Search results for: features engineering methods for forecasting
19422 The Usage of Negative Emotive Words in Twitter
Authors: Martina Katalin Szabó, István Üveges
Abstract:
In this paper, the usage of negative emotive words is examined on the basis of a large Hungarian twitter-database via NLP methods. The data is analysed from a gender point of view, as well as changes in language usage over time. The term negative emotive word refers to those words that, on their own, without context, have semantic content that can be associated with negative emotion, but in particular cases, they may function as intensifiers (e.g. rohadt jó ’damn good’) or a sentiment expression with positive polarity despite their negative prior polarity (e.g. brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’. Based on the findings of several authors, the same phenomenon can be found in other languages, so it is probably a language-independent feature. For the recent analysis, 67783 tweets were collected: 37818 tweets (19580 tweets written by females and 18238 tweets written by males) in 2016 and 48344 (18379 tweets written by females and 29965 tweets written by males) in 2021. The goal of the research was to make up two datasets comparable from the viewpoint of semantic changes, as well as from gender specificities. An exhaustive lexicon of Hungarian negative emotive intensifiers was also compiled (containing 214 words). After basic preprocessing steps, tweets were processed by ‘magyarlanc’, a toolkit is written in JAVA for the linguistic processing of Hungarian texts. Then, the frequency and collocation features of all these words in our corpus were automatically analyzed (via the analysis of parts-of-speech and sentiment values of the co-occurring words). Finally, the results of all four subcorpora were compared. Here some of the main outcomes of our analyses are provided: There are almost four times fewer cases in the male corpus compared to the female corpus when the negative emotive intensifier modified a negative polarity word in the tweet (e.g., damn bad). At the same time, male authors used these intensifiers more frequently, modifying a positive polarity or a neutral word (e.g., damn good and damn big). Results also pointed out that, in contrast to female authors, male authors used these words much more frequently as a positive polarity word as well (e.g., brutális, ahogy ez a férfi rajzol ’it’s awesome (lit. brutal) how this guy draws’). We also observed that male authors use significantly fewer types of emotive intensifiers than female authors, and the frequency proportion of the words is more balanced in the female corpus. As for changes in language usage over time, some notable differences in the frequency and collocation features of the words examined were identified: some of the words collocate with more positive words in the 2nd subcorpora than in the 1st, which points to the semantic change of these words over time.Keywords: gender differences, negative emotive words, semantic changes over time, twitter
Procedia PDF Downloads 20519421 On the Application and Comparison of Two Geostatistics Methods in the Parameterisation Step to Calibrate Groundwater Model: Grid-Based Pilot Point and Head-Zonation Based Pilot Point Methods
Authors: Dua K. S. Y. Klaas, Monzur A. Imteaz, Ika Sudiayem, Elkan M. E. Klaas, Eldav C. M. Klaas
Abstract:
Properly selecting the most suitable and effective geostatistics method in the parameterization step of groundwater modeling is critical to attain a satisfactory model. In this paper, two geostatistics methods, i.e., Grid-Based Pilot Point (GB-PP) and Head-Zonation Based Pilot Point (HZB-PP) methods, were applied in an eogenetic karst catchment and compared using as model performances and computation time the criteria. Overall, the results show that appropriate selection of method is substantial in the parameterization of physically-based groundwater models, as it influences both the accuracy and simulation times. It was found that GB-PP method performed comparably superior to HZB-PP method. However, reflecting its model performances, HZB-PP method is promising for further application in groundwater modeling.Keywords: groundwater model, geostatistics, pilot point, parameterization step
Procedia PDF Downloads 16619420 Synoptic Analysis of a Heavy Flood in the Province of Sistan-Va-Balouchestan: Iran January 2020
Authors: N. Pegahfar, P. Ghafarian
Abstract:
In this research, the synoptic weather conditions during the heavy flood of 10-12 January 2020 in the Sistan-va-Balouchestan Province of Iran will be analyzed. To this aim, reanalysis data from the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Research (NCAR), NCEP Global Forecasting System (GFS) analysis data, measured data from a surface station together with satellite images from the European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) have been used from 9 to 12 January 2020. Atmospheric parameters both at the lower troposphere and also at the upper part of that have been used, including absolute vorticity, wind velocity, temperature, geopotential height, relative humidity, and precipitation. Results indicated that both lower-level and upper-level currents were strong. In addition, the transport of a large amount of humidity from the Oman Sea and the Red Sea to the south and southeast of Iran (Sistan-va-Balouchestan Province) led to the vast and unexpected precipitation and then a heavy flood.Keywords: Sistan-va-Balouchestn Province, heavy flood, synoptic, analysis data
Procedia PDF Downloads 10219419 A Sports-Specific Physiotherapy Center Treats Sports Injuries
Authors: Andrew Anis Fakhrey Mosaad
Abstract:
Introduction: Sports- and physical activity-related injuries may be more likely if there is a genetic predisposition, improper coaching and/or training, and no follow-up care from sports medicine. Goal: To evaluate the frequency of injuries among athletes receiving care at a sportsfocused physical therapy clinic. Methods: The survey of injuries in athletes' treatment records over a period of eight years of activity was done to obtain data. The data collected included: the patient's features, the sport, the type of injury, the injury's characteristics, and the body portion injured. Results: The athletes were drawn from 1090 patient/athlete records, had an average age of 25, participated in 44 different sports, and were 75% men on average. Joint injuries were the most frequent type of injury, then damage to the muscles and bones. The most prevalent type of injury was chronic (47%), while the knee, ankle, and shoulder were the most frequently damaged body parts. The most injured athletes were seen in soccer, futsal, and track and field, respectively, out of all the sports. Conclusion: The most popular sport among injured players was soccer, and the most common injury type was joint damage, with the knee being the most often damaged body area. The majority of the injuries were chronic.Keywords: sports injuries, athletes, joint injuries, injured players
Procedia PDF Downloads 7319418 Study on The Model of Microscopic Contact Parameters for Grinding M300 Using Elastic Abrasive Tool
Authors: Wu Xiaojun, Liu Ruiping, Yu Xingzhan, Wu Qian
Abstract:
In precision grinding, utilizing the elastic matrix ball has higher processing efficiency and better superficial quality than traditional grinding. The diversity of characteristics which elastic abrasive tool contact with bend surface results in irregular wear abrasion,and abrasive tool machining status get complicated. There is no theoretical interpretation that parameters affect the grinding accuracy.Aiming at corrosion resistance, wear resistance and other characteristics of M 300 material, it is often used as a material on aerospace precision components. The paper carried out grinding and polishing experiments by using material of M 300,to theoretically show the relationship between stress magnitude and grinding efficiency,and predict the optimal combination of grinding parameter for effective grinding, just for the high abrasion resistance features of M 300, analyzing the micro-contact of elastic ball abrasive tool (Whetstone), using mathematical methods deduce the functional relationship between residual peak removal rate and the main parameters which impact the grinding accuracy on the plane case.Thus laying the foundation for the study of elastic abrasive prediction and compensation.Keywords: flexible abrasive tool, polishing parameters, Hertz theory, removal rate
Procedia PDF Downloads 54519417 Production of Sr-Ferrite Sub-Micron Powder by Conventional and Sol-Gel Auto-Combustion Methods
Authors: M. Ghobeiti-Hasab
Abstract:
Magnetic powder of Sr-ferrite was prepared by conventional and sol-gel auto-combustion methods. In conventional method, strontium carbonate and ferric oxide powders were mixed together and then mixture was calcined. In sol-gel auto-combustion method, a solution containing strontium nitrate, ferric nitrate and citric acid was heated until the combustion took place automatically; then, as-burnt powder was calcined. Thermal behavior, phase identification, morphology and magnetic properties of powders obtained by these two methods were compared by DTA, XRD, SEM, and VSM techniques. According to the results of DTA analysis, formation temperature of Sr-ferrite obtained by conventional and sol-gel auto-combustion methods were 1300 °C and 1000 °C, respectively. XRD results confirmed the formation of pure Sr-ferrite at the mentioned temperatures. Plate and hexagonal-shape particles of Sr-ferrite were observed using SEM. The Sr-ferrite powder obtained by sol-gel auto-combustion method had saturation magnetization of 66.03 emu/g and coercivity of 5731 Oe in comparison with values of 58.20 emu/g and 4378 Oe obtained by conventional method.Keywords: Sr-ferrite, sol-gel, magnetic properties, calcination
Procedia PDF Downloads 23819416 AutoML: Comprehensive Review and Application to Engineering Datasets
Authors: Parsa Mahdavi, M. Amin Hariri-Ardebili
Abstract:
The development of accurate machine learning and deep learning models traditionally demands hands-on expertise and a solid background to fine-tune hyperparameters. With the continuous expansion of datasets in various scientific and engineering domains, researchers increasingly turn to machine learning methods to unveil hidden insights that may elude classic regression techniques. This surge in adoption raises concerns about the adequacy of the resultant meta-models and, consequently, the interpretation of the findings. In response to these challenges, automated machine learning (AutoML) emerges as a promising solution, aiming to construct machine learning models with minimal intervention or guidance from human experts. AutoML encompasses crucial stages such as data preparation, feature engineering, hyperparameter optimization, and neural architecture search. This paper provides a comprehensive overview of the principles underpinning AutoML, surveying several widely-used AutoML platforms. Additionally, the paper offers a glimpse into the application of AutoML on various engineering datasets. By comparing these results with those obtained through classical machine learning methods, the paper quantifies the uncertainties inherent in the application of a single ML model versus the holistic approach provided by AutoML. These examples showcase the efficacy of AutoML in extracting meaningful patterns and insights, emphasizing its potential to revolutionize the way we approach and analyze complex datasets.Keywords: automated machine learning, uncertainty, engineering dataset, regression
Procedia PDF Downloads 6119415 Analyzing Software Testing Phase in Agile Project Management: The Case of Jordan
Authors: Ghaleb Y. Abbasi, Satanay Alhiary
Abstract:
This paper focused on software testing phase of activities, types, techniques, teams and methods under agile project management (APM) in the Jordanian software industry. The effect of using agile principles and practices on testing process in software development life cycle (SDLC) was analyzed in order to create full view of the agile testing aspects such as phases, levels, types, methods, team and customers. Qualitative and quantitative research methods were utilized to cover earlier literature and collect data via web survey and short interviews in Jordanian software companies. Results indicated that agile testing had positive influence on quality of product, team performance, and customer satisfaction with a rate above 80%. APM is a powerful practice of moving software project forward in current markets with a rate above 51% by early involvement of testing activities in development.Keywords: agile project management, software development life cycle, agile methods, agile testing, software testing
Procedia PDF Downloads 45619414 Hot Face of Cold War: 007 James Bond
Authors: Günevi Uslu Evren
Abstract:
Propaganda is one of the most effective methods for changing individual and mass opinions. Propaganda tries to get the message across to people or masses to effect rather than to provide objective information. There are many types of propaganda. Especially, political propaganda is a very powerful method that is used by states during in both war and peace. The aim of this method is to create a reaction against them by showing within the framework of internal and external enemies. Propaganda can be practiced by many different methods. Especially during the Cold War Era, the US and USSR have tried to create an ideological effect by using the mass media intensively. Cinema, which is located at the beginning of these methods, is the most powerful weapon to influence the masses. In this study, the historical process of the Cold War is examined. Especially, these propagandas that had been used by United States and The Soviet Union were investigated. The purposes of propaganda and construction methods were presented. Cold War events and relations between the US and the USSR during the Cold War will be discussed. Outlooks of two countries to each other during the Cold War, propaganda techniques used defectively during Cold War and how to use the cinema as a propaganda tool will be examined. The film "From Russia with Love, James Bond 007" that was filmed in Cold War were examined to explain how cinema was used as a propaganda tool in this context.Keywords: cinema, cold war, James Bond, propaganda
Procedia PDF Downloads 51919413 Diagnosis and Analysis of Automated Liver and Tumor Segmentation on CT
Authors: R. R. Ramsheeja, R. Sreeraj
Abstract:
For view the internal structures of the human body such as liver, brain, kidney etc have a wide range of different modalities for medical images are provided nowadays. Computer Tomography is one of the most significant medical image modalities. In this paper use CT liver images for study the use of automatic computer aided techniques to calculate the volume of the liver tumor. Segmentation method is used for the detection of tumor from the CT scan is proposed. Gaussian filter is used for denoising the liver image and Adaptive Thresholding algorithm is used for segmentation. Multiple Region Of Interest(ROI) based method that may help to characteristic the feature different. It provides a significant impact on classification performance. Due to the characteristic of liver tumor lesion, inherent difficulties appear selective. For a better performance, a novel proposed system is introduced. Multiple ROI based feature selection and classification are performed. In order to obtain of relevant features for Support Vector Machine(SVM) classifier is important for better generalization performance. The proposed system helps to improve the better classification performance, reason in which we can see a significant reduction of features is used. The diagnosis of liver cancer from the computer tomography images is very difficult in nature. Early detection of liver tumor is very helpful to save the human life.Keywords: computed tomography (CT), multiple region of interest(ROI), feature values, segmentation, SVM classification
Procedia PDF Downloads 50919412 Photovoltaic Cells Characteristics Measurement Systems
Authors: Rekioua T., Rekioua D., Aissou S., Ouhabi A.
Abstract:
Power provided by the photovoltaic array varies with solar radiation and temperature, since these parameters influence the electrical characteristic (Ipv-Vpv) of solar cells. In Scientific research, there are different methods to obtain these characteristics. In this paper, we present three methods. A simulation one using Matlab/Simulink. The second one is the standard experimental voltage method and the third one is by using LabVIEW software. This latter is based on an electronic circuit to test PV modules. All details of this electronic schemes are presented and obtained results of the three methods with a comparison and under different meteorological conditions are presented. The proposed method is simple and very efficiency for testing and measurements of electrical characteristic curves of photovoltaic panels.Keywords: photovoltaic cells, measurement standards, temperature sensors, data acquisition
Procedia PDF Downloads 46119411 New Hybrid Method to Model Extreme Rainfalls
Authors: Youness Laaroussi, Zine Elabidine Guennoun, Amine Amar
Abstract:
Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose in the present paper a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.Keywords: extreme values theory, fractals dimensions, peaks Over threshold, rainfall occurrences
Procedia PDF Downloads 36119410 Comparative Study of Line Voltage Stability Indices for Voltage Collapse Forecasting in Power Transmission System
Authors: H. H. Goh, Q. S. Chua, S. W. Lee, B. C. Kok, K. C. Goh, K. T. K. Teo
Abstract:
At present, the evaluation of voltage stability assessment experiences sizeable anxiety in the safe operation of power systems. This is due to the complications of a strain power system. With the snowballing of power demand by the consumers and also the restricted amount of power sources, therefore, the system has to perform at its maximum proficiency. Consequently, the noteworthy to discover the maximum ability boundary prior to voltage collapse should be undertaken. A preliminary warning can be perceived to evade the interruption of power system’s capacity. The effectiveness of line voltage stability indices (LVSI) is differentiated in this paper. The main purpose of the indices is used to predict the proximity of voltage instability of the electric power system. On the other hand, the indices are also able to decide the weakest load buses which are close to voltage collapse in the power system. The line stability indices are assessed using the IEEE 14 bus test system to validate its practicability. Results demonstrated that the implemented indices are practically relevant in predicting the manifestation of voltage collapse in the system. Therefore, essential actions can be taken to dodge the incident from arising.Keywords: critical line, line outage, line voltage stability indices (LVSI), maximum loadability, voltage collapse, voltage instability, voltage stability analysis
Procedia PDF Downloads 36019409 Persian Pistachio Nut (Pistacia vera L.) Dehydration in Natural and Industrial Conditions
Authors: Hamid Tavakolipour, Mohsen Mokhtarian, Ahmad Kalbasi Ashtari
Abstract:
In this study, the effect of various drying methods (sun drying, shade drying and industrial drying) on final moisture content, shell splitting degree, shrinkage and color change were studied. Sun drying resulted higher degree of pistachio nuts shell splitting on pistachio nuts relative other drying methods. The ANOVA results showed that the different drying methods did not significantly effects on color change of dried pistachio nut. The results illustrated that pistachio nut dried by industrial drying had the lowest moisture content. After the end of drying process, initially, the experimental drying data were fitted with five famous drying models namely Newton, Page, Silva et al., Peleg and Henderson and Pabis. The results indicated that Peleg and Page models gave better results compared with other models to monitor the moisture ratio’s pistachio nut in industrial drying and open sun (or shade drying) methods, respectively.Keywords: industrial drying, pistachio, quality properties, traditional drying
Procedia PDF Downloads 33519408 Improve Closed Loop Performance and Control Signal Using Evolutionary Algorithms Based PID Controller
Authors: Mehdi Shahbazian, Alireza Aarabi, Mohsen Hadiyan
Abstract:
Proportional-Integral-Derivative (PID) controllers are the most widely used controllers in industry because of its simplicity and robustness. Different values of PID parameters make different step response, so an increasing amount of literature is devoted to proper tuning of PID controllers. The problem merits further investigation as traditional tuning methods make large control signal that can damages the system but using evolutionary algorithms based tuning methods improve the control signal and closed loop performance. In this paper three tuning methods for PID controllers have been studied namely Ziegler and Nichols, which is traditional tuning method and evolutionary algorithms based tuning methods, that are, Genetic algorithm and particle swarm optimization. To examine the validity of PSO and GA tuning methods a comparative analysis of DC motor plant is studied. Simulation results reveal that evolutionary algorithms based tuning method have improved control signal amplitude and quality factors of the closed loop system such as rise time, integral absolute error (IAE) and maximum overshoot.Keywords: evolutionary algorithm, genetic algorithm, particle swarm optimization, PID controller
Procedia PDF Downloads 48319407 A Stable Method for Determination of the Number of Independent Components
Authors: Yuyan Yi, Jingyi Zheng, Nedret Billor
Abstract:
Independent component analysis (ICA) is one of the most commonly used blind source separation (BSS) techniques for signal pre-processing, such as noise reduction and feature extraction. The main parameter in the ICA method is the number of independent components (IC). Although there have been several methods for the determination of the number of ICs, it has not been given sufficient attentionto this important parameter. In this study, wereview the mostused methods fordetermining the number of ICs and providetheir advantages and disadvantages. Further, wepropose an improved version of column-wise ICAByBlock method for the determination of the number of ICs.To assess the performance of the proposed method, we compare the column-wise ICAbyBlock with several existing methods through different ICA methods by using simulated and real signal data. Results show that the proposed column-wise ICAbyBlock is an effective and stable method for determining the optimal number of components in ICA. This method is simple, and results can be demonstrated intuitively with good visualizations.Keywords: independent component analysis, optimal number, column-wise, correlation coefficient, cross-validation, ICAByblock
Procedia PDF Downloads 9919406 Information-Controlled Laryngeal Feature Variations in Korean Consonants
Authors: Ponghyung Lee
Abstract:
This study seeks to investigate the variations occurring to Korean consonantal variations center around laryngeal features of the concerned sounds, to the exclusion of others. Our fundamental premise is that the weak contrast associated with concerned segments might be held accountable for the oscillation of the status quo of the concerned consonants. What is more, we assume that an array of notions as a measure of communicative efficiency of linguistic units would be significantly influential on triggering those variations. To this end, we have tried to compute the surprisal, entropic contribution, and relative contrastiveness associated with Korean obstruent consonants. What we found therein is that the Information-theoretic perspective is compelling enough to lend support our approach to a considerable extent. That is, the variant realizations, chronologically and stylistically, prove to be profoundly affected by a set of Information-theoretic factors enumerated above. When it comes to the biblical proper names, we use Georgetown University CQP Web-Bible corpora. From the 8 texts (4 from Old Testament and 4 from New Testament) among the total 64 texts, we extracted 199 samples. We address the issue of laryngeal feature variations associated with Korean obstruent consonants under the presumption that the variations stem from the weak contrast among the triad manifestations of laryngeal features. The variants emerge from diverse sources in chronological and stylistic senses: Christianity biblical texts, ordinary casual speech, the shift of loanword adaptation over time, and ideophones. For the purpose of discussing what they are really like from the perspective of Information Theory, it is necessary to closely look at the data. Among them, the massive changes occurring to loanword adaptation of proper nouns during the centennial history of Korean Christianity draw our special attention. We searched 199 types of initially capitalized words among 45,528-word tokens, which account for around 5% of total 901,701-word tokens (12,786-word types) from Georgetown University CQP Web-Bible corpora. We focus on the shift of the laryngeal features incorporated into word-initial consonants, which are available through the two distinct versions of Korean Bible: one came out in the 1960s for the Protestants, and the other was published in the 1990s for the Catholic Church. Of these proper names, we have closely traced the adaptation of plain obstruents, e. g. /b, d, g, s, ʤ/ in the sources. The results show that as much as 41% of the extracted proper names show variations; 37% in terms of aspiration, and 4% in terms of tensing. This study set out in an effort to shed light on the question: to what extent can we attribute the variations occurring to the laryngeal features associated with Korean obstruent consonants to the communicative aspects of linguistic activities? In this vein, the concerted effects of the triad, of surprisal, entropic contribution, and relative contrastiveness can be credited with the ups and downs in the feature specification, despite being contentiousness on the role of surprisal to some extent.Keywords: entropic contribution, laryngeal feature variation, relative contrastiveness, surprisal
Procedia PDF Downloads 12819405 An IM-COH Algorithm Neural Network Optimization with Cuckoo Search Algorithm for Time Series Samples
Authors: Wullapa Wongsinlatam
Abstract:
Back propagation algorithm (BP) is a widely used technique in artificial neural network and has been used as a tool for solving the time series problems, such as decreasing training time, maximizing the ability to fall into local minima, and optimizing sensitivity of the initial weights and bias. This paper proposes an improvement of a BP technique which is called IM-COH algorithm (IM-COH). By combining IM-COH algorithm with cuckoo search algorithm (CS), the result is cuckoo search improved control output hidden layer algorithm (CS-IM-COH). This new algorithm has a better ability in optimizing sensitivity of the initial weights and bias than the original BP algorithm. In this research, the algorithm of CS-IM-COH is compared with the original BP, the IM-COH, and the original BP with CS (CS-BP). Furthermore, the selected benchmarks, four time series samples, are shown in this research for illustration. The research shows that the CS-IM-COH algorithm give the best forecasting results compared with the selected samples.Keywords: artificial neural networks, back propagation algorithm, time series, local minima problem, metaheuristic optimization
Procedia PDF Downloads 15219404 A New 3D Shape Descriptor Based on Multi-Resolution and Multi-Block CS-LBP
Authors: Nihad Karim Chowdhury, Mohammad Sanaullah Chowdhury, Muhammed Jamshed Alam Patwary, Rubel Biswas
Abstract:
In content-based 3D shape retrieval system, achieving high search performance has become an important research problem. A challenging aspect of this problem is to find an effective shape descriptor which can discriminate similar shapes adequately. To address this problem, we propose a new shape descriptor for 3D shape models by combining multi-resolution with multi-block center-symmetric local binary pattern operator. Given an arbitrary 3D shape, we first apply pose normalization, and generate a set of multi-viewed 2D rendered images. Second, we apply Gaussian multi-resolution filter to generate several levels of images from each of 2D rendered image. Then, overlapped sub-images are computed for each image level of a multi-resolution image. Our unique multi-block CS-LBP comes next. It allows the center to be composed of m-by-n rectangular pixels, instead of a single pixel. This process is repeated for all the 2D rendered images, derived from both ‘depth-buffer’ and ‘silhouette’ rendering. Finally, we concatenate all the features vectors into one dimensional histogram as our proposed 3D shape descriptor. Through several experiments, we demonstrate that our proposed 3D shape descriptor outperform the previous methods by using a benchmark dataset.Keywords: 3D shape retrieval, 3D shape descriptor, CS-LBP, overlapped sub-images
Procedia PDF Downloads 44519403 Training AI to Be Empathetic and Determining the Psychotype of a Person During a Conversation with a Chatbot
Authors: Aliya Grig, Konstantin Sokolov, Igor Shatalin
Abstract:
The report describes the methodology for collecting data and building an ML model for determining the personality psychotype using profiling and personality traits methods based on several short messages of a user communicating on an arbitrary topic with a chitchat bot. In the course of the experiments, the minimum amount of text was revealed to confidently determine aspects of personality. Model accuracy - 85%. Users' language of communication is English. AI for a personalized communication with a user based on his mood, personality, and current emotional state. Features investigated during the research: personalized communication; providing empathy; adaptation to a user; predictive analytics. In the report, we describe the processes that captures both structured and unstructured data pertaining to a user in large quantities and diverse forms. This data is then effectively processed through ML tools to construct a knowledge graph and draw inferences regarding users of text messages in a comprehensive manner. Specifically, the system analyzes users' behavioral patterns and predicts future scenarios based on this analysis. As a result of the experiments, we provide for further research on training AI models to be empathetic, creating personalized communication for a userKeywords: AI, empathetic, chatbot, AI models
Procedia PDF Downloads 9219402 A Kernel-Based Method for MicroRNA Precursor Identification
Authors: Bin Liu
Abstract:
MicroRNAs (miRNAs) are small non-coding RNA molecules, functioning in transcriptional and post-transcriptional regulation of gene expression. The discrimination of the real pre-miRNAs from the false ones (such as hairpin sequences with similar stem-loops) is necessary for the understanding of miRNAs’ role in the control of cell life and death. Since both their small size and sequence specificity, it cannot be based on sequence information alone but requires structure information about the miRNA precursor to get satisfactory performance. Kmers are convenient and widely used features for modeling the properties of miRNAs and other biological sequences. However, Kmers suffer from the inherent limitation that if the parameter K is increased to incorporate long range effects, some certain Kmer will appear rarely or even not appear, as a consequence, most Kmers absent and a few present once. Thus, the statistical learning approaches using Kmers as features become susceptible to noisy data once K becomes large. In this study, we proposed a Gapped k-mer approach to overcome the disadvantages of Kmers, and applied this method to the field of miRNA prediction. Combined with the structure status composition, a classifier called imiRNA-GSSC was proposed. We show that compared to the original imiRNA-kmer and alternative approaches. Trained on human miRNA precursors, this predictor can achieve an accuracy of 82.34 for predicting 4022 pre-miRNA precursors from eleven species.Keywords: gapped k-mer, imiRNA-GSSC, microRNA precursor, support vector machine
Procedia PDF Downloads 16119401 Effectiveness of Technology Enhanced Learning in Orthodontic Teaching
Authors: Mohammed Shaath
Abstract:
Aims Technological advancements in teaching and learning have made significant improvements over the past decade and have been incorporated in institutions to aid the learner’s experience. This review aims to assess whether Technology Enhanced Learning (TEL) pedagogy is more effective at improving students’ attitude and knowledge retention in orthodontic training than traditional methods. Methodology The searches comprised Systematic Reviews (SRs) related to the comparison of TEL and traditional teaching methods from the following databases: PubMed, SCOPUS, Medline, and Embase. One researcher performed the screening, data extraction, and analysis and assessed the risk of bias and quality using A Measurement Tool to Assess Systematic Reviews 2 (AMSTAR-2). Kirkpatrick’s 4-level evaluation model was used to evaluate the educational values. Results A sum of 34 SRs was identified after the removal of duplications and irrelevant SRs; 4 fit the inclusion criteria. On Level 1, students showed positivity to TEL methods, although acknowledging that the harder the platforms to use, the less favourable. Nonetheless, the students still showed high levels of acceptability. Level 2 showed there is no significant overall advantage of increased knowledge when it comes to TEL methods. One SR showed that certain aspects of study within orthodontics deliver a statistical improvement with TEL. Level 3 was the least reported on. Results showed that if left without time restrictions, TEL methods may be advantageous. Level 4 shows that both methods are equally as effective, but TEL has the potential to overtake traditional methods in the future as a form of active, student-centered approach. Conclusion TEL has a high level of acceptability and potential to improve learning in orthodontics. Current reviews have potential to be improved, but the biggest aspect that needs to be addressed is the primary study, which shows a lower level of evidence and heterogeneity in their results. As it stands, the replacement of traditional methods with TEL cannot be fully supported in an evidence-based manner. The potential of TEL methods has been recognized and is already starting to show some evidence of the ability to be more effective in some aspects of learning to cater for a more technology savvy generation.Keywords: TEL, orthodontic, teaching, traditional
Procedia PDF Downloads 4219400 A Speeded up Robust Scale-Invariant Feature Transform Currency Recognition Algorithm
Authors: Daliyah S. Aljutaili, Redna A. Almutlaq, Suha A. Alharbi, Dina M. Ibrahim
Abstract:
All currencies around the world look very different from each other. For instance, the size, color, and pattern of the paper are different. With the development of modern banking services, automatic methods for paper currency recognition become important in many applications like vending machines. One of the currency recognition architecture’s phases is Feature detection and description. There are many algorithms that are used for this phase, but they still have some disadvantages. This paper proposes a feature detection algorithm, which merges the advantages given in the current SIFT and SURF algorithms, which we call, Speeded up Robust Scale-Invariant Feature Transform (SR-SIFT) algorithm. Our proposed SR-SIFT algorithm overcomes the problems of both the SIFT and SURF algorithms. The proposed algorithm aims to speed up the SIFT feature detection algorithm and keep it robust. Simulation results demonstrate that the proposed SR-SIFT algorithm decreases the average response time, especially in small and minimum number of best key points, increases the distribution of the number of best key points on the surface of the currency. Furthermore, the proposed algorithm increases the accuracy of the true best point distribution inside the currency edge than the other two algorithms.Keywords: currency recognition, feature detection and description, SIFT algorithm, SURF algorithm, speeded up and robust features
Procedia PDF Downloads 23519399 A Comparative Study of Deep Learning Methods for COVID-19 Detection
Authors: Aishrith Rao
Abstract:
COVID 19 is a pandemic which has resulted in thousands of deaths around the world and a huge impact on the global economy. Testing is a huge issue as the test kits have limited availability and are expensive to manufacture. Using deep learning methods on radiology images in the detection of the coronavirus as these images contain information about the spread of the virus in the lungs is extremely economical and time-saving as it can be used in areas with a lack of testing facilities. This paper focuses on binary classification and multi-class classification of COVID 19 and other diseases such as pneumonia, tuberculosis, etc. Different deep learning methods such as VGG-19, COVID-Net, ResNET+ SVM, Deep CNN, DarkCovidnet, etc., have been used, and their accuracy has been compared using the Chest X-Ray dataset.Keywords: deep learning, computer vision, radiology, COVID-19, ResNet, VGG-19, deep neural networks
Procedia PDF Downloads 16019398 Antibiotic Potential of Bioactive Compounds from a Marine Streptomyces Isolated from South Pacific Sediments
Authors: Ilaisa Kacivakanadina, Samson Viulu, Brad Carte, Katy Soapi
Abstract:
Two bioactive compounds namely Vulgamycin (also known as enterocin A) and 5-deoxyenterocin were purified from a marine bacterial strain 1903. Strain 1903 was isolated from marine sediments collected from the Solomon Islands. Morphological features of strain 1903 showed that it belongs to the genus Streptomyces. The two secondary metabolites were extracted using EtOAc and purified by chromatographic methods using EtOAc and hexane solvents. Mass spectrum and NMR data of pure compounds were used to elucidate the chemical structures. In this study, results showed that both compounds were strongly active against Wild Type Staphylococcus aureus (WTSA) (MIC < 1 µg/mL) and in Brine shrimp assays (BSA) (MIC < 1 µg/mL). 5-deoxyenterocin was also active against Rifamycin resistant Staphylococcus aureus (RRSA) (MIC, 250 µg/mL) while vulgamycin showed bioactivity against Methicillin resistant Staphylococcus aureus (MRSA) (MIC 250 µg/mL). To the best of our knowledge, this is the first study that showed the bio-activity of 5-deoxyenterocin. This is also the first time that Vulgamycin has been reported to be active in a BSA. There has not been any mechanism of action studies for these two compounds against pathogens. This warrants further studies on their mechanism of action against microbial pathogens.Keywords: 5-deoxyenterocin, bioactivity, brine shrimp assay (BSA), vulgamycin
Procedia PDF Downloads 18919397 Separating Landform from Noise in High-Resolution Digital Elevation Models through Scale-Adaptive Window-Based Regression
Authors: Anne M. Denton, Rahul Gomes, David W. Franzen
Abstract:
High-resolution elevation data are becoming increasingly available, but typical approaches for computing topographic features, like slope and curvature, still assume small sliding windows, for example, of size 3x3. That means that the digital elevation model (DEM) has to be resampled to the scale of the landform features that are of interest. Any higher resolution is lost in this resampling. When the topographic features are computed through regression that is performed at the resolution of the original data, the accuracy can be much higher, and the reported result can be adjusted to the length scale that is relevant locally. Slope and variance are calculated for overlapping windows, meaning that one regression result is computed per raster point. The number of window centers per area is the same for the output as for the original DEM. Slope and variance are computed by performing regression on the points in the surrounding window. Such an approach is computationally feasible because of the additive nature of regression parameters and variance. Any doubling of window size in each direction only takes a single pass over the data, corresponding to a logarithmic scaling of the resulting algorithm as a function of the window size. Slope and variance are stored for each aggregation step, allowing the reported slope to be selected to minimize variance. The approach thereby adjusts the effective window size to the landform features that are characteristic to the area within the DEM. Starting with a window size of 2x2, each iteration aggregates 2x2 non-overlapping windows from the previous iteration. Regression results are stored for each iteration, and the slope at minimal variance is reported in the final result. As such, the reported slope is adjusted to the length scale that is characteristic of the landform locally. The length scale itself and the variance at that length scale are also visualized to aid in interpreting the results for slope. The relevant length scale is taken to be half of the window size of the window over which the minimum variance was achieved. The resulting process was evaluated for 1-meter DEM data and for artificial data that was constructed to have defined length scales and added noise. A comparison with ESRI ArcMap was performed and showed the potential of the proposed algorithm. The resolution of the resulting output is much higher and the slope and aspect much less affected by noise. Additionally, the algorithm adjusts to the scale of interest within the region of the image. These benefits are gained without additional computational cost in comparison with resampling the DEM and computing the slope over 3x3 images in ESRI ArcMap for each resolution. In summary, the proposed approach extracts slope and aspect of DEMs at the lengths scales that are characteristic locally. The result is of higher resolution and less affected by noise than existing techniques.Keywords: high resolution digital elevation models, multi-scale analysis, slope calculation, window-based regression
Procedia PDF Downloads 12919396 Preparation and Characterization of Recycled Polyethylene Terephthalate/Polypropylene Blends from Automotive Textile Waste for Use in the Furniture Edge Banding Sector
Authors: Merve Ozer, Tolga Gokkurt, Yasemen Gokkurt, Ezgi Bozbey
Abstract:
In this study, we investigated the recovery of Polyethylene terephthalate/Polypropylene (PET/PP)-containing automotive textile waste from post-product and post-consumer phases in the automotive sector according to the upcycling technique and the methods of formulation and production that would allow these wastes to be substituted as PP/PET alloys instead of original PP raw materials used in plastic edge band production. The laminated structure of the stated wastes makes it impossible to separate the incompatible PP and PET phases in content and thus produce a quality raw material or product as a result of recycling. Within the scope of a two-stage production process, a comprehensive process was examined using block copolymers and maleic grafted copolymers with different features to ensure that these two incompatible phases are compatible. The mechanical, thermal, and morphological properties of the plastic raw materials, which will be referred to as PP/PET blends obtained as a result of the process, were examined in detail and discussed their substitutability instead of the original raw materials.Keywords: mechanical recycling, melt blending, plastic blends, polyethylene, polypropylene, recycling of plastics, terephthalate, twin screw extruders
Procedia PDF Downloads 7219395 Reviewing Privacy Preserving Distributed Data Mining
Authors: Sajjad Baghernezhad, Saeideh Baghernezhad
Abstract:
Nowadays considering human involved in increasing data development some methods such as data mining to extract science are unavoidable. One of the discussions of data mining is inherent distribution of the data usually the bases creating or receiving such data belong to corporate or non-corporate persons and do not give their information freely to others. Yet there is no guarantee to enable someone to mine special data without entering in the owner’s privacy. Sending data and then gathering them by each vertical or horizontal software depends on the type of their preserving type and also executed to improve data privacy. In this study it was attempted to compare comprehensively preserving data methods; also general methods such as random data, coding and strong and weak points of each one are examined.Keywords: data mining, distributed data mining, privacy protection, privacy preserving
Procedia PDF Downloads 52519394 Close-Range Remote Sensing Techniques for Analyzing Rock Discontinuity Properties
Authors: Sina Fatolahzadeh, Sergio A. Sepúlveda
Abstract:
This paper presents advanced developments in close-range, terrestrial remote sensing techniques to enhance the characterization of rock masses. The study integrates two state-of-the-art laser-scanning technologies, the HandySCAN and GeoSLAM laser scanners, to extract high-resolution geospatial data for rock mass analysis. These instruments offer high accuracy, precision, low acquisition time, and high efficiency in capturing intricate geological features in small to medium size outcrops and slope cuts. Using the HandySCAN and GeoSLAM laser scanners facilitates real-time, three-dimensional mapping of rock surfaces, enabling comprehensive assessments of rock mass characteristics. The collected data provide valuable insights into structural complexities, surface roughness, and discontinuity patterns, which are essential for geological and geotechnical analyses. The synergy of these advanced remote sensing technologies contributes to a more precise and straightforward understanding of rock mass behavior. In this case, the main parameters of RQD, joint spacing, persistence, aperture, roughness, infill, weathering, water condition, and joint orientation in a slope cut along the Sea-to-Sky Highway, BC, were remotely analyzed to calculate and evaluate the Rock Mass Rating (RMR) and Geological Strength Index (GSI) classification systems. Automatic and manual analyses of the acquired data are then compared with field measurements. The results show the usefulness of the proposed remote sensing methods and their appropriate conformity with the actual field data.Keywords: remote sensing, rock mechanics, rock engineering, slope stability, discontinuity properties
Procedia PDF Downloads 6619393 A Comparative Study of Modern Trends in Traditional Farming Methods of Paddy Cultivation
Authors: Prasansha Kumari
Abstract:
This research intends to identify and analyze the new trends of usage the traditional farming methods to modern paddy cultivation. Information gathered through conducting interviews with total of 200 farmers in selected paddy cultivation areas in Kurunegalla district. As well as this research utilized by case study and observation in Ulpotha Traditional Village, Galgamuwa of Sri Lanka. Secondary data collected from books, articles, relevant websites and other relevant documents. Collected data analyzed by descriptive research methodology. Outcomes are there is growing interest in usage the traditional farming methods to the small consumption level paddy lands that have emerged during the last few decades as well as the research revealed that traditional farming method has identified the ecofriendly farming practices to restrict long term side effects inherited from the modern methods. The study finds out the demand of traditional rice varieties has been growing among the community as health and nutrition purpose.Keywords: traditional farming, organic, inorganic, paddy cultivation
Procedia PDF Downloads 288