Search results for: data mining analytics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 25609

Search results for: data mining analytics

24109 Evaluation of Australian Open Banking Regulation: Balancing Customer Data Privacy and Innovation

Authors: Suman Podder

Abstract:

As Australian ‘Open Banking’ allows customers to share their financial data with accredited Third-Party Providers (‘TPPs’), it is necessary to evaluate whether the regulators have achieved the balance between protecting customer data privacy and promoting data-related innovation. Recognising the need to increase customers’ influence on their own data, and the benefits of data-related innovation, the Australian Government introduced ‘Consumer Data Right’ (‘CDR’) to the banking sector through Open Banking regulation. Under Open Banking, TPPs can access customers’ banking data that allows the TPPs to tailor their products and services to meet customer needs at a more competitive price. This facilitated access and use of customer data will promote innovation by providing opportunities for new products and business models to emerge and grow. However, the success of Open Banking depends on the willingness of the customers to share their data, so the regulators have augmented the protection of data by introducing new privacy safeguards to instill confidence and trust in the system. The dilemma in policymaking is that, on the one hand, lenient data privacy laws will help the flow of information, but at the risk of individuals’ loss of privacy, on the other hand, stringent laws that adequately protect privacy may dissuade innovation. Using theoretical and doctrinal methods, this paper examines whether the privacy safeguards under Open Banking will add to the compliance burden of the participating financial institutions, resulting in the undesirable effect of stifling other policy objectives such as innovation. The contribution of this research is three-fold. In the emerging field of customer data sharing, this research is one of the few academic studies on the objectives and impact of Open Banking in the Australian context. Additionally, Open Banking is still in the early stages of implementation, so this research traces the evolution of Open Banking through policy debates regarding the desirability of customer data-sharing. Finally, the research focuses not only on the customers’ data privacy and juxtaposes it with another important objective of promoting innovation, but it also highlights the critical issues facing the data-sharing regime. This paper argues that while it is challenging to develop a regulatory framework for protecting data privacy without impeding innovation and jeopardising yet unknown opportunities, data privacy and innovation promote different aspects of customer welfare. This paper concludes that if a regulation is appropriately designed and implemented, the benefits of data-sharing will outweigh the cost of compliance with the CDR.

Keywords: consumer data right, innovation, open banking, privacy safeguards

Procedia PDF Downloads 140
24108 Spectroscopic Autoradiography of Alpha Particles on Geologic Samples at the Thin Section Scale Using a Parallel Ionization Multiplier Gaseous Detector

Authors: Hugo Lefeuvre, Jerôme Donnard, Michael Descostes, Sophie Billon, Samuel Duval, Tugdual Oger, Herve Toubon, Paul Sardini

Abstract:

Spectroscopic autoradiography is a method of interest for geological sample analysis. Indeed, researchers may face different issues such as radioelement identification and quantification in the field of environmental studies. Imaging gaseous ionization detectors find their place in geosciences for conducting specific measurements of radioactivity to improve the monitoring of natural processes using naturally-occurring radioactive tracers, but also for the nuclear industry linked to the mining sector. In geological samples, the location and identification of the radioactive-bearing minerals at the thin-section scale remains a major challenge as the detection limit of the usual elementary microprobe techniques is far higher than the concentration of most of the natural radioactive decay products. The spatial distribution of each decay product in the case of uranium in a geomaterial is interesting for relating radionuclides concentration to the mineralogy. The present study aims to provide spectroscopic autoradiography analysis method for measuring the initial energy of alpha particles with a parallel ionization multiplier gaseous detector. The analysis method has been developed thanks to Geant4 modelling of the detector. The track of alpha particles recorded in the gas detector allow the simultaneous measurement of the initial point of emission and the reconstruction of the initial particle energy by a selection based on the linear energy distribution. This spectroscopic autoradiography method was successfully used to reproduce the alpha spectra from a 238U decay chain on a geological sample at the thin-section scale. The characteristics of this measurement are an energy spectrum resolution of 17.2% (FWHM) at 4647 keV and a spatial resolution of at least 50 µm. Even if the efficiency of energy spectrum reconstruction is low (4.4%) compared to the efficiency of a simple autoradiograph (50%), this novel measurement approach offers the opportunity to select areas on an autoradiograph to perform an energy spectrum analysis within that area. This opens up possibilities for the detailed analysis of heterogeneous geological samples containing natural alpha emitters such as uranium-238 and radium-226. This measurement will allow the study of the spatial distribution of uranium and its descendants in geo-materials by coupling scanning electron microscope characterizations. The direct application of this dual modality (energy-position) of analysis will be the subject of future developments. The measurement of the radioactive equilibrium state of heterogeneous geological structures, and the quantitative mapping of 226Ra radioactivity are now being actively studied.

Keywords: alpha spectroscopy, digital autoradiography, mining activities, natural decay products

Procedia PDF Downloads 151
24107 Generation of Automated Alarms for Plantwide Process Monitoring

Authors: Hyun-Woo Cho

Abstract:

Earlier detection of incipient abnormal operations in terms of plant-wide process management is quite necessary in order to improve product quality and process safety. And generating warning signals or alarms for operating personnel plays an important role in process automation and intelligent plant health monitoring. Various methodologies have been developed and utilized in this area such as expert systems, mathematical model-based approaches, multivariate statistical approaches, and so on. This work presents a nonlinear empirical monitoring methodology based on the real-time analysis of massive process data. Unfortunately, the big data includes measurement noises and unwanted variations unrelated to true process behavior. Thus the elimination of such unnecessary patterns of the data is executed in data processing step to enhance detection speed and accuracy. The performance of the methodology was demonstrated using simulated process data. The case study showed that the detection speed and performance was improved significantly irrespective of the size and the location of abnormal events.

Keywords: detection, monitoring, process data, noise

Procedia PDF Downloads 252
24106 Meanings and Concepts of Standardization in Systems Medicine

Authors: Imme Petersen, Wiebke Sick, Regine Kollek

Abstract:

In systems medicine, high-throughput technologies produce large amounts of data on different biological and pathological processes, including (disturbed) gene expressions, metabolic pathways and signaling. The large volume of data of different types, stored in separate databases and often located at different geographical sites have posed new challenges regarding data handling and processing. Tools based on bioinformatics have been developed to resolve the upcoming problems of systematizing, standardizing and integrating the various data. However, the heterogeneity of data gathered at different levels of biological complexity is still a major challenge in data analysis. To build multilayer disease modules, large and heterogeneous data of disease-related information (e.g., genotype, phenotype, environmental factors) are correlated. Therefore, a great deal of attention in systems medicine has been put on data standardization, primarily to retrieve and combine large, heterogeneous datasets into standardized and incorporated forms and structures. However, this data-centred concept of standardization in systems medicine is contrary to the debate in science and technology studies (STS) on standardization that rather emphasizes the dynamics, contexts and negotiations of standard operating procedures. Based on empirical work on research consortia that explore the molecular profile of diseases to establish systems medical approaches in the clinic in Germany, we trace how standardized data are processed and shaped by bioinformatics tools, how scientists using such data in research perceive such standard operating procedures and which consequences for knowledge production (e.g. modeling) arise from it. Hence, different concepts and meanings of standardization are explored to get a deeper insight into standard operating procedures not only in systems medicine, but also beyond.

Keywords: data, science and technology studies (STS), standardization, systems medicine

Procedia PDF Downloads 341
24105 Analysis of Pangasinan State University: Bayambang Students’ Concerns Through Social Media Analytics and Latent Dirichlet Allocation Topic Modelling Approach

Authors: Matthew John F. Sino Cruz, Sarah Jane M. Ferrer, Janice C. Francisco

Abstract:

COVID-19 pandemic has affected more than 114 countries all over the world since it was considered a global health concern in 2020. Different sectors, including education, have shifted to remote/distant setups to follow the guidelines set to prevent the spread of the disease. One of the higher education institutes which shifted to remote setup is the Pangasinan State University (PSU). In order to continue providing quality instructions to the students, PSU designed Flexible Learning Model to still provide services to its stakeholders amidst the pandemic. The model covers the redesigning of delivering instructions in remote setup and the technology needed to support these adjustments. The primary goal of this study is to determine the insights of the PSU – Bayambang students towards the remote setup implemented during the pandemic and how they perceived the initiatives employed in relation to their experiences in flexible learning. In this study, the topic modelling approach was implemented using Latent Dirichlet Allocation. The dataset used in the study. The results show that the most common concern of the students includes time and resource management, poor internet connection issues, and difficulty coping with the flexible learning modality. Furthermore, the findings of the study can be used as one of the bases for the administration to review and improve the policies and initiatives implemented during the pandemic in relation to remote service delivery. In addition, further studies can be conducted to determine the overall sentiment of the other stakeholders in the policies implemented at the University.

Keywords: COVID-19, topic modelling, students’ sentiment, flexible learning, Latent Dirichlet allocation

Procedia PDF Downloads 122
24104 Integrated On-Board Diagnostic-II and Direct Controller Area Network Access for Vehicle Monitoring System

Authors: Kavian Khosravinia, Mohd Khair Hassan, Ribhan Zafira Abdul Rahman, Syed Abdul Rahman Al-Haddad

Abstract:

The CAN (controller area network) bus is introduced as a multi-master, message broadcast system. The messages sent on the CAN are used to communicate state information, referred as a signal between different ECUs, which provides data consistency in every node of the system. OBD-II Dongles that are based on request and response method is the wide-spread solution for extracting sensor data from cars among researchers. Unfortunately, most of the past researches do not consider resolution and quantity of their input data extracted through OBD-II technology. The maximum feasible scan rate is only 9 queries per second which provide 8 data points per second with using ELM327 as well-known OBD-II dongle. This study aims to develop and design a programmable, and latency-sensitive vehicle data acquisition system that improves the modularity and flexibility to extract exact, trustworthy, and fresh car sensor data with higher frequency rates. Furthermore, the researcher must break apart, thoroughly inspect, and observe the internal network of the vehicle, which may cause severe damages to the expensive ECUs of the vehicle due to intrinsic vulnerabilities of the CAN bus during initial research. Desired sensors data were collected from various vehicles utilizing Raspberry Pi3 as computing and processing unit with using OBD (request-response) and direct CAN method at the same time. Two types of data were collected for this study. The first, CAN bus frame data that illustrates data collected for each line of hex data sent from an ECU and the second type is the OBD data that represents some limited data that is requested from ECU under standard condition. The proposed system is reconfigurable, human-readable and multi-task telematics device that can be fitted into any vehicle with minimum effort and minimum time lag in the data extraction process. The standard operational procedure experimental vehicle network test bench is developed and can be used for future vehicle network testing experiment.

Keywords: CAN bus, OBD-II, vehicle data acquisition, connected cars, telemetry, Raspberry Pi3

Procedia PDF Downloads 204
24103 Minimum Data of a Speech Signal as Special Indicators of Identification in Phonoscopy

Authors: Nazaket Gazieva

Abstract:

Voice biometric data associated with physiological, psychological and other factors are widely used in forensic phonoscopy. There are various methods for identifying and verifying a person by voice. This article explores the minimum speech signal data as individual parameters of a speech signal. Monozygotic twins are believed to be genetically identical. Using the minimum data of the speech signal, we came to the conclusion that the voice imprint of monozygotic twins is individual. According to the conclusion of the experiment, we can conclude that the minimum indicators of the speech signal are more stable and reliable for phonoscopic examinations.

Keywords: phonogram, speech signal, temporal characteristics, fundamental frequency, biometric fingerprints

Procedia PDF Downloads 144
24102 Learning Grammars for Detection of Disaster-Related Micro Events

Authors: Josef Steinberger, Vanni Zavarella, Hristo Tanev

Abstract:

Natural disasters cause tens of thousands of victims and massive material damages. We refer to all those events caused by natural disasters, such as damage on people, infrastructure, vehicles, services and resource supply, as micro events. This paper addresses the problem of micro - event detection in online media sources. We present a natural language grammar learning algorithm and apply it to online news. The algorithm in question is based on distributional clustering and detection of word collocations. We also explore the extraction of micro-events from social media and describe a Twitter mining robot, who uses combinations of keywords to detect tweets which talk about effects of disasters.

Keywords: online news, natural language processing, machine learning, event extraction, crisis computing, disaster effects, Twitter

Procedia PDF Downloads 478
24101 A Non-parametric Clustering Approach for Multivariate Geostatistical Data

Authors: Francky Fouedjio

Abstract:

Multivariate geostatistical data have become omnipresent in the geosciences and pose substantial analysis challenges. One of them is the grouping of data locations into spatially contiguous clusters so that data locations within the same cluster are more similar while clusters are different from each other, in some sense. Spatially contiguous clusters can significantly improve the interpretation that turns the resulting clusters into meaningful geographical subregions. In this paper, we develop an agglomerative hierarchical clustering approach that takes into account the spatial dependency between observations. It relies on a dissimilarity matrix built from a non-parametric kernel estimator of the spatial dependence structure of data. It integrates existing methods to find the optimal cluster number and to evaluate the contribution of variables to the clustering. The capability of the proposed approach to provide spatially compact, connected and meaningful clusters is assessed using bivariate synthetic dataset and multivariate geochemical dataset. The proposed clustering method gives satisfactory results compared to other similar geostatistical clustering methods.

Keywords: clustering, geostatistics, multivariate data, non-parametric

Procedia PDF Downloads 477
24100 Parallel Coordinates on a Spiral Surface for Visualizing High-Dimensional Data

Authors: Chris Suma, Yingcai Xiao

Abstract:

This paper presents Parallel Coordinates on a Spiral Surface (PCoSS), a parallel coordinate based interactive visualization method for high-dimensional data, and a test implementation of the method. Plots generated by the test system are compared with those generated by XDAT, a software implementing traditional parallel coordinates. Traditional parallel coordinate plots can be cluttered when the number of data points is large or when the dimensionality of the data is high. PCoSS plots display multivariate data on a 3D spiral surface and allow users to see the whole picture of high-dimensional data with less cluttering. Taking advantage of the 3D display environment in PCoSS, users can further reduce cluttering by zooming into an axis of interest for a closer view or by moving vantage points and by reorienting the viewing angle to obtain a desired view of the plots.

Keywords: human computer interaction, parallel coordinates, spiral surface, visualization

Procedia PDF Downloads 11
24099 A Dynamic Ensemble Learning Approach for Online Anomaly Detection in Alibaba Datacenters

Authors: Wanyi Zhu, Xia Ming, Huafeng Wang, Junda Chen, Lu Liu, Jiangwei Jiang, Guohua Liu

Abstract:

Anomaly detection is a first and imperative step needed to respond to unexpected problems and to assure high performance and security in large data center management. This paper presents an online anomaly detection system through an innovative approach of ensemble machine learning and adaptive differentiation algorithms, and applies them to performance data collected from a continuous monitoring system for multi-tier web applications running in Alibaba data centers. We evaluate the effectiveness and efficiency of this algorithm with production traffic data and compare with the traditional anomaly detection approaches such as a static threshold and other deviation-based detection techniques. The experiment results show that our algorithm correctly identifies the unexpected performance variances of any running application, with an acceptable false positive rate. This proposed approach has already been deployed in real-time production environments to enhance the efficiency and stability in daily data center operations.

Keywords: Alibaba data centers, anomaly detection, big data computation, dynamic ensemble learning

Procedia PDF Downloads 201
24098 The Role of Synthetic Data in Aerial Object Detection

Authors: Ava Dodd, Jonathan Adams

Abstract:

The purpose of this study is to explore the characteristics of developing a machine learning application using synthetic data. The study is structured to develop the application for the purpose of deploying the computer vision model. The findings discuss the realities of attempting to develop a computer vision model for practical purpose, and detail the processes, tools, and techniques that were used to meet accuracy requirements. The research reveals that synthetic data represents another variable that can be adjusted to improve the performance of a computer vision model. Further, a suite of tools and tuning recommendations are provided.

Keywords: computer vision, machine learning, synthetic data, YOLOv4

Procedia PDF Downloads 225
24097 Perception-Oriented Model Driven Development for Designing Data Acquisition Process in Wireless Sensor Networks

Authors: K. Indra Gandhi

Abstract:

Wireless Sensor Networks (WSNs) have always been characterized for application-specific sensing, relaying and collection of information for further analysis. However, software development was not considered as a separate entity in this process of data collection which has posed severe limitations on the software development for WSN. Software development for WSN is a complex process since the components involved are data-driven, network-driven and application-driven in nature. This implies that there is a tremendous need for the separation of concern from the software development perspective. A layered approach for developing data acquisition design based on Model Driven Development (MDD) has been proposed as the sensed data collection process itself varies depending upon the application taken into consideration. This work focuses on the layered view of the data acquisition process so as to ease the software point of development. A metamodel has been proposed that enables reusability and realization of the software development as an adaptable component for WSN systems. Further, observing users perception indicates that proposed model helps in improving the programmer's productivity by realizing the collaborative system involved.

Keywords: data acquisition, model-driven development, separation of concern, wireless sensor networks

Procedia PDF Downloads 434
24096 Comparative Analysis of Data Gathering Protocols with Multiple Mobile Elements for Wireless Sensor Network

Authors: Bhat Geetalaxmi Jairam, D. V. Ashoka

Abstract:

Wireless Sensor Networks are used in many applications to collect sensed data from different sources. Sensed data has to be delivered through sensors wireless interface using multi-hop communication towards the sink. The data collection in wireless sensor networks consumes energy. Energy consumption is the major constraints in WSN .Reducing the energy consumption while increasing the amount of generated data is a great challenge. In this paper, we have implemented two data gathering protocols with multiple mobile sinks/elements to collect data from sensor nodes. First, is Energy-Efficient Data Gathering with Tour Length-Constrained Mobile Elements in Wireless Sensor Networks (EEDG), in which mobile sinks uses vehicle routing protocol to collect data. Second is An Intelligent Agent-based Routing Structure for Mobile Sinks in WSNs (IAR), in which mobile sinks uses prim’s algorithm to collect data. Authors have implemented concepts which are common to both protocols like deployment of mobile sinks, generating visiting schedule, collecting data from the cluster member. Authors have compared the performance of both protocols by taking statistics based on performance parameters like Delay, Packet Drop, Packet Delivery Ratio, Energy Available, Control Overhead. Authors have concluded this paper by proving EEDG is more efficient than IAR protocol but with few limitations which include unaddressed issues likes Redundancy removal, Idle listening, Mobile Sink’s pause/wait state at the node. In future work, we plan to concentrate more on these limitations to avail a new energy efficient protocol which will help in improving the life time of the WSN.

Keywords: aggregation, consumption, data gathering, efficiency

Procedia PDF Downloads 497
24095 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer A. Aljohani

Abstract:

COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred to as coronavirus, which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. This research aims to predict COVID-19 disease in its initial stage to reduce the death count. Machine learning (ML) is nowadays used in almost every area. Numerous COVID-19 cases have produced a huge burden on the hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease is based on the symptoms and medical history of the patient. This research presents a unique architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard UCI dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques to the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and the principal component analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, receiver operating characteristic (ROC), and area under curve (AUC). The results depict that decision tree, random forest, and neural networks outperform all other state-of-the-art ML techniques. This achieved result can help effectively in identifying COVID-19 infection cases.

Keywords: supervised machine learning, COVID-19 prediction, healthcare analytics, random forest, neural network

Procedia PDF Downloads 92
24094 Status and Results from EXO-200

Authors: Ryan Maclellan

Abstract:

EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.

Keywords: double-beta, Majorana, neutrino, neutrinoless

Procedia PDF Downloads 414
24093 Remaining Useful Life (RUL) Assessment Using Progressive Bearing Degradation Data and ANN Model

Authors: Amit R. Bhende, G. K. Awari

Abstract:

Remaining useful life (RUL) prediction is one of key technologies to realize prognostics and health management that is being widely applied in many industrial systems to ensure high system availability over their life cycles. The present work proposes a data-driven method of RUL prediction based on multiple health state assessment for rolling element bearings. Bearing degradation data at three different conditions from run to failure is used. A RUL prediction model is separately built in each condition. Feed forward back propagation neural network models are developed for prediction modeling.

Keywords: bearing degradation data, remaining useful life (RUL), back propagation, prognosis

Procedia PDF Downloads 436
24092 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria

Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe

Abstract:

Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.

Keywords: data portal, data infrastructure, open source, sustainability

Procedia PDF Downloads 97
24091 Process Data-Driven Representation of Abnormalities for Efficient Process Control

Authors: Hyun-Woo Cho

Abstract:

Unexpected operational events or abnormalities of industrial processes have a serious impact on the quality of final product of interest. In terms of statistical process control, fault detection and diagnosis of processes is one of the essential tasks needed to run the process safely. In this work, nonlinear representation of process measurement data is presented and evaluated using a simulation process. The effect of using different representation methods on the diagnosis performance is tested in terms of computational efficiency and data handling. The results have shown that the nonlinear representation technique produced more reliable diagnosis results and outperforms linear methods. The use of data filtering step improved computational speed and diagnosis performance for test data sets. The presented scheme is different from existing ones in that it attempts to extract the fault pattern in the reduced space, not in the original process variable space. Thus this scheme helps to reduce the sensitivity of empirical models to noise.

Keywords: fault diagnosis, nonlinear technique, process data, reduced spaces

Procedia PDF Downloads 247
24090 Text-to-Speech in Azerbaijani Language via Transfer Learning in a Low Resource Environment

Authors: Dzhavidan Zeinalov, Bugra Sen, Firangiz Aslanova

Abstract:

Most text-to-speech models cannot operate well in low-resource languages and require a great amount of high-quality training data to be considered good enough. Yet, with the improvements made in ASR systems, it is now much easier than ever to collect data for the design of custom text-to-speech models. In this work, our work on using the ASR model to collect data to build a viable text-to-speech system for one of the leading financial institutions of Azerbaijan will be outlined. NVIDIA’s implementation of the Tacotron 2 model was utilized along with the HiFiGAN vocoder. As for the training, the model was first trained with high-quality audio data collected from the Internet, then fine-tuned on the bank’s single speaker call center data. The results were then evaluated by 50 different listeners and got a mean opinion score of 4.17, displaying that our method is indeed viable. With this, we have successfully designed the first text-to-speech model in Azerbaijani and publicly shared 12 hours of audiobook data for everyone to use.

Keywords: Azerbaijani language, HiFiGAN, Tacotron 2, text-to-speech, transfer learning, whisper

Procedia PDF Downloads 44
24089 An Empirical Evaluation of Performance of Machine Learning Techniques on Imbalanced Software Quality Data

Authors: Ruchika Malhotra, Megha Khanna

Abstract:

The development of change prediction models can help the software practitioners in planning testing and inspection resources at early phases of software development. However, a major challenge faced during the training process of any classification model is the imbalanced nature of the software quality data. A data with very few minority outcome categories leads to inefficient learning process and a classification model developed from the imbalanced data generally does not predict these minority categories correctly. Thus, for a given dataset, a minority of classes may be change prone whereas a majority of classes may be non-change prone. This study explores various alternatives for adeptly handling the imbalanced software quality data using different sampling methods and effective MetaCost learners. The study also analyzes and justifies the use of different performance metrics while dealing with the imbalanced data. In order to empirically validate different alternatives, the study uses change data from three application packages of open-source Android data set and evaluates the performance of six different machine learning techniques. The results of the study indicate extensive improvement in the performance of the classification models when using resampling method and robust performance measures.

Keywords: change proneness, empirical validation, imbalanced learning, machine learning techniques, object-oriented metrics

Procedia PDF Downloads 418
24088 A Location-Based Search Approach According to Users’ Application Scenario

Authors: Shih-Ting Yang, Chih-Yun Lin, Ming-Yu Li, Jhong-Ting Syue, Wei-Ming Huang

Abstract:

Global positioning system (GPS) has become increasing precise in recent years, and the location-based service (LBS) has developed rapidly. Take the example of finding a parking lot (such as Parking apps). The location-based service can offer immediate information about a nearby parking lot, including the information about remaining parking spaces. However, it cannot provide expected search results according to the requirement situations of users. For that reason, this paper develops a “Location-based Search Approach according to Users’ Application Scenario” according to the location-based search and demand determination to help users obtain the information consistent with their requirements. The “Location-based Search Approach based on Users’ Application Scenario” of this paper consists of one mechanism and three kernel modules. First, in the Information Pre-processing Mechanism (IPM), this paper uses the cosine theorem to categorize the locations of users. Then, in the Information Category Evaluation Module (ICEM), the kNN (k-Nearest Neighbor) is employed to classify the browsing records of users. After that, in the Information Volume Level Determination Module (IVLDM), this paper makes a comparison between the number of users’ clicking the information at different locations and the average number of users’ clicking the information at a specific location, so as to evaluate the urgency of demand; then, the two-dimensional space is used to estimate the application situations of users. For the last step, in the Location-based Search Module (LBSM), this paper compares all search results and the average number of characters of the search results, categorizes the search results with the Manhattan Distance, and selects the results according to the application scenario of users. Additionally, this paper develops a Web-based system according to the methodology to demonstrate practical application of this paper. The application scenario-based estimate and the location-based search are used to evaluate the type and abundance of the information expected by the public at specific location, so that information demanders can obtain the information consistent with their application situations at specific location.

Keywords: data mining, knowledge management, location-based service, user application scenario

Procedia PDF Downloads 123
24087 Surface Tension and Bulk Density of Ammonium Nitrate Solutions: A Molecular Dynamics Study

Authors: Sara Mosallanejad, Bogdan Z. Dlugogorski, Jeff Gore, Mohammednoor Altarawneh

Abstract:

Ammonium nitrate (NH­₄NO₃, AN) is commonly used as the main component of AN emulsion and fuel oil (ANFO) explosives, that use extensively in civilian and mining operations for underground development and tunneling applications. The emulsion formulation and wettability of AN prills, which affect the physical stability and detonation of ANFO, highly depend on the surface tension, density, viscosity of the used liquid. Therefore, for engineering applications of this material, the determination of density and surface tension of concentrated aqueous solutions of AN is essential. The molecular dynamics (MD) simulation method have been used to investigate the density and the surface tension of high concentrated ammonium nitrate solutions; up to its solubility limit in water. Non-polarisable models for water and ions have carried out the simulations, and the electronic continuum correction model (ECC) uses a scaling of the charges of the ions to apply the polarisation implicitly into the non-polarisable model. The results of calculated density and the surface tension of the solutions have been compared to available experimental values. Our MD simulations show that the non-polarisable model with full-charge ions overestimates the experimental results while the reduce-charge model for the ions fits very well with the experimental data. Ions in the solutions show repulsion from the interface using the non-polarisable force fields. However, when charges of the ions in the original model are scaled in line with the scaling factor of the ECC model, the ions create a double ionic layer near the interface by the migration of anions toward the interface while cations stay in the bulk of the solutions. Similar ions orientations near the interface were observed when polarisable models were used in simulations. In conclusion, applying the ECC model to the non-polarisable force field yields the density and surface tension of the AN solutions with high accuracy in comparison to the experimental measurements.

Keywords: ammonium nitrate, electronic continuum correction, non-polarisable force field, surface tension

Procedia PDF Downloads 231
24086 Variance-Aware Routing and Authentication Scheme for Harvesting Data in Cloud-Centric Wireless Sensor Networks

Authors: Olakanmi Oladayo Olufemi, Bamifewe Olusegun James, Badmus Yaya Opeyemi, Adegoke Kayode

Abstract:

The wireless sensor network (WSN) has made a significant contribution to the emergence of various intelligent services or cloud-based applications. Most of the time, these data are stored on a cloud platform for efficient management and sharing among different services or users. However, the sensitivity of the data makes them prone to various confidentiality and performance-related attacks during and after harvesting. Various security schemes have been developed to ensure the integrity and confidentiality of the WSNs' data. However, their specificity towards particular attacks and the resource constraint and heterogeneity of WSNs make most of these schemes imperfect. In this paper, we propose a secure variance-aware routing and authentication scheme with two-tier verification to collect, share, and manage WSN data. The scheme is capable of classifying WSN into different subnets, detecting any attempt of wormhole and black hole attack during harvesting, and enforcing access control on the harvested data stored in the cloud. The results of the analysis showed that the proposed scheme has more security functionalities than other related schemes, solves most of the WSNs and cloud security issues, prevents wormhole and black hole attacks, identifies the attackers during data harvesting, and enforces access control on the harvested data stored in the cloud at low computational, storage, and communication overheads.

Keywords: data block, heterogeneous IoT network, data harvesting, wormhole attack, blackhole attack access control

Procedia PDF Downloads 84
24085 Quality of Age Reporting from Tanzania 2012 Census Results: An Assessment Using Whipple’s Index, Myer’s Blended Index, and Age-Sex Accuracy Index

Authors: A. Sathiya Susuman, Hamisi F. Hamisi

Abstract:

Background: Many socio-economic and demographic data are age-sex attributed. However, a variety of irregularities and misstatement are noted with respect to age-related data and less to sex data because of its biological differences between the genders. Noting the misstatement/misreporting of age data regardless of its significance importance in demographics and epidemiological studies, this study aims at assessing the quality of 2012 Tanzania Population and Housing Census Results. Methods: Data for the analysis are downloaded from Tanzania National Bureau of Statistics. Age heaping and digit preference were measured using summary indices viz., Whipple’s index, Myers’ blended index, and Age-Sex Accuracy index. Results: The recorded Whipple’s index for both sexes was 154.43; male has the lowest index of about 152.65 while female has the highest index of about 156.07. For Myers’ blended index, the preferences were at digits ‘0’ and ‘5’ while avoidance were at digits ‘1’ and ‘3’ for both sexes. Finally, Age-sex index stood at 59.8 where sex ratio score was 5.82 and age ratio scores were 20.89 and 21.4 for males and female respectively. Conclusion: The evaluation of the 2012 PHC data using the demographic techniques has qualified the data inaccurate as the results of systematic heaping and digit preferences/avoidances. Thus, innovative methods in data collection along with measuring and minimizing errors using statistical techniques should be used to ensure accuracy of age data.

Keywords: age heaping, digit preference/avoidance, summary indices, Whipple’s index, Myer’s index, age-sex accuracy index

Procedia PDF Downloads 476
24084 Providing a Practical Model to Reduce Maintenance Costs: A Case Study in GeG Company

Authors: Iman Atighi, Jalal Soleimannejad, Reza Pourjafarabadi, Saeid Moradpour

Abstract:

In the past, we could increase profit by increasing product prices. But in the new decade, a competitive market does not let us to increase profit with increased prices. Therefore, the only way to increase profit will be to reduce costs. A significant percentage of production costs are the maintenance costs, and analysis of these costs could achieve more profit. Most maintenance strategies such as RCM (Reliability-Center-Maintenance), TPM (Total Productivity Maintenance), PM (Preventive Maintenance) and etc., are trying to reduce maintenance costs. In this paper, decreasing the maintenance costs of Concentration Plant of Golgohar Iron Ore Mining & Industrial Company (GeG) was examined by using of MTBF (Mean Time Between Failures) and MTTR (Mean Time To Repair) analyses. These analyses showed that instead of buying new machines and increasing costs in order to promote capacity, the improving of MTBF and MTTR indexes would solve capacity problems in the best way and decrease costs.

Keywords: GeG company, maintainability, maintenance costs, reliability-center-maintenance

Procedia PDF Downloads 221
24083 Treatment of Acid Mine Drainage with Modified Fly Ash

Authors: Sukla Saha, Alok Sinha

Abstract:

Acid mine drainage (AMD) is the generation of acidic water from active as well as abandoned mines. AMD generates due to the oxidation of pyrites present in the rock in mining areas. Sulfur oxidizing bacteria such as Thiobacillus ferrooxidans acts as a catalyst in this oxidation process. The characteristics of AMD is extreme low pH (2-3) with elevated concentration of different heavy metals such as Fe, Al, Zn, Mn, Cu and Co and anions such sulfate and chloride. AMD contaminate the ground water as well as surface water which leads to the degradation of water quality. Moreover, it carries detrimental effect for aquatic organism and degrade the environment. In the present study, AMD is treated with fly ash, modified with alkaline agent (NaOH). This modified fly ash (MFA) was experimentally proven as a very effective neutralizing agent for the treatment of AMD. It was observed that pH of treated AMD raised to 9.22 from 1.51 with 100g/L of MFA dose. Approximately, 99% removal of Fe, Al, Mn, Cu and Co took place with the same MFA dose. The treated water comply with the effluent discharge standard of (IS: 2490-1981).

Keywords: acid mine drainage, heavy metals, modified fly ash, neutralization

Procedia PDF Downloads 151
24082 A Social Decision Support Mechanism for Group Purchasing

Authors: Lien-Fa Lin, Yung-Ming Li, Fu-Shun Hsieh

Abstract:

With the advancement of information technology and development of group commerce, people have obviously changed in their lifestyle. However, group commerce faces some challenging problems. The products or services provided by vendors do not satisfactorily reflect customers’ opinions, so that the sale and revenue of group commerce gradually become lower. On the other hand, the process for a formed customer group to reach group-purchasing consensus is time-consuming and the final decision is not the best choice for each group members. In this paper, we design a social decision support mechanism, by using group discussion message to recommend suitable options for group members and we consider social influence and personal preference to generate option ranking list. The proposed mechanism can enhance the group purchasing decision making efficiently and effectively and venders can provide group products or services according to the group option ranking list.

Keywords: social network, group decision, text mining, group commerce

Procedia PDF Downloads 485
24081 Advancements in Predicting Diabetes Biomarkers: A Machine Learning Epigenetic Approach

Authors: James Ladzekpo

Abstract:

Background: The urgent need to identify new pharmacological targets for diabetes treatment and prevention has been amplified by the disease's extensive impact on individuals and healthcare systems. A deeper insight into the biological underpinnings of diabetes is crucial for the creation of therapeutic strategies aimed at these biological processes. Current predictive models based on genetic variations fall short of accurately forecasting diabetes. Objectives: Our study aims to pinpoint key epigenetic factors that predispose individuals to diabetes. These factors will inform the development of an advanced predictive model that estimates diabetes risk from genetic profiles, utilizing state-of-the-art statistical and data mining methods. Methodology: We have implemented a recursive feature elimination with cross-validation using the support vector machine (SVM) approach for refined feature selection. Building on this, we developed six machine learning models, including logistic regression, k-Nearest Neighbors (k-NN), Naive Bayes, Random Forest, Gradient Boosting, and Multilayer Perceptron Neural Network, to evaluate their performance. Findings: The Gradient Boosting Classifier excelled, achieving a median recall of 92.17% and outstanding metrics such as area under the receiver operating characteristics curve (AUC) with a median of 68%, alongside median accuracy and precision scores of 76%. Through our machine learning analysis, we identified 31 genes significantly associated with diabetes traits, highlighting their potential as biomarkers and targets for diabetes management strategies. Conclusion: Particularly noteworthy were the Gradient Boosting Classifier and Multilayer Perceptron Neural Network, which demonstrated potential in diabetes outcome prediction. We recommend future investigations to incorporate larger cohorts and a wider array of predictive variables to enhance the models' predictive capabilities.

Keywords: diabetes, machine learning, prediction, biomarkers

Procedia PDF Downloads 55
24080 Multimodal Data Fusion Techniques in Audiovisual Speech Recognition

Authors: Hadeer M. Sayed, Hesham E. El Deeb, Shereen A. Taie

Abstract:

In the big data era, we are facing a diversity of datasets from different sources in different domains that describe a single life event. These datasets consist of multiple modalities, each of which has a different representation, distribution, scale, and density. Multimodal fusion is the concept of integrating information from multiple modalities in a joint representation with the goal of predicting an outcome through a classification task or regression task. In this paper, multimodal fusion techniques are classified into two main classes: model-agnostic techniques and model-based approaches. It provides a comprehensive study of recent research in each class and outlines the benefits and limitations of each of them. Furthermore, the audiovisual speech recognition task is expressed as a case study of multimodal data fusion approaches, and the open issues through the limitations of the current studies are presented. This paper can be considered a powerful guide for interested researchers in the field of multimodal data fusion and audiovisual speech recognition particularly.

Keywords: multimodal data, data fusion, audio-visual speech recognition, neural networks

Procedia PDF Downloads 112