Search results for: autonomous intelligence
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2087

Search results for: autonomous intelligence

587 Continuous Differential Evolution Based Parameter Estimation Framework for Signal Models

Authors: Ammara Mehmood, Aneela Zameer, Muhammad Asif Zahoor Raja, Muhammad Faisal Fateh

Abstract:

In this work, the strength of bio-inspired computational intelligence based technique is exploited for parameter estimation for the periodic signals using Continuous Differential Evolution (CDE) by defining an error function in the mean square sense. Multidimensional and nonlinear nature of the problem emerging in sinusoidal signal models along with noise makes it a challenging optimization task, which is dealt with robustness and effectiveness of CDE to ensure convergence and avoid trapping in local minima. In the proposed scheme of Continuous Differential Evolution based Signal Parameter Estimation (CDESPE), unknown adjustable weights of the signal system identification model are optimized utilizing CDE algorithm. The performance of CDESPE model is validated through statistics based various performance indices on a sufficiently large number of runs in terms of estimation error, mean squared error and Thiel’s inequality coefficient. Efficacy of CDESPE is examined by comparison with the actual parameters of the system, Genetic Algorithm based outcomes and from various deterministic approaches at different signal-to-noise ratio (SNR) levels.

Keywords: parameter estimation, bio-inspired computing, continuous differential evolution (CDE), periodic signals

Procedia PDF Downloads 302
586 The Impact of Artificial Intelligence on Rural Life

Authors: Triza Edwar Fawzi Deif

Abstract:

In the process of urbanization in China, new rural construction is on the ascendant, which is becoming more and more popular. Under the driving effect of rural urbanization, the house pattern and tectonic methods of traditional vernacular houses have shown great differences from the family structure and values of contemporary peasant families. Therefore, it is particularly important to find a prototype, form and strategy to make a balance between the traditional memory and modern functional requirements. In order for research to combine the regional culture with modern life, under the situation of the current batch production of new rural residences, Badie village, in Zhejiang province, is taken as the case. This paper aims to put forward a prototype which can not only meet the demand of modern life but also ensure the continuation of traditional culture and historical context for the new rural dwellings design. This research not only helps to extend the local context in the construction of the new site but also contributes to the fusion of old and new rural dwellings in the old site construction. Through the study and research of this case, the research methodology and results can be drawn as reference for the new rural construction in other areas.

Keywords: steel slag, co-product, primary coating, steel aggregate capital, rural areas, rural planning, rural governance village, design strategy, new rural dwellings, regional context, regional expression

Procedia PDF Downloads 53
585 The Effect of Artificial Intelligence on International Law, Legal Security and Privacy Issues

Authors: Akram Waheb Nasef Alzordoky

Abstract:

The wars and armed conflicts have frequently ended in violations of global humanitarian law and regularly devote the maximum severe global crimes, which include war crimes, crimes towards humanity, aggression and genocide. But, simplest inside the XX century, the guideline changed into an articulated idea of establishing a frame of worldwide criminal justice so that you can prosecute those crimes and their perpetrators. The first steps on this subject were made with the aid of setting up the worldwide army tribunals for warfare crimes at Nuremberg and Tokyo, and the formation of ad hoc tribunals for the former Yugoslavia and Rwanda. Ultimately, the global criminal courtroom was established in Rome in 1998 with the aim of justice and that allows you to give satisfaction to the sufferers of crimes and their families. The aim of the paper was to provide an ancient and comparative analysis of the establishments of worldwide criminal justice primarily based on which those establishments de lege lata fulfilled the goals of individual criminal responsibility and justice. Moreover, the authors endorse de lege ferenda that the everlasting global crook Tribunal, in addition to the potential case, additionally takes over the current ICTY and ICTR cases.

Keywords: social networks privacy issues, social networks security issues, social networks privacy precautions measures, social networks security precautions measures

Procedia PDF Downloads 21
584 Design of EV Steering Unit Using AI Based on Estimate and Control Model

Authors: Seong Jun Yoon, Jasurbek Doliev, Sang Min Oh, Rodi Hartono, Kyoojae Shin

Abstract:

Electric power steering (EPS), which is commonly used in electric vehicles recently, is an electric-driven steering device for vehicles. Compared to hydraulic systems, EPS offers advantages such as simple system components, easy maintenance, and improved steering performance. However, because the EPS system is a nonlinear model, difficult problems arise in controller design. To address these, various machine learning and artificial intelligence approaches, notably artificial neural networks (ANN), have been applied. ANN can effectively determine relationships between inputs and outputs in a data-driven manner. This research explores two main areas: designing an EPS identifier using an ANN-based backpropagation (BP) algorithm and enhancing the EPS system controller with an ANN-based Levenberg-Marquardt (LM) algorithm. The proposed ANN-based BP algorithm shows superior performance and accuracy compared to linear transfer function estimators, while the LM algorithm offers better input angle reference tracking and faster response times than traditional PID controllers. Overall, the proposed ANN methods demonstrate significant promise in improving EPS system performance.

Keywords: ANN backpropagation modelling, electric power steering, transfer function estimator, electrical vehicle driving system

Procedia PDF Downloads 44
583 Breast Cancer Diagnosing Based on Online Sequential Extreme Learning Machine Approach

Authors: Musatafa Abbas Abbood Albadr, Masri Ayob, Sabrina Tiun, Fahad Taha Al-Dhief, Mohammad Kamrul Hasan

Abstract:

Breast Cancer (BC) is considered one of the most frequent reasons of cancer death in women between 40 to 55 ages. The BC is diagnosed by using digital images of the FNA (Fine Needle Aspirate) for both benign and malignant tumors of the breast mass. Therefore, this work proposes the Online Sequential Extreme Learning Machine (OSELM) algorithm for diagnosing BC by using the tumor features of the breast mass. The current work has used the Wisconsin Diagnosis Breast Cancer (WDBC) dataset, which contains 569 samples (i.e., 357 samples for benign class and 212 samples for malignant class). Further, numerous measurements of assessment were used in order to evaluate the proposed OSELM algorithm, such as specificity, precision, F-measure, accuracy, G-mean, MCC, and recall. According to the outcomes of the experiment, the highest performance of the proposed OSELM was accomplished with 97.66% accuracy, 98.39% recall, 95.31% precision, 97.25% specificity, 96.83% F-measure, 95.00% MCC, and 96.84% G-Mean. The proposed OSELM algorithm demonstrates promising results in diagnosing BC. Besides, the performance of the proposed OSELM algorithm was superior to all its comparatives with respect to the rate of classification.

Keywords: breast cancer, machine learning, online sequential extreme learning machine, artificial intelligence

Procedia PDF Downloads 111
582 An Assessment of the Performance of Local Government in Ondo State Nigeria: A Capital Budgeting Approach

Authors: Olurankinse Felix

Abstract:

Local governments in Ondo State Nigeria are the third tier of government saddled with the responsibility of providing governance and economic services at the grassroots. To be able to do this, the Constitution of the Federal Republic of Nigeria provided that a proportion of Federation Account be allocated to them in addition to their internally generated revenue. From the allocation and other incidental sources of revenue, the local governments are expected to provide basic infrastructures and other social amenities to better the lots of the rural dwellers. Nevertheless, local governments’ performances in terms of provision of social amenities are without questioning and quite not encouraging. Assessing the performance of local governments in this period of dearth and scarcity of resources is highly indispensable more so that the activities of local governments’ staff are bedeviled and characterized with fraud, corruption and mismanagement. Considering the direct impact of the consequences of their action on the living standard of the rural dwellers therefore calls for the need to evaluate their level of performances using capital budgeting approach. The paper being a time series study adopts the survey design. Data were obtained through secondary source mainly from the Annual financial statements and publication of approved budgets estimates covering the period of study (2008-2012). The use of ratio analysis was employed in analyzing the comparative level of performances of the local governments under study. The result of the study shows that less than 30% of the local governments were able to harness the budgetary allocation to provide amenities to the beneficiaries while majority of the local governments were involved in unethical conduct ranging from theft of fund, corruption, diversion of funds and extra-budgetary activities. Also, there is poor internally generated revenue to complement the statutory allocation and besides, the monthly withholding of larger portions of local government share by the state in the name of joint account were also seen as contributory factors. The study recommends the need for transparency and accountability in public fund management through the oversight function of the state house of assembly. Also local government should be made to be autonomous and independent of the state by jettisoning the idea of joint account.

Keywords: performance, transparency and accountability, capital budgeting, joint account, local government autonomy

Procedia PDF Downloads 331
581 Contactless Heart Rate Measurement System based on FMCW Radar and LSTM for Automotive Applications

Authors: Asma Omri, Iheb Sifaoui, Sofiane Sayahi, Hichem Besbes

Abstract:

Future vehicle systems demand advanced capabilities, notably in-cabin life detection and driver monitoring systems, with a particular emphasis on drowsiness detection. To meet these requirements, several techniques employ artificial intelligence methods based on real-time vital sign measurements. In parallel, Frequency-Modulated Continuous-Wave (FMCW) radar technology has garnered considerable attention in the domains of healthcare and biomedical engineering for non-invasive vital sign monitoring. FMCW radar offers a multitude of advantages, including its non-intrusive nature, continuous monitoring capacity, and its ability to penetrate through clothing. In this paper, we propose a system utilizing the AWR6843AOP radar from Texas Instruments (TI) to extract precise vital sign information. The radar allows us to estimate Ballistocardiogram (BCG) signals, which capture the mechanical movements of the body, particularly the ballistic forces generated by heartbeats and respiration. These signals are rich sources of information about the cardiac cycle, rendering them suitable for heart rate estimation. The process begins with real-time subject positioning, followed by clutter removal, computation of Doppler phase differences, and the use of various filtering methods to accurately capture subtle physiological movements. To address the challenges associated with FMCW radar-based vital sign monitoring, including motion artifacts due to subjects' movement or radar micro-vibrations, Long Short-Term Memory (LSTM) networks are implemented. LSTM's adaptability to different heart rate patterns and ability to handle real-time data make it suitable for continuous monitoring applications. Several crucial steps were taken, including feature extraction (involving amplitude, time intervals, and signal morphology), sequence modeling, heart rate estimation through the analysis of detected cardiac cycles and their temporal relationships, and performance evaluation using metrics such as Root Mean Square Error (RMSE) and correlation with reference heart rate measurements. For dataset construction and LSTM training, a comprehensive data collection system was established, integrating the AWR6843AOP radar, a Heart Rate Belt, and a smart watch for ground truth measurements. Rigorous synchronization of these devices ensured data accuracy. Twenty participants engaged in various scenarios, encompassing indoor and real-world conditions within a moving vehicle equipped with the radar system. Static and dynamic subject’s conditions were considered. The heart rate estimation through LSTM outperforms traditional signal processing techniques that rely on filtering, Fast Fourier Transform (FFT), and thresholding. It delivers an average accuracy of approximately 91% with an RMSE of 1.01 beat per minute (bpm). In conclusion, this paper underscores the promising potential of FMCW radar technology integrated with artificial intelligence algorithms in the context of automotive applications. This innovation not only enhances road safety but also paves the way for its integration into the automotive ecosystem to improve driver well-being and overall vehicular safety.

Keywords: ballistocardiogram, FMCW Radar, vital sign monitoring, LSTM

Procedia PDF Downloads 72
580 The Impact of Artificial Intelligence on Food Nutrition

Authors: Antonyous Fawzy Boshra Girgis

Abstract:

Nutrition labels are diet-related health policies. They help individuals improve food-choice decisions and reduce intake of calories and unhealthy food elements, like cholesterol. However, many individuals do not pay attention to nutrition labels or fail to appropriately understand them. According to the literature, thinking and cognitive styles can have significant effects on attention to nutrition labels. According to the author's knowledge, the effect of global/local processing on attention to nutrition labels has not been previously studied. Global/local processing encourages individuals to attend to the whole/specific parts of an object and can have a significant impact on people's visual attention. In this study, this effect was examined with an experimental design using the eye-tracking technique. The research hypothesis was that individuals with local processing would pay more attention to nutrition labels, including nutrition tables and traffic lights. An experiment was designed with two conditions: global and local information processing. Forty participants were randomly assigned to either global or local conditions, and their processing style was manipulated accordingly. Results supported the hypothesis for nutrition tables but not for traffic lights.

Keywords: nutrition, public health, SA Harvest, foodeye-tracking, nutrition labelling, global/local information processing, individual differencesmobile computing, cloud computing, nutrition label use, nutrition management, barcode scanning

Procedia PDF Downloads 41
579 Computational, Human, and Material Modalities: An Augmented Reality Workflow for Building form Found Textile Structures

Authors: James Forren

Abstract:

This research paper details a recent demonstrator project in which digital form found textile structures were built by human craftspersons wearing augmented reality (AR) head-worn displays (HWDs). The project utilized a wet-state natural fiber / cementitious matrix composite to generate minimal bending shapes in tension which, when cured and rotated, performed as minimal-bending compression members. The significance of the project is that it synthesizes computational structural simulations with visually guided handcraft production. Computational and physical form-finding methods with textiles are well characterized in the development of architectural form. One difficulty, however, is physically building computer simulations: often requiring complicated digital fabrication workflows. However, AR HWDs have been used to build a complex digital form from bricks, wood, plastic, and steel without digital fabrication devices. These projects utilize, instead, the tacit knowledge motor schema of the human craftsperson. Computational simulations offer unprecedented speed and performance in solving complex structural problems. Human craftspersons possess highly efficient complex spatial reasoning motor schemas. And textiles offer efficient form-generating possibilities for individual structural members and overall structural forms. This project proposes that the synthesis of these three modalities of structural problem-solving – computational, human, and material - may not only develop efficient structural form but offer further creative potentialities when the respective intelligence of each modality is productively leveraged. The project methodology pertains to its three modalities of production: 1) computational, 2) human, and 3) material. A proprietary three-dimensional graphic statics simulator generated a three-legged arch as a wireframe model. This wireframe was discretized into nine modules, three modules per leg. Each module was modeled as a woven matrix of one-inch diameter chords. And each woven matrix was transmitted to a holographic engine running on HWDs. Craftspersons wearing the HWDs then wove wet cementitious chords within a simple falsework frame to match the minimal bending form displayed in front of them. Once the woven components cured, they were demounted from the frame. The components were then assembled into a full structure using the holographically displayed computational model as a guide. The assembled structure was approximately eighteen feet in diameter and ten feet in height and matched the holographic model to under an inch of tolerance. The construction validated the computational simulation of the minimal bending form as it was dimensionally stable for a ten-day period, after which it was disassembled. The demonstrator illustrated the facility with which computationally derived, a structurally stable form could be achieved by the holographically guided, complex three-dimensional motor schema of the human craftsperson. However, the workflow traveled unidirectionally from computer to human to material: failing to fully leverage the intelligence of each modality. Subsequent research – a workshop testing human interaction with a physics engine simulation of string networks; and research on the use of HWDs to capture hand gestures in weaving seeks to develop further interactivity with rope and chord towards a bi-directional workflow within full-scale building environments.

Keywords: augmented reality, cementitious composites, computational form finding, textile structures

Procedia PDF Downloads 175
578 Human Digital Twin for Personal Conversation Automation Using Supervised Machine Learning Approaches

Authors: Aya Salama

Abstract:

Digital Twin is an emerging research topic that attracted researchers in the last decade. It is used in many fields, such as smart manufacturing and smart healthcare because it saves time and money. It is usually related to other technologies such as Data Mining, Artificial Intelligence, and Machine Learning. However, Human digital twin (HDT), in specific, is still a novel idea that still needs to prove its feasibility. HDT expands the idea of Digital Twin to human beings, which are living beings and different from the inanimate physical entities. The goal of this research was to create a Human digital twin that is responsible for real-time human replies automation by simulating human behavior. For this reason, clustering, supervised classification, topic extraction, and sentiment analysis were studied in this paper. The feasibility of the HDT for personal replies generation on social messaging applications was proved in this work. The overall accuracy of the proposed approach in this paper was 63% which is a very promising result that can open the way for researchers to expand the idea of HDT. This was achieved by using Random Forest for clustering the question data base and matching new questions. K-nearest neighbor was also applied for sentiment analysis.

Keywords: human digital twin, sentiment analysis, topic extraction, supervised machine learning, unsupervised machine learning, classification, clustering

Procedia PDF Downloads 87
577 English Grammatical Errors of Arabic Sentence Translations Done by Machine Translations

Authors: Muhammad Fathurridho

Abstract:

Grammar as a rule used by every language to be understood by everyone is always related to syntax and morphology. Arabic grammar is different with another languages’ grammars. It has more rules and difficulties. This paper aims to investigate and describe the English grammatical errors of machine translation systems in translating Arabic sentences, including declarative, exclamation, imperative, and interrogative sentences, specifically in year 2018 which can be supported with artificial intelligence’s role. The Arabic sample sentences which are divided into two; verbal and nominal sentence of several Arabic published texts will be examined as the source language samples. The translated sentences done by several popular online machine translation systems, including Google Translate, Microsoft Bing, Babylon, Facebook, Hellotalk, Worldlingo, Yandex Translate, and Tradukka Translate are the material objects of this research. Descriptive method that will be taken to finish this research will show the grammatical errors of English target language, and classify them. The conclusion of this paper has showed that the grammatical errors of machine translation results are varied and generally classified into morphological, syntactical, and semantic errors in all type of Arabic words (Noun, Verb, and Particle), and it will be one of the evaluations for machine translation’s providers to correct them in order to improve their understandable results.

Keywords: Arabic, Arabic-English translation, machine translation, grammatical errors

Procedia PDF Downloads 155
576 Efficient Residual Road Condition Segmentation Network Based on Reconstructed Images

Authors: Xiang Shijie, Zhou Dong, Tian Dan

Abstract:

This paper focuses on the application of real-time semantic segmentation technology in complex road condition recognition, aiming to address the critical issue of how to improve segmentation accuracy while ensuring real-time performance. Semantic segmentation technology has broad application prospects in fields such as autonomous vehicle navigation and remote sensing image recognition. However, current real-time semantic segmentation networks face significant technical challenges and optimization gaps in balancing speed and accuracy. To tackle this problem, this paper conducts an in-depth study and proposes an innovative Guided Image Reconstruction Module. By resampling high-resolution images into a set of low-resolution images, this module effectively reduces computational complexity, allowing the network to more efficiently extract features within limited resources, thereby improving the performance of real-time segmentation tasks. In addition, a dual-branch network structure is designed in this paper to fully leverage the advantages of different feature layers. A novel Hybrid Attention Mechanism is also introduced, which can dynamically capture multi-scale contextual information and effectively enhance the focus on important features, thus improving the segmentation accuracy of the network in complex road condition. Compared with traditional methods, the proposed model achieves a better balance between accuracy and real-time performance and demonstrates competitive results in road condition segmentation tasks, showcasing its superiority. Experimental results show that this method not only significantly improves segmentation accuracy while maintaining real-time performance, but also remains stable across diverse and complex road conditions, making it highly applicable in practical scenarios. By incorporating the Guided Image Reconstruction Module, dual-branch structure, and Hybrid Attention Mechanism, this paper presents a novel approach to real-time semantic segmentation tasks, which is expected to further advance the development of this field.

Keywords: hybrid attention mechanism, image reconstruction, real-time, road status recognition

Procedia PDF Downloads 24
575 The Impact of Artificial Intelligence on Construction Projects

Authors: Muller Salah Zaky Toudry

Abstract:

The complexity arises in defining the development great due to its notion, based on inherent market situations and their requirements, the diverse stakeholders itself and their desired output. An quantitative survey based totally approach was adopted in this optimistic examine. A questionnaire-primarily based survey was performed for the assessment of production fine belief and expectations within the context of excellent development technique. The survey feedback of experts of the leading creation corporations/companies of Pakistan production industry have been analyzed. The monetary ability, organizational shape, and production revel in of the construction companies shaped basis for their selection. The great belief become located to be venture-scope-orientated and taken into consideration as an extra cost for a production assignment. Any excellent improvement technique changed into expected to maximize the profit for the employer, via enhancing the productiveness in a creation project. The look at is beneficial for the construction specialists to evaluate the prevailing creation great perception and the expectations from implementation of any pleasant improvement approach in production projects.

Keywords: correlation analysis, lean construction tools, lean construction, logistic regression analysis, risk management, safety construction quality, expectation, improvement, perception client loyalty, NPS, pre-construction, schedule reduction

Procedia PDF Downloads 16
574 Data Mining of Students' Performance Using Artificial Neural Network: Turkish Students as a Case Study

Authors: Samuel Nii Tackie, Oyebade K. Oyedotun, Ebenezer O. Olaniyi, Adnan Khashman

Abstract:

Artificial neural networks have been used in different fields of artificial intelligence, and more specifically in machine learning. Although, other machine learning options are feasible in most situations, but the ease with which neural networks lend themselves to different problems which include pattern recognition, image compression, classification, computer vision, regression etc. has earned it a remarkable place in the machine learning field. This research exploits neural networks as a data mining tool in predicting the number of times a student repeats a course, considering some attributes relating to the course itself, the teacher, and the particular student. Neural networks were used in this work to map the relationship between some attributes related to students’ course assessment and the number of times a student will possibly repeat a course before he passes. It is the hope that the possibility to predict students’ performance from such complex relationships can help facilitate the fine-tuning of academic systems and policies implemented in learning environments. To validate the power of neural networks in data mining, Turkish students’ performance database has been used; feedforward and radial basis function networks were trained for this task; and the performances obtained from these networks evaluated in consideration of achieved recognition rates and training time.

Keywords: artificial neural network, data mining, classification, students’ evaluation

Procedia PDF Downloads 613
573 Deep Learning to Improve the 5G NR Uplink Control Channel

Authors: Ahmed Krobba, Meriem Touzene, Mohamed Debeyche

Abstract:

The wireless communications system (5G) will provide more diverse applications and higher quality services for users compared to the long-term evolution 4G (LTE). 5G uses a higher carrier frequency, which suffers from information loss in 5G coverage. Most 5G users often cannot obtain high-quality communications due to transmission channel noise and channel complexity. Physical Uplink Control Channel (PUCCH-NR: Physical Uplink Control Channel New Radio) plays a crucial role in 5G NR telecommunication technology, which is mainly used to transmit link control information uplink (UCI: Uplink Control Information. This study based of evaluating the performance of channel physical uplink control PUCCH-NR under low Signal-to-Noise Ratios with various antenna numbers reception. We propose the artificial intelligence approach based on deep neural networks (Deep Learning) to estimate the PUCCH-NR channel in comparison with this approach with different conventional methods such as least-square (LS) and minimum-mean-square-error (MMSE). To evaluate the channel performance we use the block error rate (BLER) as an evaluation criterion of the communication system. The results show that the deep neural networks method gives best performance compared with MMSE and LS

Keywords: 5G network, uplink (Uplink), PUCCH channel, NR-PUCCH channel, deep learning

Procedia PDF Downloads 83
572 The Evolution of Amazon Alexa: From Voice Assistant to Smart Home Hub

Authors: Abrar Abuzaid, Maha Alaaeddine, Haya Alesayi

Abstract:

This project is centered around understanding the usage and impact of Alexa, Amazon's popular virtual assistant, in everyday life. Alexa, known for its integration into devices like Amazon Echo, offers functionalities such as voice interaction, media control, providing real-time information, and managing smart home devices. Our primary focus is to conduct a straightforward survey aimed at uncovering how people use Alexa in their daily routines. We plan to reach out to a wide range of individuals to get a diverse perspective on how Alexa is being utilized for various tasks, the frequency and context of its use, and the overall user experience. The survey will explore the most common uses of Alexa, its impact on daily life, features that users find most beneficial, and improvements they are looking for. This project is not just about collecting data but also about understanding the real-world applications of a technology like Alexa and how it fits into different lifestyles. By examining the responses, we aim to gain a practical understanding of Alexa's role in homes and possibly in workplaces. This project will provide insights into user satisfaction and areas where Alexa could be enhanced to meet the evolving needs of its users. It’s a step towards connecting technology with everyday life, making it more accessible and user-friendly

Keywords: Amazon Alexa, artificial intelligence, smart speaker, natural language processing

Procedia PDF Downloads 62
571 Decision Making Approach through Generalized Fuzzy Entropy Measure

Authors: H. D. Arora, Anjali Dhiman

Abstract:

Uncertainty is found everywhere and its understanding is central to decision making. Uncertainty emerges as one has less information than the total information required describing a system and its environment. Uncertainty and information are so closely associated that the information provided by an experiment for example, is equal to the amount of uncertainty removed. It may be pertinent to point out that uncertainty manifests itself in several forms and various kinds of uncertainties may arise from random fluctuations, incomplete information, imprecise perception, vagueness etc. For instance, one encounters uncertainty due to vagueness in communication through natural language. Uncertainty in this sense is represented by fuzziness resulting from imprecision of meaning of a concept expressed by linguistic terms. Fuzzy set concept provides an appropriate mathematical framework for dealing with the vagueness. Both information theory, proposed by Shannon (1948) and fuzzy set theory given by Zadeh (1965) plays an important role in human intelligence and various practical problems such as image segmentation, medical diagnosis etc. Numerous approaches and theories dealing with inaccuracy and uncertainty have been proposed by different researcher. In the present communication, we generalize fuzzy entropy proposed by De Luca and Termini (1972) corresponding to Shannon entropy(1948). Further, some of the basic properties of the proposed measure were examined. We also applied the proposed measure to the real life decision making problem.

Keywords: entropy, fuzzy sets, fuzzy entropy, generalized fuzzy entropy, decision making

Procedia PDF Downloads 450
570 Adversarial Attacks and Defenses on Deep Neural Networks

Authors: Jonathan Sohn

Abstract:

Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.

Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning

Procedia PDF Downloads 195
569 Robust Recognition of Locomotion Patterns via Data-Driven Machine Learning in the Cloud Environment

Authors: Shinoy Vengaramkode Bhaskaran, Kaushik Sathupadi, Sandesh Achar

Abstract:

Human locomotion recognition is important in a variety of sectors, such as robotics, security, healthcare, fitness tracking and cloud computing. With the increasing pervasiveness of peripheral devices, particularly Inertial Measurement Units (IMUs) sensors, researchers have attempted to exploit these advancements in order to precisely and efficiently identify and categorize human activities. This research paper introduces a state-of-the-art methodology for the recognition of human locomotion patterns in a cloud environment. The methodology is based on a publicly available benchmark dataset. The investigation implements a denoising and windowing strategy to deal with the unprocessed data. Next, feature extraction is adopted to abstract the main cues from the data. The SelectKBest strategy is used to abstract optimal features from the data. Furthermore, state-of-the-art ML classifiers are used to evaluate the performance of the system, including logistic regression, random forest, gradient boosting and SVM have been investigated to accomplish precise locomotion classification. Finally, a detailed comparative analysis of results is presented to reveal the performance of recognition models.

Keywords: artificial intelligence, cloud computing, IoT, human locomotion, gradient boosting, random forest, neural networks, body-worn sensors

Procedia PDF Downloads 11
568 The Effect of Artificial Intelligence on Human Rights Regulations

Authors: Karam Aziz Hamdy Fahmy

Abstract:

Although human rights protection in the industrial sector has increased, human rights violations continue to occur. Although the government has passed human rights laws, labor laws, and an international treaty ratified by the United States, human rights crimes continue to occur and go undetected. The growing number of textile companies in Bekasi is also leading to an increase in human rights violations as the government has no obligation to protect them. The United States government and business leaders should respect, protect and defend the human rights of workers. The article discusses the human rights violations faced by garment factory workers in the context of the law, as well as ideas for improving the protection of workers' rights. The connection between development and human rights has long been the subject of academic debate. Therefore, to understand the dynamics between these two concepts, a number of principles have been adopted, ranging from the right to development to a human rights-based approach to development. Despite these attempts, the precise connection between development and human rights is not yet fully understood. However, the inherent interdependence between these two concepts and the idea that development efforts must respect human rights guarantees has gained momentum in recent years. It will then be examined whether the right to sustainable development is recognized.

Keywords: sustainable development, human rights, the right to development, the human rights-based approach to development, environmental rights, economic development, social sustainability human rights protection, human rights violations, workers’ rights, justice, security

Procedia PDF Downloads 65
567 Design Intelligence in Garment Design Between Technical Creativity and Artistic Creativity

Authors: Kanwar Varinder Pal Singh

Abstract:

Art is one of the five secondary sciences next to the social sciences. As per the single essential concept in garment design, it is the coexistence and co-creation of two aspects of reality: Ultimate reality and apparent or conventional reality. All phenomena possess two natures: That which is revealed by correct perception and that which is induced by deceptive perception. The object of correct perception is the ultimate reality, the object of deceptive perception is conventional reality. The same phenomenon, therefore, may be perceived according to its ultimate nature or its apparent nature. Ultimate reality is also called ‘emptiness’. Emptiness does not mean that all phenomena are nothing but do not exist in themselves. Although phenomena, the universe, thoughts, beings, time, and so on, seem very real in themselves, ultimately, they are not. Each one of us can perceive the changing and unpredictable nature of existence. This transitory nature of phenomena, impermanence, is the first sign of emptiness. Sometimes, the interdependence of phenomena leads to ultimate reality, which is nothing but emptiness, e.g., a rainbow, which is an effect due to the function of ‘sun rays,’ ‘rain,’ and ‘time.’ In light of the above, to achieve decision-making for the global desirability of garment design, the coexistence of artistic and technical creativity must achieve an object of correct perception, i.e., ultimate reality. This paper mentions the decision-making technique as semiotic engineering, both subjective and objective.

Keywords: global desirability, social desirability, comfort desirability, handle desirability, overall desirability

Procedia PDF Downloads 11
566 The Effect of Artificial Intelligence on Urbanism, Architecture and Environmental Conditions

Authors: Abanoub Rady Shaker Saleb

Abstract:

Nowadays, design and architecture are being affected and underwent change with the rapid advancements in technology, economics, politics, society and culture. Architecture has been transforming with the latest developments after the inclusion of computers into design. Integration of design into the computational environment has revolutionized the architecture and new perspectives in architecture have been gained. The history of architecture shows the various technological developments and changes in which the architecture has transformed with time. Therefore, the analysis of integration between technology and the history of the architectural process makes it possible to build a consensus on the idea of how architecture is to proceed. In this study, each period that occurs with the integration of technology into architecture is addressed within historical process. At the same time, changes in architecture via technology are identified as important milestones and predictions with regards to the future of architecture have been determined. Developments and changes in technology and the use of technology in architecture within years are analyzed in charts and graphs comparatively. The historical process of architecture and its transformation via technology are supported with detailed literature review and they are consolidated with the examination of focal points of 20th-century architecture under the titles; parametric design, genetic architecture, simulation, and biomimicry. It is concluded that with the historical research between past and present; the developments in architecture cannot keep up with the advancements in technology and recent developments in technology overshadow the architecture, even the technology decides the direction of architecture. As a result, a scenario is presented with regards to the reach of technology in the future of architecture and the role of the architect.

Keywords: design and development the information technology architecture, enterprise architecture, enterprise architecture design result, TOGAF architecture development method (ADM)

Procedia PDF Downloads 69
565 Transforming Public Administration in the Digital Era: Challenges and Opportunities

Authors: Catalina Oana Dumitrescu, Andreea L. Drugau-constantin

Abstract:

In the digital age, public administration is facing profound change, fueled by technological advances and the growing demands of citizens for efficient, accessible and transparent services. This paper explores how new digital technologies – including artificial intelligence, blockchain, big data and e-governance solutions – are reshaping the functioning of public administrations globally. In addition to the obvious opportunities to streamline and optimize processes, digital transformation brings with it major challenges, such as cyber security, personal data protection, resistance to change and the need to develop new skills for employees. The paper aims to provide a discussion platform for public administration experts, policy makers and technology innovators to consider how governments can balance the benefits and risks of digital transformation. Topics such as the reconfiguration of administrative processes, the creation of interoperable government systems, the involvement of citizens in public decisions through digital platforms, and solutions for reducing the digital gap between developed and developing regions will be addressed. In conclusion, the digital transformation of public administration is not only an opportunity for modernization, but also a necessity to respond to the new demands and challenges of contemporary society. This paper will provide new insights into the role of technology in improving the quality of governance and public services.

Keywords: public administration, digital ERA, technology, government systems, global

Procedia PDF Downloads 17
564 Photoleap: An AI-Powered Photo Editing App with Advanced Features and User Satisfaction Analysis

Authors: Joud Basyouni, Rama Zagzoog, Mashael Al Faleh, Jana Alireza

Abstract:

AI is changing many fields and speeding up tasks that used to take a long time. It used to take too long to edit photos. However, many AI-powered apps make photo editing, automatic effects, and animations much easier than other manual editing apps with no AI. The mobile app Photoleap edits photos and creates digital art using AI. Editing photos with text prompts is also becoming a standard these days with the help of apps like Photoleap. Now, users can change backgrounds, add animations, turn text into images, and create scenes with AI. This project report discusses the photo editing app's history and popularity. Photoleap resembles Photoshop, Canva, Photos, and Pixlr. The report includes survey questions to assess Photoleap user satisfaction. The report describes Photoleap's features and functions with screenshots. Photoleap uses AI well. Charts and graphs show Photoleap user ratings and comments from the survey. This project found that most Photoleap users liked how well it worked, was made, and was easy to use. People liked changing photos and adding backgrounds. Users can create stunning photo animations. A few users dislike the app's animations, AI art, and photo effects. The project report discusses the app's pros and cons and offers improvements.

Keywords: artificial intelligence, photoleap, images, background, photo editing

Procedia PDF Downloads 61
563 Genetic-Environment Influences on the Cognitive Abilities of 6-to-8 Years Old Twins

Authors: Annu Panghal, Bimla Dhanda

Abstract:

This research paper aims to determine the genetic-environment influences on the cognitive abilities of twins. Using the 100 pairs of twins from two districts, namely: Bhiwani (N = 90) and Hisar (N = 110) of Haryana State, genetic and environmental influences were assessed in twin study design. The cognitive abilities of twins were measured using the Wechsler Intelligence Scale for Children (WISC-R). Home Observation for Measurement of the Environment (HOME) Inventory was taken to examine the home environment of twins. Heritability estimate was used to analyze the genes contributing to shape the cognitive abilities of twins. The heritability estimates for cognitive abilities of 6-7 years old twins in Hisar district were 74% and in Bhiwani District 76%. Further the heritability estimates were 64% in the twins of Hisar district and 60 in Bhiwani district % in the age group of 7-8 years. The remaining variations in the cognitive abilities of twins were due to environmental factors namely: provision for Active Stimulation, paternal involvement, safe physical environment. The findings provide robust evidence that the cognitive abilities were more influenced by genes than the environmental factors and also revealed that the influence of genetic was more in the age group 6-7 years than the age group 7-8 years. The conclusion of the heritability estimates indicates that the genetic influence was more in the age group of 6-7 years than the age group of 7-8 years. As the age increases the genetic influence decreases and environment influence increases. Mother education was strongly associated with the cognitive abilities of twins.

Keywords: genetics, heritability, twins, environment, cognitive abilities

Procedia PDF Downloads 139
562 Modeling the Philippine Stock Exchange Index Closing Value Using Artificial Neural Network

Authors: Frankie Burgos, Emely Munar, Conrado Basa

Abstract:

This paper aimed at developing an artificial neural network (ANN) model specifically for the Philippine Stock Exchange index closing value. The inputs to the ANN are US Dollar and Philippine Peso(USD-PHP) exchange rate, GDP growth of the country, quarterly inflation rate, 10-year bond yield, credit rating of the country, previous open, high, low, close values and volume of trade of the Philippine Stock Exchange Index (PSEi), gold price of the previous day, National Association of Securities Dealers Automated Quotations (NASDAQ), Standard and Poor’s 500 (S & P 500) and the iShares MSCI Philippines ETF (EPHE) previous closing value. The target is composed of the closing value of the PSEi during the 627 trading days from November 3, 2011, to May 30, 2014. MATLAB’s Neural Network toolbox was employed to create, train and simulate the network using multi-layer feed forward neural network with back-propagation algorithm. The results satisfactorily show that the neural network developed has the ability to model the PSEi, which is affected by both internal and external economic factors. It was found out that the inputs used are the main factors that influence the movement of the PSEi closing value.

Keywords: artificial neural networks, artificial intelligence, philippine stocks exchange index, stocks trading

Procedia PDF Downloads 297
561 Optimum Method to Reduce the Natural Frequency for Steel Cantilever Beam

Authors: Eqqab Maree, Habil Jurgen Bast, Zana K. Shakir

Abstract:

Passive damping, once properly characterized and incorporated into the structure design is an autonomous mechanism. Passive damping can be achieved by applying layers of a polymeric material, called viscoelastic layers (VEM), to the base structure. This type of configuration is known as free or unconstrained layer damping treatment. A shear or constrained damping treatment uses the idea of adding a constraining layer, typically a metal, on top of the polymeric layer. Constrained treatment is a more efficient form of damping than the unconstrained damping treatment. In constrained damping treatment a sandwich is formed with the viscoelastic layer as the core. When the two outer layers experience bending, as they would if the structure was oscillating, they shear the viscoelastic layer and energy is dissipated in the form of heat. This form of energy dissipation allows the structural oscillations to attenuate much faster. The purpose behind this study is to predict damping effects by using two methods of passive viscoelastic constrained layer damping. First method is Euler-Bernoulli beam theory; it is commonly used for predicting the vibratory response of beams. Second method is Finite Element software packages provided in this research were obtained by using two-dimensional solid structural elements in ANSYS14 specifically eight nodded (SOLID183) and the output results from ANSYS 14 (SOLID183) its damped natural frequency values and mode shape for first five modes. This method of passive damping treatment is widely used for structural application in many industries like aerospace, automobile, etc. In this paper, take a steel cantilever sandwich beam with viscoelastic core type 3M-468 by using methods of passive viscoelastic constrained layer damping. Also can proved that, the percentage reduction of modal frequency between undamped and damped steel sandwich cantilever beam 8mm thickness for each mode is very high, this is due to the effect of viscoelastic layer on damped beams. Finally this types of damped sandwich steel cantilever beam with viscoelastic materials core type (3M468) is very appropriate to use in automotive industry and in many mechanical application, because has very high capability to reduce the modal vibration of structures.

Keywords: steel cantilever, sandwich beam, viscoelastic materials core type (3M468), ANSYS14, Euler-Bernoulli beam theory

Procedia PDF Downloads 318
560 Physics of Decision for Polling Place Management: A Case Study from the 2020 USA Presidential Election

Authors: Nafe Moradkhani, Frederick Benaben, Benoit Montreuil, Ali Vatankhah Barenji, Dima Nazzal

Abstract:

In the context of the global pandemic, the practical management of the 2020 presidential election in the USA was a strong concern. To anticipate and prepare for this election accurately, one of the main challenges was to confront (i) forecasts of voter turnout, (ii) capacities of the facilities and, (iii) potential configuration options of resources. The approach chosen to conduct this anticipative study consists of collecting data about forecasts and using simulation models to work simultaneously on resource allocation and facility configuration of polling places in Fulton County, Georgia’s largest county. A polling place is a dedicated facility where voters cast their ballots in elections using different devices. This article presents the results of the simulations of such places facing pre-identified potential risks. These results are oriented towards the efficiency of these places according to different criteria (health, trust, comfort). Then a dynamic framework is introduced to describe risks as physical forces perturbing the efficiency of the observed system. Finally, the main benefits and contributions resulting from this simulation campaign are presented.

Keywords: performance, decision support, simulation, artificial intelligence, risk management, election, pandemics, information system

Procedia PDF Downloads 151
559 The Production, Negotiation and Resistance of Short Video Producers

Authors: Cui Li, Xu Yuping

Abstract:

Based on the question of, "Are short video creators who are digital workers controlled by platform rules?" this study discusses the specific ways of platform rules control and the impact on short video creators. Based on the theory of digital labor, this paper adopts the method of in-depth interview and participant observation and chooses 24 producers of short video content of Tiktok to conduct in-depth interview. At the same time, through entering the short video creation field, the author carries on the four-month field investigation, obtains the creation process related data, and analyzes how the short video creator, as the digital labor, is controlled by the platform rule, as well as the creator in this process of compromise and resistance, a more comprehensive presentation of the short video creators of the labor process. It is found that the short video creators are controlled by the platform rules, mainly in the control of traffic rules, and the creators create content, compromise and resist under the guidance of traffic. First, while the platform seems to offer a flexible and autonomous way for creators to monetize, the threshold for participating in the event is actually very high for creators, and the rules for monetizing the event are vague. Under the influence of the flow rule, the creator is faced unstable incomes and high costs. Therefore, creators have to follow the rules of traffic to guide their own creation, began to flow-oriented content production, mainly reflected in the need to keep up-to-date, the pursuit of traffic to ride on the hot spots, in order to flow regardless, set up people "Born for the show", by the label solidified content creation. Secondly, the irregular working hours lead to the extension and overwork of the working hours, which leads to the internal friction of the short video creators at the spiritual level, and finally leads to the Rat Race of video creation. Thirdly, the video creator has completed the internalization and compromise of the platform rules in practice, which promotes the creator to continue to create independently, and forms the intrinsic motive force of the creator. Finally, the rule-controlled short video creators resist and fight in flexible ways, make use of the mechanism and rules of the platform to carry on the second creation, carry on the routine production, purchase the false flow, transfer the creation position to maintain own creation autonomy.

Keywords: short videos, tiktok, production, digital labors

Procedia PDF Downloads 60
558 Using a Mobile App to Foster Children Active Travel to School in Spain

Authors: P. Pérez-Martín, G. Pedrós, P. Martínez-Jiménez, M. Varo-Martínez

Abstract:

In recent decades, family habits related to children’s displacements to school have changed, increasing motorized travels against active modes. This entails a major negative impact on the urban environment, road safety in cities and the physical and psychological development of children. One of the more common actions used to reverse this trend is Walking School Bus (WSB), which consists of a predefined adult-scorted pedestrian route to school with several stops along the path where schoolchildren are collected. At Tirso de Molina School in Cordoba (Spain), a new ICT-based methodology to deploy WSB has been tested. A mobile app that allows the geoposition of the group, the notification of the arrival and real-time communication between the WSB participants have been presented to the families in order to organize and register the daily participation. After an initial survey to know the travel mode and the spatial distribution of the interested families, three WSB routes have been established and the families have been trained in the app usage. During nine weeks, 33 children have joined the WSB and their parents have accompanied the groups in turns. A high recurrence in the attendance has been registered. Through a final survey, participants have valued highly the tool and the methodology designed, emphasizing as most useful features of the mobile app: notifications system, chat and real-time monitoring. It has also been found that the tool has had a major impact on the degree of confidence of parents regarding the autonomous on foot displacement of their children to school. Moreover, 37,9% of the participant families have reported a total or partial modal shift from car to walking, and the benefits more reported are an increment of the parents available time and less problems in the travel to school daily organization. As a consequence, It has been proved the effectiveness of this user-centric innovative ICT-based methodology to reduce the levels of private car drop offs, minimize barriers of time constraints, volunteer recruitment, and parents’ safety concerns, while, at the same time, increase convenience and time savings for families. This pilot study can offer guidance for community coordinated actions and local authority interventions to support sustainable school travel outcomes.

Keywords: active travel, mobile app, sustainable mobility, urban transportation planning, walking school bus

Procedia PDF Downloads 336