective as offline teaching mode.

Keywords: online language teaching, ICT competency, B. Ed. trainees, COVID-19 pandemic

Procedia PDF Downloads 84
4281 A Comparative Study of Optimization Techniques and Models to Forecasting Dengue Fever

Authors: Sudha T., Naveen C.

Abstract:

Dengue is a serious public health issue that causes significant annual economic and welfare burdens on nations. However, enhanced optimization techniques and quantitative modeling approaches can predict the incidence of dengue. By advocating for a data-driven approach, public health officials can make informed decisions, thereby improving the overall effectiveness of sudden disease outbreak control efforts. The National Oceanic and Atmospheric Administration and the Centers for Disease Control and Prevention are two of the U.S. Federal Government agencies from which this study uses environmental data. Based on environmental data that describe changes in temperature, precipitation, vegetation, and other factors known to affect dengue incidence, many predictive models are constructed that use different machine learning methods to estimate weekly dengue cases. The first step involves preparing the data, which includes handling outliers and missing values to make sure the data is prepared for subsequent processing and the creation of an accurate forecasting model. In the second phase, multiple feature selection procedures are applied using various machine learning models and optimization techniques. During the third phase of the research, machine learning models like the Huber Regressor, Support Vector Machine, Gradient Boosting Regressor (GBR), and Support Vector Regressor (SVR) are compared with several optimization techniques for feature selection, such as Harmony Search and Genetic Algorithm. In the fourth stage, the model's performance is evaluated using Mean Square Error (MSE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE) as assistance. Selecting an optimization strategy with the least number of errors, lowest price, biggest productivity, or maximum potential results is the goal. In a variety of industries, including engineering, science, management, mathematics, finance, and medicine, optimization is widely employed. An effective optimization method based on harmony search and an integrated genetic algorithm is introduced for input feature selection, and it shows an important improvement in the model's predictive accuracy. The predictive models with Huber Regressor as the foundation perform the best for optimization and also prediction.

Keywords: deep learning model, dengue fever, prediction, optimization

Procedia PDF Downloads 65
4280 MHD Equilibrium Study in Alborz Tokamak

Authors: Maryamosadat Ghasemi, Reza Amrollahi

Abstract:

Plasma equilibrium geometry has a great influence on the confinement and magnetohydrodynamic stability in tokamaks. The poloidal field (PF) system of a tokamak should be able to support this plasma equilibrium geometry. In this work the prepared numerical code based on radial basis functions are presented and used to solve the Grad–Shafranov (GS) equation for the axisymmetric equilibrium of tokamak plasma. The radial basis functions (RBFs) which is a kind of numerical meshfree method (MFM) for solving partial differential equations (PDEs) has appeared in the last decade and is developing significantly in the last few years. This technique is applied in this study to obtain the equilibrium configuration for Alborz Tokamak. The behavior of numerical solution convergences show the validation of this calculations.

Keywords: equilibrium, grad–shafranov, radial basis functions, Alborz Tokamak

Procedia PDF Downloads 473
4279 The Flora of Bozdağ, Sizma–Konya, Turkey and Its Environs

Authors: Esra Ipekci, Murad Aydin Sanda

Abstract:

The flora of Bozdağ (Konya) and its surroundings were investigated between 2003 and 2005 years; 700 herbarium specimens belonging to 482 taxa, 257 genera and 62 families were collected and identified from the area. The families which have the most taxa in research area are Asteraceae 67 (14.0%), Fabaceae 60 (12.6%), Lamiaceae 57 (11.9%), Brassicaceae 34 (7.1%), Poaceae 30 (6.3%), Rosaceae 24 (5.0%), Caryophyllaceae 23 (4.8%), Liliaceae 19 (4.0%), Boraginaceae 17 (3.6%), Apiaceae 13 (2.7%). The research area is in the district of Konya and is in the B4 square according to the Grid System. The phytogeographic elements are represented in the study area as follows; Mediterranean 72 (14.9%), Irano-Turanian 91 (18.9%), Euro-Siberian 21 (4.3%). The phytogeographic regions of 273 (56.6%) taxa are either multi regional or unknown. The number of endemic taxa is 79 (16.3%).

Keywords: Sizma, Bozdağ, Flora, Konya, Turkey

Procedia PDF Downloads 555
4278 Assesment of Financial Performance: An Empirical Study of Crude Oil and Natural Gas Companies in India

Authors: Palash Bandyopadhyay

Abstract:

Background and significance of the study: Crude oil and natural gas is of crucial importance due to its increasing demand in India. The demand has been increased because of change of lifestyle overtime. Since India has poor utilization of oil production capacity, constantly the import of it has been increased progressively day by day. This ultimately hit the foreign exchange reserves of India, however it negatively affect the Indian economy as well. The financial performance of crude oil and natural gas companies in India has been trimmed down year after year because of underutilization of production capacity, enhancement of demand, change in life style, and change in import bill and outflows of foreign currencies. In this background, the current study seeks to measure the financial performance of crude oil and natural gas companies of India in the post liberalization period. Keeping in view of this, this study assesses the financial performance in terms of liquidity management, solvency, efficiency, financial stability, and profitability of the companies under study. Methodology: This research work is encircled on yearly ratio data collected from Centre for Monitoring Indian Economy (CMIE) Prowess database for the periods between 1993-94 and 2012-13 with 20 observations using liquidity, solvency and efficiency indicators, profitability indicators and financial stability indicators of all the major crude oil and natural gas companies in India. In the course of analysis, descriptive statistics, correlation statistics, and linear regression test have been utilized. Major findings: Descriptive statistics indicate that liquidity position is satisfactory in case of three crude oil and natural gas companies (Oil and Natural Gas Companies Videsh Limited, Oil India Limited and Selan exploration and transportation Limited) out of selected companies under study but solvency position is satisfactory only for one company (Oil and Natural Gas Companies Videsh Limited). However, efficiency analysis points out that Oil and Natural Gas Companies Videsh Limited performs effectively the management of inventory, receivables, and payables, but the overall liquidity management is not well. Profitability position is very much satisfactory in case of all the companies except Tata Petrodyne Limited, but profitability management is not satisfactory for all the companies under study. Financial stability analysis shows that all the companies are more dependent on debt capital, which bears a financial risk. Correlation and regression test results illustrates that profitability is positively and negatively associated with liquidity, solvency, efficiency, and financial stability indicators. Concluding statement: Management of liquidity and profitability of crude oil and natural gas companies in India should have been improved through controlling unnecessary imports in spite of the heavy demand of crude oil and natural gas in India and proper utilization of domestic oil reserves. At the same time, Indian government has to concern about rupee depreciation and interest rates.

Keywords: financial performance, crude oil and natural gas companies, India, linear regression

Procedia PDF Downloads 322
4277 An Analytical Method for Bending Rectangular Plates with All Edges Clamped Supported

Authors: Yang Zhong, Heng Liu

Abstract:

The decoupling method and the modified Naiver method are combined for accurate bending analysis of rectangular thick plates with all edges clamped supported. The basic governing equations for Mindlin plates are first decoupled into independent partial differential equations which can be solved separately. Using modified Navier method, the analytic solution of rectangular thick plate with all edges clamped supported is then derived. The solution method used in this paper leave out the complicated derivation for calculating coefficients and obtain the solution to problems directly. Numerical comparisons show the correctness and accuracy of the results at last.

Keywords: Mindlin plates, decoupling method, modified Navier method, bending rectangular plates

Procedia PDF Downloads 600
4276 Statistical Comparison of Ensemble Based Storm Surge Forecasting Models

Authors: Amin Salighehdar, Ziwen Ye, Mingzhe Liu, Ionut Florescu, Alan F. Blumberg

Abstract:

Storm surge is an abnormal water level caused by a storm. Accurate prediction of a storm surge is a challenging problem. Researchers developed various ensemble modeling techniques to combine several individual forecasts to produce an overall presumably better forecast. There exist some simple ensemble modeling techniques in literature. For instance, Model Output Statistics (MOS), and running mean-bias removal are widely used techniques in storm surge prediction domain. However, these methods have some drawbacks. For instance, MOS is based on multiple linear regression and it needs a long period of training data. To overcome the shortcomings of these simple methods, researchers propose some advanced methods. For instance, ENSURF (Ensemble SURge Forecast) is a multi-model application for sea level forecast. This application creates a better forecast of sea level using a combination of several instances of the Bayesian Model Averaging (BMA). An ensemble dressing method is based on identifying best member forecast and using it for prediction. Our contribution in this paper can be summarized as follows. First, we investigate whether the ensemble models perform better than any single forecast. Therefore, we need to identify the single best forecast. We present a methodology based on a simple Bayesian selection method to select the best single forecast. Second, we present several new and simple ways to construct ensemble models. We use correlation and standard deviation as weights in combining different forecast models. Third, we use these ensembles and compare with several existing models in literature to forecast storm surge level. We then investigate whether developing a complex ensemble model is indeed needed. To achieve this goal, we use a simple average (one of the simplest and widely used ensemble model) as benchmark. Predicting the peak level of Surge during a storm as well as the precise time at which this peak level takes place is crucial, thus we develop a statistical platform to compare the performance of various ensemble methods. This statistical analysis is based on root mean square error of the ensemble forecast during the testing period and on the magnitude and timing of the forecasted peak surge compared to the actual time and peak. In this work, we analyze four hurricanes: hurricanes Irene and Lee in 2011, hurricane Sandy in 2012, and hurricane Joaquin in 2015. Since hurricane Irene developed at the end of August 2011 and hurricane Lee started just after Irene at the beginning of September 2011, in this study we consider them as a single contiguous hurricane event. The data set used for this study is generated by the New York Harbor Observing and Prediction System (NYHOPS). We find that even the simplest possible way of creating an ensemble produces results superior to any single forecast. We also show that the ensemble models we propose generally have better performance compared to the simple average ensemble technique.

Keywords: Bayesian learning, ensemble model, statistical analysis, storm surge prediction

Procedia PDF Downloads 309
4275 Ray Tracing Modified 3D Image Method Simulation of Picocellular Propagation Channel Environment

Authors: Fathi Alwafie

Abstract:

In this paper we present the simulation of the propagation characteristics of the picocellular propagation channel environment. The first aim has been to find a correct description of the environment for received wave. The result of the first investigations is that the environment of the indoor wave significantly changes as we change the electric parameters of material constructions. A modified 3D ray tracing image method tool has been utilized for the coverage prediction. A detailed analysis of the dependence of the indoor wave on the wide-band characteristics of the channel: Root Mean Square (RMS) delay spread characteristics and mean excess delay, is also investigated.

Keywords: propagation, ray tracing, network, mobile computing

Procedia PDF Downloads 400
4274 Algorithm Development of Individual Lumped Parameter Modelling for Blood Circulatory System: An Optimization Study

Authors: Bao Li, Aike Qiao, Gaoyang Li, Youjun Liu

Abstract:

Background: Lumped parameter model (LPM) is a common numerical model for hemodynamic calculation. LPM uses circuit elements to simulate the human blood circulatory system. Physiological indicators and characteristics can be acquired through the model. However, due to the different physiological indicators of each individual, parameters in LPM should be personalized in order for convincing calculated results, which can reflect the individual physiological information. This study aimed to develop an automatic and effective optimization method to personalize the parameters in LPM of the blood circulatory system, which is of great significance to the numerical simulation of individual hemodynamics. Methods: A closed-loop LPM of the human blood circulatory system that is applicable for most persons were established based on the anatomical structures and physiological parameters. The patient-specific physiological data of 5 volunteers were non-invasively collected as personalized objectives of individual LPM. In this study, the blood pressure and flow rate of heart, brain, and limbs were the main concerns. The collected systolic blood pressure, diastolic blood pressure, cardiac output, and heart rate were set as objective data, and the waveforms of carotid artery flow and ankle pressure were set as objective waveforms. Aiming at the collected data and waveforms, sensitivity analysis of each parameter in LPM was conducted to determine the sensitive parameters that have an obvious influence on the objectives. Simulated annealing was adopted to iteratively optimize the sensitive parameters, and the objective function during optimization was the root mean square error between the collected waveforms and data and simulated waveforms and data. Each parameter in LPM was optimized 500 times. Results: In this study, the sensitive parameters in LPM were optimized according to the collected data of 5 individuals. Results show a slight error between collected and simulated data. The average relative root mean square error of all optimization objectives of 5 samples were 2.21%, 3.59%, 4.75%, 4.24%, and 3.56%, respectively. Conclusions: Slight error demonstrated good effects of optimization. The individual modeling algorithm developed in this study can effectively achieve the individualization of LPM for the blood circulatory system. LPM with individual parameters can output the individual physiological indicators after optimization, which are applicable for the numerical simulation of patient-specific hemodynamics.

Keywords: blood circulatory system, individual physiological indicators, lumped parameter model, optimization algorithm

Procedia PDF Downloads 137
4273 The Morphological Processes of Bura Verbs

Authors: Yakubu Bitrus Gali

Abstract:

Bura refers both to the kingdom, the people as well as to the language. It is a language spoken in North-Eastern Nigeria. It is also classified under the Chadic group of languages, subgroup of the Afro-Asiatic phylum. Three morphological processes were found to be operating in Bura language viz: affixation, reduplication and modification. Affixation could be prefixation, infixation and suffixation, while reduplication and modification are divided into complete and partial. Verbs as well, can be formed through various processes like affixation, reduplication and modification. The aim of this paper is to examine the morphological processes that are found in Bura language. In this study, research informants were selected by means of sampling technique. The study helps us to understand that Bura like other languages morphological processes of verbs is possible.

Keywords: Bura language, infixation, morphological processes, prefixation, suffixation

Procedia PDF Downloads 525
4272 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second –95,3%.

Keywords: bass model, generalized bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States

Procedia PDF Downloads 348
4271 Predictors of Sexually Transmitted Infection of Korean Adolescent Females: Analysis of Pooled Data from Korean Nationwide Survey

Authors: Jaeyoung Lee, Minji Je

Abstract:

Objectives: In adolescence, adolescents are curious about sex, but sexual experience before becoming an adult can cause the risk of high probability of sexually transmitted infection. Therefore, it is very important to prevent sexually transmitted infections so that adolescents can grow in healthy and upright way. Adolescent females, especially, have sexual behavior distinguished from that of male adolescents. Protecting female adolescents’ reproductive health is even more important since it is directly related to the childbirth of the next generation. This study, thus, investigated the predictors of sexually transmitted infection in adolescent females with sexual experiences based on the National Health Statistics in Korea. Methods: This study was conducted based on the National Health Statistics in Korea. The 11th Korea Youth Behavior Web-based Survey in 2016 was conducted in the type of anonymous self-reported survey in order to find out the health behavior of adolescents. The target recruitment group was middle and high school students nationwide as of April 2016, and 65,528 students from a total of 800 middle and high schools participated. The study was conducted in 537 female high school students (Grades 10–12) among them. The collected data were analyzed as complex sampling design using SPSS statistics 22. The strata, cluster, weight, and finite population correction provided by Korea Center for Disease Control & Prevention (KCDC) were reflected to constitute complex sample design files, which were used in the statistical analysis. The analysis methods included Rao-Scott chi-square test, complex samples general linear model, and complex samples multiple logistic regression analysis. Results: Out of 537 female adolescents, 11.9% (53 adolescents) had experiences of venereal infection. The predictors for venereal infection of the subjects were ‘age at first intercourse’ and ‘sexual intercourse after drinking’. The sexually transmitted infection of the subjects was decreased by 0.31 times (p=.006, 95%CI=0.13-0.71) for middle school students and 0.13 times (p<.001, 95%CI=0.05-0.32) for high school students whereas the age of the first sexual experience was under elementary school age. In addition, the sexually transmitted infection of the subjects was 3.54 times (p < .001, 95%CI=1.76-7.14) increased when they have experience of sexual relation after drinking alcohol, compared to those without the experience of sexual relation after drinking alcohol. Conclusions: The female adolescents had high probability of sexually transmitted infection if their age for the first sexual experience was low. Therefore, the female adolescents who start sexual experience earlier shall have practical sex education appropriate for their developmental stage. In addition, since the sexually transmitted infection increases, if they have sexual relations after drinking alcohol, the consideration for prevention of alcohol use or intervention of sex education shall be required. When health education intervention is conducted for health promotion for female adolescents in the future, it is necessary to reflect the result of this study.

Keywords: adolescent, coitus, female, sexually transmitted diseases

Procedia PDF Downloads 192
4270 Association of Depression with Physical Inactivity and Time Watching Television: A Cross-Sectional Study with the Brazilian Population PNS, 2013

Authors: Margareth Guimaraes Lima, Marilisa Berti A. Barros, Deborah Carvalho Malta

Abstract:

The relationship between physical activity (PA) and depression has been investigated, in both, observational and clinical studies: PA can integrate the treatments for depression; the physical inactivity (PI) may contribute to increase depression symptoms; and on the other hand, emotional problems can decrease PA. The main of this study was analyze the association among leisure and transportation PI and time watching television (TV) according to depression (minor and major), evaluated with the Patient Health Questionnaire (PHQ-9). The association was also analyzed by gender. This is a cross-sectional study. Data were obtained from the National Health Survey 2013 (PNS), performed with representative sample of the Brazilian adult population, in 2013. The PNS collected information from 60,202 individuals, aged 18 years or more. The independent variable were: leisure time physical inactivity (LTPI), considering inactive or insufficiently actives (categories were linked for analyzes), those who do not performed a minimum of 150 or 74 minutes of moderate or vigorous LTPA, respectively, by week; transportation physical inactivity (TPI), individuals who did not reached 150 minutes, by week, travelling by bicycle or on foot to work or other activities; daily time watching TV > 5 hours. The principal independent variable was depression, identified by PHQ-9. Individuals were classified with major depression, with > 5 symptoms, more than seven days, but one of the symptoms was “depressive mood” or “lack of interest or pleasure”. The others had minor depression. The variables used to adjustment were gender, age, schooling and chronic disease. The prevalence of LTPI, TPI and TV time were estimated according to depression, and differences were tested with Chi-Square test. Adjusted prevalence ratios were estimated using multiple Poisson regression models. The analyzes also had stratification by gender. Mean age of the studied population was 42.9 years old (CI95%:42.6-43.2) and 52.9% were women. 77.5% and 68.1% were inactive or insufficiently active in leisure and transportation, respectively and 13.3% spent time watching TV 5 > hours. 6% and 4.1% of the Brazilian population were diagnosed with minor or major depression. LTPI prevalence was 5% and 9% higher among individuals with minor and major depression, respectively, comparing with no depression. The prevalence of TPI was 7% higher in those with major depression. Considering larger time watching TV, the prevalence was 45% and 74% higher among those with minor and major depression, respectively. Analyzing by gender, the associations were greater in men than women and TPI was note be associated, in women. The study detected the higher prevalence of leisure time physical inactivity and, especially, time spent watching TV, among individuals with major and minor depression, after to adjust for a number of potential confounding factors. TPI was only associated with major disorders and among men. Considering the cross-sectional design of the research, these associations can point out the importance of the mental problems control of the population to increase PA and decrease the sedentary lifestyle; on the other hand, the study highlight the need of interventions by encouraging people with depression, to practice PA, even to transportation.

Keywords: depression, physical activity, PHQ-9, sedentary lifestyle

Procedia PDF Downloads 156
4269 11-Round Impossible Differential Attack on Midori64

Authors: Zhan Chen, Wenquan Bi

Abstract:

This paper focuses on examining the strength of Midori against impossible differential attack. The Midori family of light weight block cipher orienting to energy-efficiency is proposed in ASIACRYPT2015. Using a 6-round property, the authors implement an 11-round impossible differential attack on Midori64 by extending two rounds on the top and three rounds on the bottom. There is enough key space to consider pre-whitening keys in this attack. An impossible differential path that minimises the key bits involved is used to reduce computational complexity. Several additional observations such as partial abort technique are used to further reduce data and time complexities. This attack has data complexity of 2 ⁶⁹·² chosen plaintexts, requires 2 ¹⁴·⁵⁸ blocks of memory and 2 ⁹⁴·⁷ 11- round Midori64 encryptions.

Keywords: cryptanalysis, impossible differential, light weight block cipher, Midori

Procedia PDF Downloads 276