Search results for: load and price uncertainties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4053

Search results for: load and price uncertainties

2553 Micro-Meso 3D FE Damage Modelling of Woven Carbon Fibre Reinforced Plastic Composite under Quasi-Static Bending

Authors: Aamir Mubashar, Ibrahim Fiaz

Abstract:

This research presents a three-dimensional finite element modelling strategy to simulate damage in a quasi-static three-point bending analysis of woven twill 2/2 type carbon fibre reinforced plastic (CFRP) composite on a micro-meso level using cohesive zone modelling technique. A meso scale finite element model comprised of a number of plies was developed in the commercial finite element code Abaqus/explicit. The interfaces between the plies were explicitly modelled using cohesive zone elements to allow for debonding by crack initiation and propagation. Load-deflection response of the CRFP within the quasi-static range was obtained and compared with the data existing in the literature. This provided validation of the model at the global scale. The outputs resulting from the global model were then used to develop a simulation model capturing the micro-meso scale material features. The sub-model consisted of a refined mesh representative volume element (RVE) modelled in texgen software, which was later embedded with cohesive elements in the finite element software environment. The results obtained from the developed strategy were successful in predicting the overall load-deflection response and the damage in global and sub-model at the flexure limit of the specimen. Detailed analysis of the effects of the micro-scale features was carried out.

Keywords: woven composites, multi-scale modelling, cohesive zone, finite element model

Procedia PDF Downloads 119
2552 Feasibility of Small Autonomous Solar-Powered Water Desalination Units for Arid Regions

Authors: Mohamed Ahmed M. Azab

Abstract:

The shortage of fresh water is a major problem in several areas of the world such as arid regions and coastal zones in several countries of Arabian Gulf. Fortunately, arid regions are exposed to high levels of solar irradiation most the year, which makes the utilization of solar energy a promising solution to such problem with zero harmful emission (Green System). The main objective of this work is to conduct a feasibility study of utilizing small autonomous water desalination units powered by photovoltaic modules as a green renewable energy resource to be employed in different isolated zones as a source of drinking water for some scattered societies where the installation of huge desalination stations are discarded owing to the unavailability of electric grid. Yanbu City is chosen as a case study where the Renewable Energy Center exists and equipped with all sensors to assess the availability of solar energy all over the year. The study included two types of available water: the first type is brackish well water and the second type is seawater of coastal regions. In the case of well water, two versions of desalination units are involved in the study: the first version is based on day operation only. While the second version takes into consideration night operation also, which requires energy storage system as batteries to provide the necessary electric power at night. According to the feasibility study results, it is found that utilization of small autonomous desalinations unit is applicable and economically accepted in the case of brackish well water. While in the case of seawater the capital costs are extremely high and the cost of desalinated water will not be economically feasible unless governmental subsidies are provided. In addition, the study indicated that, for the same water production, the utilization of energy storage version (day-night) adds additional capital cost for batteries, and extra running cost for their replacement, which makes the unit price not only incompetent with day-only unit but also with conventional units powered by diesel generator (fossil fuel) owing to the low prices of fuel in the kingdom. However, the cost analysis shows that the price of the produced water per cubic meter of day-night unit is similar to that produced from the day-only unit provided that the day-night unit operates theoretically for a longer period of 50%.

Keywords: solar energy, water desalination, reverse osmosis, arid regions

Procedia PDF Downloads 427
2551 Zeros Elimination from the National Currency

Authors: Zahra Karimi

Abstract:

The purpose of this paper is to investigate the role and importance of accounting for the implementation of the VAT system in the country. For this purpose, after the evaluation of specifications and important advantages of the VAT and the experience of other countries, important role of accounting in the precise determination of taxes, strategies to prevent escape of tax and realization of tax revenues of government, necessary control to increase the efficiency and accuracy of the calculations discussed. High-dependence of government to borrowing from the banking system and inflation tax and a low general ratio of tax revenues to GDP, indicating the inadequacy of the country's tax system. It can be said that being of a proper accounting system consider as a prerequisite for successful implementation of VAT in the country. So it's crucial for accountants with responsibility announce its full fitness to meet the requirements. For successful implementation of VAT as such a multi-stage sales tax and the tax on the price.

Keywords: accounting, tax reform in Iran, Value Added Tax (VAT), economic

Procedia PDF Downloads 367
2550 Preparation of Li Ion Conductive Ceramics via Liquid Process

Authors: M. Kotobuki, M. Koishi

Abstract:

Li1.5Al0.5Ti1.5 (PO4)3(LATP) has received much attention as a solid electrolyte for lithium batteries. In this study, the LATP solid electrolyte is prepared by the co-precipitation method using Li3PO4 as a Li source. The LATP is successfully prepared and the Li ion conductivities of bulk (inner crystal) and total (inner crystal and grain boundary) are 1.1 × 10-3 and 1.1 × 10-4 S cm-1, respectively. These values are comparable to the reported values, in which Li2C2O4 is used as the Li source. It is conclude that the LATP solid electrolyte can be prepared by the co-precipitation method using Li3PO4 as the Li source and this procedure has an advantage in mass production over previous procedure using Li2C2O4 because Li3PO4 is lower price reagent compared with Li2C2O4.

Keywords: co-precipitation method, lithium battery, NASICON-type electrolyte, solid electrolyte

Procedia PDF Downloads 335
2549 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter

Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis

Abstract:

This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.

Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control

Procedia PDF Downloads 150
2548 The Use of Electronic Shelf Labels in the Retail Food Sector

Authors: Brent McKenzie, Victoria Taylor

Abstract:

The use of QR (Quick Response Codes) codes for customer scanning with mobile phones is a rapidly growing trend. The QR code can provide the consumer with product information, user guides, product use, competitive pricing, etc. One sector for QR use has been in retail, through the use of Electronic Shelf Labeling (henceforth, ESL). In Europe, the use of ESL for pricing has been in practice for a number of years but continues to lag in acceptance in North America. Stated concerns include costs as a key constraint, but there is also evidence that consumer acceptance represents a limitation as well. The purpose of this study is to present the findings of a consumer based study to gage the impact on their use in the retail food sector.

Keywords: electronic price labels, consumer behaviour, grocery shopping, mixed methods research

Procedia PDF Downloads 314
2547 Experimental Investigation of Mechanical Friction Influence in Semi-Hydraulic Clutch Actuation System Over Mileage

Authors: Abdul Azarrudin M. A., Pothiraj K., Kandasamy Satish

Abstract:

In the current automobile scenario, there comes a demand on more sophistication and comfort drive feel on passenger segments. The clutch pedal effort is one such customer touch feels in manual transmission vehicles, where the driver continuous to operate the clutch pedal in his entire the driving maneuvers. Hence optimum pedal efforts at green condition and over mileage to be ensured for fatigue free the driving. As friction is one the predominant factor and its tendency to challenge the technicality by causing the function degradation. One such semi-hydraulic systems shows load efficiency of about 70-75% over lifetime only due to the increase in friction which leads to the increase in pedal effort and cause fatigue to the vehicle driver. This work deals with the study of friction with different interfaces and its influence in the fulcrum points over mileage, with the objective of understanding the trend over mileage and determining the alternative ways of resolving it. In that one way of methodology is the reduction of friction by experimental investigation of various friction reduction interfaces like metal-to-metal interface and it has been tried out and is detailed further. Also, the specific attention has been put up considering the fulcrum load and its contact interfaces to move on with this study. The main results of the experimental data with the influence of three different contact interfaces are being presented with an ultimate intention of ending up into less fatigue with longer consistent pedal effort, thus smoothens the operation of the end user. The Experimental validation also has been done through rig-level test setup to depict the performance at static condition and in-parallel vehicle level test has also been performed to record the additional influences if any.

Keywords: automobile, clutch, friction, fork

Procedia PDF Downloads 100
2546 Frequency Control of Self-Excited Induction Generator Based Microgrid during Transition from Grid Connected to Island Mode

Authors: Azhar Ulhaq, Zubair Yameen, Almas Anjum

Abstract:

Frequency behaviour of self-excited induction generator (SEIG) wind turbines during control mode transition from grid connected to islanded mode is studied in detail. A robust control scheme for frequency regulation based on combined action of STATCOM, energy storage system (ESS) and pitch angle control for wind powered microgrid (MG) is proposed. Suggested STATCOM controller comprises a 3-phase voltage source converter (VSC) that contains insulated gate bipolar transistors (IGBTs) based pulse width modulation (PWM) inverters along with a capacitor bank. Energy storage system control consists of current controlled voltage source converter and battery bank. Both of them acting simultaneously after detection of island compensates for reactive and active power demands, thus regulating frequency at point of common coupling (PCC) and also improves load stability. STATCOM integrates at point of common coupling and ESS is connected to microgrids main bus. Results reveal that proposed control not only stabilizes frequency during transition duration but also minimizes sudden frequency imbalance caused by load variation or wind intermittencies in islanded operation. System is investigated with and without suggested control scheme. The efficacy of proposed strategy has been verified by simulation in MATLAB/Simulink.

Keywords: energy storage system, island, wind, STATCOM, self-excited induction generator, SEIG, transient

Procedia PDF Downloads 130
2545 Prevention of the Post – Intensive Care Syndrome (PICS) by Implementation of an ICU Delirium Prevention Strategy (DPB)

Authors: Paul M. H. J. Roekaerts

Abstract:

In recent years, it became clear that much intensive care (ICU) survivors develop a post-intensive care syndrome (PICS) consisting of psychiatric, cognitive and physical problems for a prolonged period after their ICU stay. Physical inactivity and delirium during the ICU stay are the main determinants of the post-ICU PICS. This presentation will focus on delirium, its epidemiology, prevalence, effect on outcome, risk factors and the current standard of care for managing delirium. Because ICU delirium is a predictor of prolonged length-of-stay in the ICU and of death, the use of a delirium prevention bundle (DPB) becomes mandatory in every ICU. In this presentation, a DPB bundle will be discussed consisting of six components: pain, sedation, sleep, sensory and intellectual stimulation, early mobilization, and hydration. For every of the six components, what to do and what not to do will be discussed. The author will present his own institutional policy on pharmacological and non-pharmacological interventions in the management of delirium. The component ‘early mobilization’ will be discussed more in detail, as this component is extremely important in the prevention of delirium as well as in the prevention of the PICS. The author will conclude his presentation with the remaining areas of uncertainties/work and research to be done.

Keywords: delirium, delirium prevention bundle, early mobilisation in intensive care (ICU), post-intensive care syndrome (PICS)

Procedia PDF Downloads 295
2544 Dynamic Analysis of Commodity Price Fluctuation and Fiscal Management in Sub-Saharan Africa

Authors: Abidemi C. Adegboye, Nosakhare Ikponmwosa, Rogers A. Akinsokeji

Abstract:

For many resource-rich developing countries, fiscal policy has become a key tool used for short-run fiscal management since it is considered as playing a critical role in injecting part of resource rents into the economies. However, given its instability, reliance on revenue from commodity exports renders fiscal management, budgetary planning and the efficient use of public resources difficult. In this study, the linkage between commodity prices and fiscal operations among a sample of commodity-exporting countries in sub-Saharan Africa (SSA) is investigated. The main question is whether commodity price fluctuations affects the effectiveness of fiscal policy as a macroeconomic stabilization tool in these countries. Fiscal management effectiveness is considered as the ability of fiscal policy to react countercyclically to output gaps in the economy. Fiscal policy is measured as the ratio of fiscal deficit to GDP and the ratio of government spending to GDP, output gap is measured as a Hodrick-Prescott filter of output growth for each country, while commodity prices are associated with each country based on its main export commodity. Given the dynamic nature of fiscal policy effects on the economy overtime, a dynamic framework is devised for the empirical analysis. The panel cointegration and error correction methodology is used to explain the relationships. In particular, the study employs the panel ECM technique to trace short-term effects of commodity prices on fiscal management and also uses the fully modified OLS (FMOLS) technique to determine the long run relationships. These procedures provide sufficient estimation of the dynamic effects of commodity prices on fiscal policy. Data used cover the period 1992 to 2016 for 11 SSA countries. The study finds that the elasticity of the fiscal policy measures with respect to the output gap is significant and positive, suggesting that fiscal policy is actually procyclical among the countries in the sample. This implies that fiscal management for these countries follows the trend of economic performance. Moreover, it is found that fiscal policy has not performed well in delivering macroeconomic stabilization for these countries. The difficulty in applying fiscal stabilization measures is attributable to the unstable revenue inflows due to the highly volatile nature of commodity prices in the international market. For commodity-exporting countries in SSA to improve fiscal management, therefore, fiscal planning should be largely decoupled from commodity revenues, domestic revenue bases must be improved, and longer period perspectives in fiscal policy management are the critical suggestions in this study.

Keywords: commodity prices, ECM, fiscal policy, fiscal procyclicality, fully modified OLS, sub-saharan africa

Procedia PDF Downloads 141
2543 Achieving Net Zero Energy Building in a Hot Climate Using Integrated Photovoltaic and Parabolic Trough Collectors

Authors: Adel A. Ghoneim

Abstract:

In most existing buildings in hot climate, cooling loads lead to high primary energy consumption and consequently high CO2 emissions. These can be substantially decreased with integrated renewable energy systems. Kuwait is characterized by its dry hot long summer and short warm winter. Kuwait receives annual total radiation more than 5280 MJ/m2 with approximately 3347 h of sunshine. Solar energy systems consist of PV modules and parabolic trough collectors are considered to satisfy electricity consumption, domestic water heating, and cooling loads of an existing building. This paper presents the results of an extensive program of energy conservation and energy generation using integrated photovoltaic (PV) modules and parabolic trough collectors (PTC). The program conducted on an existing institutional building intending to convert it into a Net-Zero Energy Building (NZEB) or near net Zero Energy Building (nNZEB). The program consists of two phases; the first phase is concerned with energy auditing and energy conservation measures at minimum cost and the second phase considers the installation of photovoltaic modules and parabolic trough collectors. The 2-storey building under consideration is the Applied Sciences Department at the College of Technological Studies, Kuwait. Single effect lithium bromide water absorption chillers are implemented to provide air conditioning load to the building. A numerical model is developed to evaluate the performance of parabolic trough collectors in Kuwait climate. Transient simulation program (TRNSYS) is adapted to simulate the performance of different solar system components. In addition, a numerical model is developed to assess the environmental impacts of building integrated renewable energy systems. Results indicate that efficient energy conservation can play an important role in converting the existing buildings into NZEBs as it saves a significant portion of annual energy consumption of the building. The first phase results in an energy conservation of about 28% of the building consumption. In the second phase, the integrated PV completely covers the lighting and equipment loads of the building. On the other hand, parabolic trough collectors of optimum area of 765 m2 can satisfy a significant portion of the cooling load, i.e about73% of the total building cooling load. The annual avoided CO2 emission is evaluated at the optimum conditions to assess the environmental impacts of renewable energy systems. The total annual avoided CO2 emission is about 680 metric ton/year which confirms the environmental impacts of these systems in Kuwait.

Keywords: building integrated renewable systems, Net-Zero energy building, solar fraction, avoided CO2 emission

Procedia PDF Downloads 586
2542 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters

Authors: Badreddine Chemali, Boualem Tiliouine

Abstract:

This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.

Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response

Procedia PDF Downloads 265
2541 Return on Investment of a VFD Drive for Centrifugal Pump

Authors: Benhaddadi M., Déry D.

Abstract:

Electric motors are the single biggest consumer of electricity, and the consumption will have more than to double by 2050. Meanwhile, the existing technologies offer the potential to reduce the motor energy demand by up to 30 %, whereas the know-how to realise energy savings is not extensively applied. That is why the authors first conducted a detailed analysis of the regulation of the electric motor market in North America To illustrate the colossal energy savings potential permitted by the VFD, the authors have equipped experimental setup, based on centrifugal pump, simultaneously equipped with regulating throttle valves and variable frequency drive VFD. The obtained experimental results for 1.5 HP motor pump are extended to another motor powers, as centrifugal pumps that are different in power may have similar operational characteristics if they are located in a similar kind of process, permitting the simulations for 5 HP and 100 HP motors. According to the obtained results, VFDs tend to be most cost-effective when fitted to larger motor pumps, in addition to higher duty cycle of the motor and relative time operating at lower than full load. The energy saving permitted by the VFD use is huge, and the payback period for drive investment is short. Nonetheless, it’s important to highlight that there is no general rule of thumb that can be used to obtain the impact of the relative time operating at lower than full load. Indeed, in terms of energy-saving differences, 50 % flow regulation is tremendously better than 75 % regulation, but a slightly enhanced relative to 25 %. Two main distinct reasons can explain this somewhat not anticipated results: the characteristics of the process and the drop in efficiency when motor is operating at low speed.

Keywords: motor, drive, energy efficiency, centrifugal pump

Procedia PDF Downloads 53
2540 Role of Renewable Energy in Foreign Policy of China

Authors: Alina Gilmanova

Abstract:

China’s dependency on coal for energy is causing pollution in China and abroad. To supply the increasing energy demand and being under the pressure from international society to reduce the emissions, China was pushed to develop renewable energy. The increasing subsidies in Renewable energy sources (RES) led not only to the price-cutting but also affecting the international trade in green technology sector. In order to evaluate the role of RES in foreign policy of China, I am going to give an (i) overview of RES development in China and examine the cooperation between China and (ii) developed, (ii) developing and emerging countries. The conclusive remarks are intended to address the question of how the present Chinese renewable energy development is impacting its foreign policy and international society.

Keywords: renewable energy, China, foreign affairs, brics, cooperation

Procedia PDF Downloads 616
2539 Nonlinear Finite Element Modeling of Deep Beam Resting on Linear and Nonlinear Random Soil

Authors: M. Seguini, D. Nedjar

Abstract:

An accuracy nonlinear analysis of a deep beam resting on elastic perfectly plastic soil is carried out in this study. In fact, a nonlinear finite element modeling for large deflection and moderate rotation of Euler-Bernoulli beam resting on linear and nonlinear random soil is investigated. The geometric nonlinear analysis of the beam is based on the theory of von Kàrmàn, where the Newton-Raphson incremental iteration method is implemented in a Matlab code to solve the nonlinear equation of the soil-beam interaction system. However, two analyses (deterministic and probabilistic) are proposed to verify the accuracy and the efficiency of the proposed model where the theory of the local average based on the Monte Carlo approach is used to analyze the effect of the spatial variability of the soil properties on the nonlinear beam response. The effect of six main parameters are investigated: the external load, the length of a beam, the coefficient of subgrade reaction of the soil, the Young’s modulus of the beam, the coefficient of variation and the correlation length of the soil’s coefficient of subgrade reaction. A comparison between the beam resting on linear and nonlinear soil models is presented for different beam’s length and external load. Numerical results have been obtained for the combination of the geometric nonlinearity of beam and material nonlinearity of random soil. This comparison highlighted the need of including the material nonlinearity and spatial variability of the soil in the geometric nonlinear analysis, when the beam undergoes large deflections.

Keywords: finite element method, geometric nonlinearity, material nonlinearity, soil-structure interaction, spatial variability

Procedia PDF Downloads 399
2538 Training as a Service for Electronic Warfare

Authors: Toan Vo

Abstract:

Electronic attacks, illegal drones, interference, and jamming are no longer capabilities reserved for a state-sponsored, near-peer adversary. The proliferation of jammers on auction websites has lowered the price of entry for electronics hobbyists and nefarious actors. To enable local authorities and enforcement bodies to keep up with these challenges, this paper proposes a training as a service model to quickly and economically train and equip police departments and local law enforcement agencies. Using the U.S Department of Defense’s investment in Electronic Warfare as a guideline, a large number of personnel can be trained on effective spectrum monitoring techniques using commercial equipment readily available on the market. Finally, this paper will examine the economic benefits to the test and measurement industry if the TaaS model is applied.

Keywords: training, electronic warfare, economics, law enforcement

Procedia PDF Downloads 85
2537 Vibration Based Damage Detection and Stiffness Reduction of Bridges: Experimental Study on a Small Scale Concrete Bridge

Authors: Mirco Tarozzi, Giacomo Pignagnoli, Andrea Benedetti

Abstract:

Structural systems are often subjected to degradation processes due to different kind of phenomena like unexpected loadings, ageing of the materials and fatigue cycles. This is true especially for bridges, in which their safety evaluation is crucial for the purpose of a design of planning maintenance. This paper discusses the experimental evaluation of the stiffness reduction from frequency changes due to uniform damage scenario. For this purpose, a 1:4 scaled bridge has been built in the laboratory of the University of Bologna. It is made of concrete and its cross section is composed by a slab linked to four beams. This concrete deck is 6 m long and 3 m wide, and its natural frequencies have been identified dynamically by exciting it with an impact hammer, a dropping weight, or by walking on it randomly. After that, a set of loading cycles has been applied to this bridge in order to produce a uniformly distributed crack pattern. During the loading phase, either cracking moment and yielding moment has been reached. In order to define the relationship between frequency variation and loss in stiffness, the identification of the natural frequencies of the bridge has been performed, before and after the occurrence of the damage, corresponding to each load step. The behavior of breathing cracks and its effect on the natural frequencies has been taken into account in the analytical calculations. By using a sort of exponential function given from the study of lot of experimental tests in the literature, it has been possible to predict the stiffness reduction through the frequency variation measurements. During the load test also crack opening and middle span vertical displacement has been monitored.

Keywords: concrete bridge, damage detection, dynamic test, frequency shifts, operational modal analysis

Procedia PDF Downloads 168
2536 Experimental Uniaxial Tensile Characterization of One-Dimensional Nickel Nanowires

Authors: Ram Mohan, Mahendran Samykano, Shyam Aravamudhan

Abstract:

Metallic nanowires with sub-micron and hundreds of nanometer diameter have a diversity of applications in nano/micro-electromechanical systems (NEMS/MEMS). Characterizing the mechanical properties of such sub-micron and nano-scale metallic nanowires are tedious; require sophisticated and careful experimentation to be performed within high-powered microscopy systems (scanning electron microscope (SEM), atomic force microscope (AFM)). Also, needed are nanoscale devices for placing the nanowires; loading them with the intended conditions; obtaining the data for load–deflection during the deformation within the high-powered microscopy environment poses significant challenges. Even picking the grown nanowires and placing them correctly within a nanoscale loading device is not an easy task. Mechanical characterizations through experimental methods for such nanowires are still very limited. Various techniques at different levels of fidelity, resolution, and induced errors have been attempted by material science and nanomaterial researchers. The methods for determining the load, deflection within the nanoscale devices also pose a significant problem. The state of the art is thus still at its infancy. All these factors result and is seen in the wide differences in the characterization curves and the reported properties in the current literature. In this paper, we discuss and present our experimental method, results, and discussions of uniaxial tensile loading and the development of subsequent stress–strain characteristics curves for Nickel nanowires. Nickel nanowires in the diameter range of 220–270 nm were obtained in our laboratory via an electrodeposition method, which is a solution based, template method followed in our present work for growing 1-D Nickel nanowires. Process variables such as the presence of magnetic field, its intensity; and varying electrical current density during the electrodeposition process were found to influence the morphological and physical characteristics including crystal orientation, size of the grown nanowires1. To further understand the correlation and influence of electrodeposition process variables, associated formed structural features of our grown Nickel nanowires to their mechanical properties, careful experiments within scanning electron microscope (SEM) were conducted. Details of the uniaxial tensile characterization, testing methodology, nanoscale testing device, load–deflection characteristics, microscopy images of failure progression, and the subsequent stress–strain curves are discussed and presented.

Keywords: uniaxial tensile characterization, nanowires, electrodeposition, stress-strain, nickel

Procedia PDF Downloads 389
2535 Salt Scarcity and Crisis Solution in Islam Perspective

Authors: Taufik Nugroho, Firsty Dzainuurahmana, Tika Widiastuti

Abstract:

The polemic about the salt crisis re-emerged, this is a classic problem in Indonesia and is still a homework that is not finished yet. This salt crisis occurs due to low productivity of salt commodities that have not been able to meet domestic demand and lack of salt productivity caused by several factors. One of the biggest factors of the crisis is the weather anomaly that disrupts salt production, less supportive technology and price stability. This study will try to discuss the salt scarcity and crisis solution in Islamic view. As for the conclusion of this study is the need for equilibrium or balancing between demand and supply, need to optimize the role of the government as Hisbah to maintain the balance of market mechanisms and prepare the stock system of salt stock by buying farmers products at reasonable prices then storing them.

Keywords: crisis, Islamic solution, scarcity, salt

Procedia PDF Downloads 263
2534 Fatigue Behavior of Friction Stir Welded EN AW 5754 Aluminum Alloy Using Load Increase Procedure

Authors: A. B. Chehreh, M. Grätzel, M. Klein, J. P. Bergmann, F. Walther

Abstract:

Friction stir welding (FSW) is an advantageous method in the thermal joining processes, featuring the welding of various dissimilar and similar material combinations, joining temperatures below the melting point which prevents irregularities such as pores and hot cracks as well as high strengths mechanical joints near the base material. The FSW process consists of a rotating tool which is made of a shoulder and a probe. The welding process is based on a rotating tool which plunges in the workpiece under axial pressure. As a result, the material is plasticized by frictional heat which leads to a decrease in the flow stress. During the welding procedure, the material is continuously displaced by the tool, creating a firmly bonded weld seam behind the tool. However, the mechanical properties of the weld seam are affected by the design and geometry of the tool. These include in particular microstructural and surface properties which can favor crack initiation. Following investigation compares the dynamic properties of FSW weld seams with conventional and stationary shoulder geometry based on load increase test (LIT). Compared to classical Woehler tests, it is possible to determine the fatigue strength of the specimens after a short amount of time. The investigations were carried out on a robotized welding setup on 2 mm thick EN AW 5754 aluminum alloy sheets. It was shown that an increased tensile and fatigue strength can be achieved by using the stationary shoulder concept. Furthermore, it could be demonstrated that the LIT is a valid method to describe the fatigue behavior of FSW weld seams.

Keywords: aluminum alloy, fatigue performance, fracture, friction stir welding

Procedia PDF Downloads 138
2533 Catchment Nutrient Balancing Approach to Improve River Water Quality: A Case Study at the River Petteril, Cumbria, United Kingdom

Authors: Nalika S. Rajapaksha, James Airton, Amina Aboobakar, Nick Chappell, Andy Dyer

Abstract:

Nutrient pollution and their impact on water quality is a key concern in England. Many water quality issues originate from multiple sources of pollution spread across the catchment. The river water quality in England has improved since 1990s and wastewater effluent discharges into rivers now contain less phosphorus than in the past. However, excess phosphorus is still recognised as the prevailing issue for rivers failing Water Framework Directive (WFD) good ecological status. To achieve WFD Phosphorus objectives, Wastewater Treatment Works (WwTW) permit limits are becoming increasingly stringent. Nevertheless, in some rural catchments, the apportionment of Phosphorus pollution can be greater from agricultural runoff and other sources such as septic tanks. Therefore, the challenge of meeting the requirements of watercourses to deliver WFD objectives often goes beyond water company activities, providing significant opportunities to co-deliver activities in wider catchments to reduce nutrient load at source. The aim of this study was to apply the United Utilities' Catchment Systems Thinking (CaST) strategy and pilot an innovative permitting approach - Catchment Nutrient Balancing (CNB) in a rural catchment in Cumbria (the River Petteril) in collaboration with the regulator and others to achieve WFD objectives and multiple benefits. The study area is mainly agricultural land, predominantly livestock farms. The local ecology is impacted by significant nutrient inputs which require intervention to meet WFD obligations. There are a range of Phosphorus inputs into the river, including discharges from wastewater assets but also significantly from agricultural contributions. Solely focusing on the WwTW discharges would not have resolved the problem hence in order to address this issue effectively, a CNB trial was initiated at a small WwTW, targeting the removal of a total of 150kg of Phosphorus load, of which 13kg were to be reduced through the use of catchment interventions. Various catchment interventions were implemented across selected farms in the upstream of the catchment and also an innovative polonite reactive filter media was implemented at the WwTW as an alternative to traditional Phosphorus treatment methods. During the 3 years of this trial, the impact of the interventions in the catchment and the treatment works were monitored. In 2020 and 2022, it respectively achieved a 69% and 63% reduction in the phosphorus level in the catchment against the initial reduction target of 9%. Phosphorus treatment at the WwTW had a significant impact on overall load reduction. The wider catchment impact, however, was seven times greater than the initial target when wider catchment interventions were also established. While it is unlikely that all the Phosphorus load reduction was delivered exclusively from the interventions implemented though this project, this trial evidenced the enhanced benefits that can be achieved with an integrated approach, that engages all sources of pollution within the catchment - rather than focusing on a one-size-fits-all solution. Primarily, the CNB approach and the act of collaboratively engaging others, particularly the agriculture sector is likely to yield improved farm and land management performance and better compliance, which can lead to improved river quality as well as wider benefits.

Keywords: agriculture, catchment nutrient balancing, phosphorus pollution, water quality, wastewater

Procedia PDF Downloads 49
2532 Experimental and Numerical Investigation on Delaminated Composite Plate

Authors: Sreekanth T. G., Kishorekumar S., Sowndhariya Kumar J., Karthick R., Shanmugasuriyan S.

Abstract:

Composites are increasingly being used in industries due to their unique properties, such as high specific stiffness and specific strength, higher fatigue and wear resistances, and higher damage tolerance capability. Composites are prone to failures or damages that are difficult to identify, locate, and characterize due to their complex design features and complicated loading conditions. The lack of understanding of the damage mechanism of the composites leads to the uncertainties in the structural integrity and durability. Delamination is one of the most critical failure mechanisms in laminated composites because it progressively affects the mechanical performance of fiber-reinforced polymer composite structures over time. The identification and severity characterization of delamination in engineering fields such as the aviation industry is critical for both safety and economic concerns. The presence of delamination alters the vibration properties of composites, such as natural frequencies, mode shapes, and so on. In this study, numerical analysis and experimental analysis were performed on delaminated and non-delaminated glass fiber reinforced polymer (GFRP) plate, and the numerical and experimental analysis results were compared, and error percentage has been found out.

Keywords: composites, delamination, natural frequency, mode shapes

Procedia PDF Downloads 90
2531 Mini Coal Gasifier for Fulfilling Small-Scale Industries Energy Consumption in Indonesia

Authors: Muhammad Ade Andriansyah Efendi, Ika Monika

Abstract:

Mini coal gasifier (GasMin) is a small reactor that could convert coal into combustible gas or producer gas which is designed to fulfill energy needs of small-scale industries. The producer gas can be utilized for both external and internal combustion. The design of coal gasifier is suitable for community require because it is easy to handle, affordable and environmentally friendly. The feasibility study shows that the substitution of 12 kg LPG or specially 50 kg LPG into GasMin of 20 kg coal capacity per hour is very attractive. The estimation price of 20 kg coal per hour capacity GasMin is 40 million rupiahs. In the year 2016, the implementation of GasMin conducted at alumunium industry and batik industry at Yogyakarta, Indonesia.

Keywords: biomass, coal, energy, gasification

Procedia PDF Downloads 308
2530 Unknown Groundwater Pollution Source Characterization in Contaminated Mine Sites Using Optimal Monitoring Network Design

Authors: H. K. Esfahani, B. Datta

Abstract:

Groundwater is one of the most important natural resources in many parts of the world; however it is widely polluted due to human activities. Currently, effective and reliable groundwater management and remediation strategies are obtained using characterization of groundwater pollution sources, where the measured data in monitoring locations are utilized to estimate the unknown pollutant source location and magnitude. However, accurately identifying characteristics of contaminant sources is a challenging task due to uncertainties in terms of predicting source flux injection, hydro-geological and geo-chemical parameters, and the concentration field measurement. Reactive transport of chemical species in contaminated groundwater systems, especially with multiple species, is a complex and highly non-linear geochemical process. Although sufficient concentration measurement data is essential to accurately identify sources characteristics, available data are often sparse and limited in quantity. Therefore, this inverse problem-solving method for characterizing unknown groundwater pollution sources is often considered ill-posed, complex and non- unique. Different methods have been utilized to identify pollution sources; however, the linked simulation-optimization approach is one effective method to obtain acceptable results under uncertainties in complex real life scenarios. With this approach, the numerical flow and contaminant transport simulation models are externally linked to an optimization algorithm, with the objective of minimizing the difference between measured concentration and estimated pollutant concentration at observation locations. Concentration measurement data are very important to accurately estimate pollution source properties; therefore, optimal design of the monitoring network is essential to gather adequate measured data at desired times and locations. Due to budget and physical restrictions, an efficient and effective approach for groundwater pollutant source characterization is to design an optimal monitoring network, especially when only inadequate and arbitrary concentration measurement data are initially available. In this approach, preliminary concentration observation data are utilized for preliminary source location, magnitude and duration of source activity identification, and these results are utilized for monitoring network design. Further, feedback information from the monitoring network is used as inputs for sequential monitoring network design, to improve the identification of unknown source characteristics. To design an effective monitoring network of observation wells, optimization and interpolation techniques are used. A simulation model should be utilized to accurately describe the aquifer properties in terms of hydro-geochemical parameters and boundary conditions. However, the simulation of the transport processes becomes complex when the pollutants are chemically reactive. Three dimensional transient flow and reactive contaminant transport process is considered. The proposed methodology uses HYDROGEOCHEM 5.0 (HGCH) as the simulation model for flow and transport processes with chemically multiple reactive species. Adaptive Simulated Annealing (ASA) is used as optimization algorithm in linked simulation-optimization methodology to identify the unknown source characteristics. Therefore, the aim of the present study is to develop a methodology to optimally design an effective monitoring network for pollution source characterization with reactive species in polluted aquifers. The performance of the developed methodology will be evaluated for an illustrative polluted aquifer sites, for example an abandoned mine site in Queensland, Australia.

Keywords: monitoring network design, source characterization, chemical reactive transport process, contaminated mine site

Procedia PDF Downloads 215
2529 Conception of a Reliable Low Cost, Autonomous Explorative Hovercraft 1

Authors: A. Brand, S. Burgalat, E. Chastel, M. Jumeline, L. Teilhac

Abstract:

The paper presents actual benefits and drawbacks of a multidirectional Hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. Those systems are usually powerful but have a certain price and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. Present approach is to build a compromise between cost, power consumption and results preciseness.

Keywords: Hovercraft, indoor exploration, autonomous, multidirectional, wireless control

Procedia PDF Downloads 399
2528 Improved Blood Glucose-Insulin Monitoring with Dual-Layer Predictive Control Design

Authors: Vahid Nademi

Abstract:

In response to widely used wearable medical devices equipped with a continuous glucose monitor (CGM) and insulin pump, the advanced control methods are still demanding to get the full benefit of these devices. Unlike costly clinical trials, implementing effective insulin-glucose control strategies can provide significant contributions to the patients suffering from chronic diseases such as diabetes. This study deals with a key role of two-layer insulin-glucose regulator based on model-predictive-control (MPC) scheme so that the patient’s predicted glucose profile is in compliance with the insulin level injected through insulin pump automatically. It is achieved by iterative optimization algorithm which is called an integrated perturbation analysis and sequential quadratic programming (IPA-SQP) solver for handling uncertainties due to unexpected variations in glucose-insulin values and body’s characteristics. The feasibility evaluation of the discussed control approach is also studied by means of numerical simulations of two case scenarios via measured data. The obtained results are presented to verify the superior and reliable performance of the proposed control scheme with no negative impact on patient safety.

Keywords: blood glucose monitoring, insulin pump, predictive control, optimization

Procedia PDF Downloads 121
2527 Left Ventricular Adaptations of Elite Volleyball Players Based on the Playing Position

Authors: Shihab Aldin Al Riyami, Khosrow Ebrahim, Sajad Ahmadizad

Abstract:

Hemodynamic changes and ventricular loading during exercise lead to left ventricular (LV) hypertrophy. In athletes, volume load induces enlargement of the LV internal diameter and a proportional increase of wall thickness; while, pressure load would induce thickening of the ventricular wall. These adaptations are not similar in all athletes and are related to the types of sport. Volleyball players have different types of activity and roles based on their playing. Therefore, their physiological adaptations and requirements are different. The aim of the current study was to investigate the LV adaptationsinelite volleyball players based on their playing position. Sixty male elite volleyball players (age, 30.55±3.64 years)from Brazil, Serbia, Poland, Iran, Colombia, Cameroon, Japan, Egypt, Qatar, and Tunisia were investigated (from all five volleyball play positions). All participants had the experience of at least 3 years of participation at a professional level and international tournaments. LV characteristics were evaluated and measured using the echocardiography technique. Statistical analyses revealed significant differences (P<0.05)among the five groups of players forLV internal dimension (LVID), posterior wall thickness (PWT), and intact ventricular septum (IVS). Post-hoc analysis showed that opposite position players had significant higher value of LVID, PWT, and IVS when compared with other players, including outside hitter, middle blocker, setter, and libero (p<0.05). Additionally, in libero players, PWT was significantly lower when compared with other players (p<0.05). Based on the findings of the present study, it is concluded that LV adaptations in volleyball players are related to their playing position and that the opposite players had the highest LV adaptations when compared to other positions.

Keywords: athletes, cardiac adaptations, echocardio graphy, heart, sport

Procedia PDF Downloads 230
2526 Modelling and Assessment of an Off-Grid Biogas Powered Mini-Scale Trigeneration Plant with Prioritized Loads Supported by Photovoltaic and Thermal Panels

Authors: Lorenzo Petrucci

Abstract:

This paper is intended to give insight into the potential use of small-scale off-grid trigeneration systems powered by biogas generated in a dairy farm. The off-grid plant object of analysis comprises a dual-fuel Genset as well as electrical and thermal storage equipment and an adsorption machine. The loads are the different apparatus used in the dairy farm, a household where the workers live and a small electric vehicle whose batteries can also be used as a power source in case of emergency. The insertion in the plant of an adsorption machine is mainly justified by the abundance of thermal energy and the simultaneous high cooling demand associated with the milk-chilling process. In the evaluated operational scenario, our research highlights the importance of prioritizing specific small loads which cannot sustain an interrupted supply of power over time. As a consequence, a photovoltaic and thermal panel is included in the plant and is tasked with providing energy independently of potentially disruptive events such as engine malfunctioning or scarce and unstable supplies of fuels. To efficiently manage the plant an energy dispatch strategy is created in order to control the flow of energy between the power sources and the thermal and electric storages. In this article we elaborate on models of the equipment and from these models, we extract parameters useful to build load-dependent profiles of the prime movers and storage efficiencies. We show that under reasonable assumptions the analysis provides a sensible estimate of the generated energy. The simulations indicate that a Diesel Generator sized to a value 25% higher than the total electrical peak demand operates 65% of the time below the minimum acceptable load threshold. To circumvent such a critical operating mode, dump loads are added through the activation and deactivation of small resistors. In this way, the excess of electric energy generated can be transformed into useful heat. The combination of PVT and electrical storage to support the prioritized load in an emergency scenario is evaluated in two different days of the year having the lowest and highest irradiation values, respectively. The results show that the renewable energy component of the plant can successfully sustain the prioritized loads and only during a day with very low irradiation levels it also needs the support of the EVs’ battery. Finally, we show that the adsorption machine can reduce the ice builder and the air conditioning energy consumption by 40%.

Keywords: hybrid power plants, mathematical modeling, off-grid plants, renewable energy, trigeneration

Procedia PDF Downloads 158
2525 Evaluating the Service Quality and Customers’ Satisfaction for Lihpaoland in Taiwan

Authors: Wan-Yu Liu, Tiffany April Lin, Yu-Chieh Tang, Yi-Lin Wang, Chieh-Hui Li

Abstract:

As the national income in Taiwan has been raised, the life style of the public has also been changed, so that the tourism industry gradually moves from a service industry to an experience economy. The Lihpaoland is one of the most popular theme parks in Taiwan. However, the related works on performance of service quality of the park have been lacking since its re-operation in 2012. Therefore, this study investigates the quality of software/hardware facilities and services of the Lihpaoland, and aims to achieve the following three goals: 1) analyzing how various sample data of tourists leads to different results for service quality of LihpaoLand; 2) analyzing how tourists respond to the service tangibility, service reliability, service responsiveness, service guarantee, and service empathy of LihpaoLand; 3) according to the theoretical and empirical results, proposing how to improve the overall facilities and services of LihpaoLand, and hoping to provide suggestions to the LihpaoLand or other related businesses to make decision. The survey was conducted on the tourists to the LihpaoLand using convenience sampling, and 400 questionnaires were collected successfully. Analysis results show that tourists paid much attention to maintenance of amusement facilities and safety of the park, and were satisfied with them, which are great advantages of the park. However, transportation around the LihpaoLand was inadequate, and the price of the Fullon hotel (which is the hotel closest to the LihpaoLand) were not accepted by tourists – more promotion events are recommended. Additionally, the shows are not diversified, and should be improved with the highest priority. Tourists did not pay attention to service personnel’s clothing and the ticket price, but they were not satisfied with them. Hence, this study recommends to design more distinctive costumes and conduct ticket promotions. Accordingly, the suggestions made in this study for LihpaoLand are stated as follows: 1) Diversified amusement facilities should be provided to satisfy the needs at different ages. 2) Cheep but tasty catering and more distinctive souvenirs should be offered. 3) Diversified propaganda schemes should be strengthened to increase number of tourists. 4) Quality and professional of the service staff should be enhanced to acquire public praise and tourists revisiting. 5) Ticket promotions in peak seasons, low seasons, and special events should be conducted. 6) Proper traffic flows should be planned and combined with technologies to reduce waiting time of tourists. 7) The features of theme landscape in LihpaoLand should be strengthened to increase willingness of the tourists with special preferences to visit the park. 8) Ticket discounts or premier points card promotions should be adopted to reward the tourists with high loyalty.

Keywords: service quality, customers’ satisfaction, theme park, Taiwan

Procedia PDF Downloads 449
2524 Effects of Ultraviolet Treatment on Microbiological Load and Phenolic Content of Vegetable Juice

Authors: Kubra Dogan, Fatih Tornuk

Abstract:

Due to increasing consumer demand for the high-quality food products and awareness regarding the health benefits of different nutrients in food minimal processing becomes more popular in modern food preservation. To date, heat treatment is often used for inactivation of spoilage microorganisms in foods. However, it may cause significant changes in the quality and nutritional properties of food. In order to overcome the detrimental effects of heat treatment, several alternatives of non-thermal microbial inactivation processes have been investigated. Ultraviolet (UV) inactivation is a promising and feasible method for better quality and longer shelf life as an alternative to heat treatment, which aims to inhibit spoilage and pathogenic microorganisms and to inactivate the enzymes in vegetable juice production. UV-C is a sub-class of UV treatment which shows the highest microcidal effect between 250-270 nm. The wavelength of 254 nm is used for the surface disinfection of certain liquid food products such as vegetable juice. Effects of UV-C treatment on microbiological load and quality parameter of vegetable juice which is a mix of celery, carrot, lemon and orange was investigated. Our results showed that storing of UV-C applied vegetable juice for three months, reduced the count of TMAB by 3.5 log cfu/g and yeast-mold by 2 log cfu/g compared to control sample. Total phenolic content was found to be 514.3 ± 0.6 mg gallic acid equivalent/L, and there wasn’t a significant difference compared to control. The present work suggests that UV-C treatment is an alternative method for disinfection of vegetable juice since it enables adequate microbial inactivation, longer shelf life and has minimal effect on degradation of quality parameters of vegetable juice.

Keywords: heat treatment, phenolic content, shelf life, ultraviolet (UV-C), vegetable juice

Procedia PDF Downloads 192