Search results for: RLS identification algorithm
4829 An Approach to Noise Variance Estimation in Very Low Signal-to-Noise Ratio Stochastic Signals
Authors: Miljan B. Petrović, Dušan B. Petrović, Goran S. Nikolić
Abstract:
This paper describes a method for AWGN (Additive White Gaussian Noise) variance estimation in noisy stochastic signals, referred to as Multiplicative-Noising Variance Estimation (MNVE). The aim was to develop an estimation algorithm with minimal number of assumptions on the original signal structure. The provided MATLAB simulation and results analysis of the method applied on speech signals showed more accuracy than standardized AR (autoregressive) modeling noise estimation technique. In addition, great performance was observed on very low signal-to-noise ratios, which in general represents the worst case scenario for signal denoising methods. High execution time appears to be the only disadvantage of MNVE. After close examination of all the observed features of the proposed algorithm, it was concluded it is worth of exploring and that with some further adjustments and improvements can be enviably powerful.Keywords: noise, signal-to-noise ratio, stochastic signals, variance estimation
Procedia PDF Downloads 3864828 Heuristic Algorithms for Time Based Weapon-Target Assignment Problem
Authors: Hyun Seop Uhm, Yong Ho Choi, Ji Eun Kim, Young Hoon Lee
Abstract:
Weapon-target assignment (WTA) is a problem that assigns available launchers to appropriate targets in order to defend assets. Various algorithms for WTA have been developed over past years for both in the static and dynamic environment (denoted by SWTA and DWTA respectively). Due to the problem requirement to be solved in a relevant computational time, WTA has suffered from the solution efficiency. As a result, SWTA and DWTA problems have been solved in the limited situation of the battlefield. In this paper, the general situation under continuous time is considered by Time based Weapon Target Assignment (TWTA) problem. TWTA are studied using the mixed integer programming model, and three heuristic algorithms; decomposed opt-opt, decomposed opt-greedy, and greedy algorithms are suggested. Although the TWTA optimization model works inefficiently when it is characterized by a large size, the decomposed opt-opt algorithm based on the linearization and decomposition method extracted efficient solutions in a reasonable computation time. Because the computation time of the scheduling part is too long to solve by the optimization model, several algorithms based on greedy is proposed. The models show lower performance value than that of the decomposed opt-opt algorithm, but very short time is needed to compute. Hence, this paper proposes an improved method by applying decomposition to TWTA, and more practical and effectual methods can be developed for using TWTA on the battlefield.Keywords: air and missile defense, weapon target assignment, mixed integer programming, piecewise linearization, decomposition algorithm, military operations research
Procedia PDF Downloads 3364827 Forensic Study on Personal Identification of Pakistani Population by Individualizing Characteristics of Footprints
Authors: Muneeba Butt
Abstract:
One of the most important physical evidence which leaves suspects at the crime scene is footprints. Analysis of footprints, which can provide useful information for personal identification, is helpful in crime scene investigation. For the current study, 200 samples collected (144 male and 56 female) from Pakistani population with a consent form. The footprints were collected by using black ink with an ink pad. The entire samples were photographed, and then the magnifying glass was used for visualization of individual characteristics including detail of toes, humps, phalange mark, and flat foot cracks in footprint patterns. The descriptive results of individualizing characteristics features were presented in tabular form with respective frequency and percentage. In the result in the male population, the prevalence of tibialis type (T-type) is highest. In the female population, the prevalence of midularis type (M-type) is highest. Humps on the first toe are more found in the male population rather than other humps. In the female population, humps on the third toe are more found rather than other humps. In the male population, the prevalence of phalange mark by toe 1 is highest followed by toe 3, toe 5, toe 2, toe 4 and in female population the prevalence of phalange mark by toe 1 is highest followed by toe 5, 4, 3 and 2. Creases marks are found highest in male population as compared to the female population.Keywords: foot prints, toes, humps, cracks
Procedia PDF Downloads 1644826 Analysis of CO₂ Two-Phase Ejector with Taguchi and ANOVA Optimization and Refrigerant Selection with Enviro Economic Concerns by TOPSIS Analysis
Authors: Karima Megdouli, Bourhan tachtouch
Abstract:
Ejector refrigeration cycles offer an alternative to conventional systems for producing cold from low-temperature heat. In this article, a thermodynamic model is presented. This model has the advantage of simplifying the calculation algorithm and describes the complex double-throttling mechanism that occurs in the ejector. The model assumption and calculation algorithm are presented first. The impact of each efficiency is evaluated. Validation is performed on several data sets. The ejector model is then used to simulate a RES (refrigeration ejector system), to validate its robustness and suitability for use in predicting thermodynamic cycle performance. A Taguchi and ANOVA optimization is carried out on a RES. TOPSIS analysis was applied to decide the optimum refrigerants with cost, safety, environmental and enviro economic concerns along with thermophysical properties.Keywords: ejector, velocity distribution, shock circle, Taguchi and ANOVA optimization, TOPSIS analysis
Procedia PDF Downloads 894825 Synthetic Cannabinoids: Extraction, Identification and Purification
Authors: Niki K. Burns, James R. Pearson, Paul G. Stevenson, Xavier A. Conlan
Abstract:
In Australian state Victoria, synthetic cannabinoids have recently been made illegal under an amendment to the drugs, poisons and controlled substances act 1981. Identification of synthetic cannabinoids in popular brands of ‘incense’ and ‘potpourri’ has been a difficult and challenging task due to the sample complexity and changes observed in the chemical composition of the cannabinoids of interest. This study has developed analytical methodology for the targeted extraction and determination of synthetic cannabinoids available pre-ban. A simple solvent extraction and solid phase extraction methodology was developed that selectively extracted the cannabinoid of interest. High performance liquid chromatography coupled with UV‐visible and chemiluminescence detection (acidic potassium permanganate and tris (2,2‐bipyridine) ruthenium(III)) were used to interrogate the synthetic cannabinoid products. Mass spectrometry and nuclear magnetic resonance spectroscopy were used for structural elucidation of the synthetic cannabinoids. The tris(2,2‐bipyridine)ruthenium(III) detection was found to offer better sensitivity than the permanganate based reagents. In twelve different brands of herbal incense, cannabinoids were extracted and identified including UR‐144, XLR 11, AM2201, 5‐F‐AKB48 and A796‐260.Keywords: electrospray mass spectrometry, high performance liquid chromatography, solid phase extraction, synthetic cannabinoids
Procedia PDF Downloads 4674824 Research on Transmission Parameters Determination Method Based on Dynamic Characteristic Analysis
Authors: Baoshan Huang, Fanbiao Bao, Bing Li, Lianghua Zeng, Yi Zheng
Abstract:
Parameter control strategy based on statistical characteristics can analyze the choice of the transmission ratio of an automobile transmission. According to the difference of the transmission gear, the number and spacing of the gear can be determined. Transmission ratio distribution of transmission needs to satisfy certain distribution law. According to the statistic characteristics of driving parameters, the shift control strategy of the vehicle is analyzed. CVT shift schedule adjustment algorithm based on statistical characteristic parameters can be seen from the above analysis, if according to the certain algorithm to adjust the size of, can adjust the target point are in the best efficiency curve and dynamic curve between the location, to alter the vehicle characteristics. Based on the dynamic characteristics and the practical application of the vehicle, this paper presents the setting scheme of the transmission ratio.Keywords: vehicle dynamics, transmission ratio, transmission parameters, statistical characteristics
Procedia PDF Downloads 4044823 Approximation of Geodesics on Meshes with Implementation in Rhinoceros Software
Authors: Marian Sagat, Mariana Remesikova
Abstract:
In civil engineering, there is a problem how to industrially produce tensile membrane structures that are non-developable surfaces. Nondevelopable surfaces can only be developed with a certain error and we want to minimize this error. To that goal, the non-developable surfaces are cut into plates along to the geodesic curves. We propose a numerical algorithm for finding approximations of open geodesics on meshes and surfaces based on geodesic curvature flow. For practical reasons, it is important to automatize the choice of the time step. We propose a method for automatic setting of the time step based on the diagonal dominance criterion for the matrix of the linear system obtained by discretization of our partial differential equation model. Practical experiments show reliability of this method. Because approximation of the model is made by numerical method based on classic derivatives, it is necessary to solve obstacles which occur for meshes with sharp corners. We solve this problem for big family of meshes with sharp corners via special rotations which can be seen as partial unfolding of the mesh. In practical applications, it is required that the approximation of geodesic has its vertices only on the edges of the mesh. This problem is solved by a specially designed pointing tracking algorithm. We also partially solve the problem of finding geodesics on meshes with holes. We implemented the whole algorithm in Rhinoceros (commercial 3D computer graphics and computer-aided design software ). It is done by using C# language as C# assembly library for Grasshopper, which is plugin in Rhinoceros.Keywords: geodesic, geodesic curvature flow, mesh, Rhinoceros software
Procedia PDF Downloads 1514822 An Alternative Approach for Assessing the Impact of Cutting Conditions on Surface Roughness Using Single Decision Tree
Authors: S. Ghorbani, N. I. Polushin
Abstract:
In this study, an approach to identify factors affecting on surface roughness in a machining process is presented. This study is based on 81 data about surface roughness over a wide range of cutting tools (conventional, cutting tool with holes, cutting tool with composite material), workpiece materials (AISI 1045 Steel, AA2024 aluminum alloy, A48-class30 gray cast iron), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev), depth of cut (0.05-0.15 mm) and tool overhang (41-65 mm). A single decision tree (SDT) analysis was done to identify factors for predicting a model of surface roughness, and the CART algorithm was employed for building and evaluating regression tree. Results show that a single decision tree is better than traditional regression models with higher rate and forecast accuracy and strong value.Keywords: cutting condition, surface roughness, decision tree, CART algorithm
Procedia PDF Downloads 3754821 Review Paper on an Algorithm Enhancing Privacy and Security in Online Meeting Platforms Using a Secured Encryption
Authors: Tonderai Muchenje, Mkhatshwa Phethile
Abstract:
Humans living in this current situation know that communication with one another is necessary for themselves. There are many ways to communicate with each other; during unexpected natural disasters and outbreak of epidemics and pandemics, the need for online meeting platforms are considered most important. Apparently, the development in the telecommunication sector also played an important role. Therefore, the epidemic of the Covid-19 Pandemic and the new normal situation resulted in the overwhelming production of online meeting platforms to prevent the situation. This software is commonly used in business communications in the beginning. Rapidly the COVID-19 pandemic changed the situation. At present-day, these virtual meeting applications are not only used to have informal meetings with friends and relatives but also to be used to have formal meetings in the business and education (universities) sector. In this article, an attempt has been made to list out the useful secured ways for using online meeting platforms.Keywords: virtual background, zoom, secure online algorithm, RingCentral, Pexip Pexip, TeamViewer, microsoft teams
Procedia PDF Downloads 1164820 A New Method of Extracting Polyphenols from Honey Using a Biosorbent Compared to the Commercial Resin Amberlite XAD2
Authors: Farid Benkaci-Alia, Abdelhamid Neggada, Sophie Laurentb
Abstract:
A new extraction method of polyphenols from honey using a biodegradable resin was developed and compared with the common commercial resin amberlite XAD2. For this purpose, three honey samples of Algerian origin were selected for the different physico-chemical and biochemical parameters study. After extraction of the target compounds by both resins, the polyphenol content was determined, the antioxidant activity was tested, and LC-MS analyses were performed for identification and quantification. The results showed that physico-chemical and biochemical parameters meet the norms of the International Honey commission, and the H1 sample seemed to be of high quality. The optimal conditions of extraction by biodegradable resin were a pH of 3, an adsorption dose of 40 g/L, a contact time of 50 min, an extraction temperature of 60°C and no stirring. The regeneration and reuse number of both resins was three cycles. The polyphenol contents demonstrated a higher extraction efficiency of biosorbent than of XAD2, especially in H1. LC-MS analyses allowed for the identification and quantification of fifteen compounds in the different honey samples extracted using both resins and the most abundant compound was 3,4,5-trimethoxybenzoic acid. In addition, the biosorbent extracts showed stronger antioxidant activities than the XAD2 extracts.Keywords: extraction, polyphénols, biosorbent, resin amberlite, HPLC-MS
Procedia PDF Downloads 1054819 Forecasting Direct Normal Irradiation at Djibouti Using Artificial Neural Network
Authors: Ahmed Kayad Abdourazak, Abderafi Souad, Zejli Driss, Idriss Abdoulkader Ibrahim
Abstract:
In this paper Artificial Neural Network (ANN) is used to predict the solar irradiation in Djibouti for the first Time that is useful to the integration of Concentrating Solar Power (CSP) and sites selections for new or future solar plants as part of solar energy development. An ANN algorithm was developed to establish a forward/reverse correspondence between the latitude, longitude, altitude and monthly solar irradiation. For this purpose the German Aerospace Centre (DLR) data of eight Djibouti sites were used as training and testing in a standard three layers network with the back propagation algorithm of Lavenber-Marquardt. Results have shown a very good agreement for the solar irradiation prediction in Djibouti and proves that the proposed approach can be well used as an efficient tool for prediction of solar irradiation by providing so helpful information concerning sites selection, design and planning of solar plants.Keywords: artificial neural network, solar irradiation, concentrated solar power, Lavenberg-Marquardt
Procedia PDF Downloads 3544818 Flood Predicting in Karkheh River Basin Using Stochastic ARIMA Model
Authors: Karim Hamidi Machekposhti, Hossein Sedghi, Abdolrasoul Telvari, Hossein Babazadeh
Abstract:
Floods have huge environmental and economic impact. Therefore, flood prediction is given a lot of attention due to its importance. This study analysed the annual maximum streamflow (discharge) (AMS or AMD) of Karkheh River in Karkheh River Basin for flood predicting using ARIMA model. For this purpose, we use the Box-Jenkins approach, which contains four-stage method model identification, parameter estimation, diagnostic checking and forecasting (predicting). The main tool used in ARIMA modelling was the SAS and SPSS software. Model identification was done by visual inspection on the ACF and PACF. SAS software computed the model parameters using the ML, CLS and ULS methods. The diagnostic checking tests, AIC criterion, RACF graph and RPACF graphs, were used for selected model verification. In this study, the best ARIMA models for Annual Maximum Discharge (AMD) time series was (4,1,1) with their AIC value of 88.87. The RACF and RPACF showed residuals’ independence. To forecast AMD for 10 future years, this model showed the ability of the model to predict floods of the river under study in the Karkheh River Basin. Model accuracy was checked by comparing the predicted and observation series by using coefficient of determination (R2).Keywords: time series modelling, stochastic processes, ARIMA model, Karkheh river
Procedia PDF Downloads 2874817 Cryptographic Resource Allocation Algorithm Based on Deep Reinforcement Learning
Authors: Xu Jie
Abstract:
As a key network security method, cryptographic services must fully cope with problems such as the wide variety of cryptographic algorithms, high concurrency requirements, random job crossovers, and instantaneous surges in workloads. Its complexity and dynamics also make it difficult for traditional static security policies to cope with the ever-changing situation. Cyber Threats and Environment. Traditional resource scheduling algorithms are inadequate when facing complex decision-making problems in dynamic environments. A network cryptographic resource allocation algorithm based on reinforcement learning is proposed, aiming to optimize task energy consumption, migration cost, and fitness of differentiated services (including user, data, and task security) by modeling the multi-job collaborative cryptographic service scheduling problem as a multi-objective optimized job flow scheduling problem and using a multi-agent reinforcement learning method, efficient scheduling and optimal configuration of cryptographic service resources are achieved. By introducing reinforcement learning, resource allocation strategies can be adjusted in real-time in a dynamic environment, improving resource utilization and achieving load balancing. Experimental results show that this algorithm has significant advantages in path planning length, system delay and network load balancing and effectively solves the problem of complex resource scheduling in cryptographic services.Keywords: cloud computing, cryptography on-demand service, reinforcement learning, workflow scheduling
Procedia PDF Downloads 154816 Real-Time Image Encryption Using a 3D Discrete Dual Chaotic Cipher
Authors: M. F. Haroun, T. A. Gulliver
Abstract:
In this paper, an encryption algorithm is proposed for real-time image encryption. The scheme employs a dual chaotic generator based on a three dimensional (3D) discrete Lorenz attractor. Encryption is achieved using non-autonomous modulation where the data is injected into the dynamics of the master chaotic generator. The second generator is used to permute the dynamics of the master generator using the same approach. Since the data stream can be regarded as a random source, the resulting permutations of the generator dynamics greatly increase the security of the transmitted signal. In addition, a technique is proposed to mitigate the error propagation due to the finite precision arithmetic of digital hardware. In particular, truncation and rounding errors are eliminated by employing an integer representation of the data which can easily be implemented. The simple hardware architecture of the algorithm makes it suitable for secure real-time applications.Keywords: chaotic systems, image encryption, non-autonomous modulation, FPGA
Procedia PDF Downloads 5064815 FPGA Based IIR Filter Design Using MAC Algorithm
Authors: Rajesh Mehra, Bharti Thakur
Abstract:
In this paper, an IIR filter has been designed and simulated on an FPGA. The implementation is based on MAC algorithm which uses multiply-and-accumulate operations IIR filter design implementation. Parallel Pipelined structure is used to implement the proposed IIR Filter taking optimal advantage of the look up table of the FPGA device. The designed filter has been synthesized on DSP slice based FPGA to perform multiplier function of MAC unit. The DSP slices are useful to enhance the speed performance. The developed IIR filter is designed and simulated with Matlab and synthesized with Xilinx Synthesis Tool (XST), and implemented on Virtex 5 and Spartan 3 ADSP FPGA devices. The IIR filter implemented on Virtex 5 FPGA can operate at an estimated frequency of 81.5 MHz as compared to 40.5 MHz in case of Spartan 3 ADSP FPGA. The Virtex 5 based implementation also consumes less slices and slice flip flops of target FPGA in comparison to Spartan 3 ADSP based implementation to provide cost effective solution for signal processing applications.Keywords: Butterworth filter, DSP, IIR, MAC, FPGA
Procedia PDF Downloads 3884814 Genotypic Identification of Oral Bacteria Using 16S rRNA in Children with and without Early Childhood Caries in Kelantan, Malaysia
Authors: Zuliani Mahmood, Thirumulu Ponnuraj Kannan, Yean Yean Chan, Salahddin A. Al-Hudhairy
Abstract:
Caries is the most common childhood disease which develops due to disturbances in the physiological equilibrium in the dental plaque resulting in demineralization of tooth structures. Plaque and dentine samples were collected from three different tooth surfaces representing caries progression (intact, over carious lesion and dentine) in children with early childhood caries (ECC, n=36). In caries free (CF) children, plaque samples were collected from sound tooth surfaces at baseline and after one year (n=12). The genomic DNA was extracted from all samples and subjected to 16S rRNA PCR amplification. The end products were cloned into pCR®2.1-TOPO® Vector. Five randomly selected positive clones collected from each surface were sent for sequencing. Identification of the bacterial clones was performed using BLAST against GenBank database. In the ECC group, the frequency of Lactobacillus sp. detected was significantly higher in the dentine surface (p = 0.031) than over the cavitated lesion. The highest frequency of bacteria detected in the intact surfaces was Fusobacterium nucleatum subsp. polymorphum (33.3%) while Streptococcus mutans was detected over the carious lesions and dentine surfaces at a frequency of 33.3% and 52.7% respectively. Fusobacterium nucleatum subsp. polymorphum was also found to be highest in the CF group (41.6%). Follow up at the end of one year showed that the frequency of Corynebacterium matruchotii detected was highest in those who remained caries free (16.6%), while Porphyromonas catoniae was highest in those who developed caries (25%). In conclusion, Streptococcus mutans and Porphyromonas catoniae are strongly associated with caries progression, while Lactobacillus sp. is restricted to deep carious lesions. Fusobacterium nucleatum subsp. polymorphum and Corynebacterium matruchotii may play a role in sustaining the healthy equilibrium in the dental plaque. These identified bacteria show promise as potential biomarkers in diagnosis which could help in the management of dental caries in children.Keywords: early childhood caries, genotypic identification, oral bacteria, 16S rRNA
Procedia PDF Downloads 2754813 Multiphase Flow Regime Detection Algorithm for Gas-Liquid Interface Using Ultrasonic Pulse-Echo Technique
Authors: Serkan Solmaz, Jean-Baptiste Gouriet, Nicolas Van de Wyer, Christophe Schram
Abstract:
Efficiency of the cooling process for cryogenic propellant boiling in engine cooling channels on space applications is relentlessly affected by the phase change occurs during the boiling. The effectiveness of the cooling process strongly pertains to the type of the boiling regime such as nucleate and film. Geometric constraints like a non-transparent cooling channel unable to use any of visualization methods. The ultrasonic (US) technique as a non-destructive method (NDT) has therefore been applied almost in every engineering field for different purposes. Basically, the discontinuities emerge between mediums like boundaries among different phases. The sound wave emitted by the US transducer is both transmitted and reflected through a gas-liquid interface which makes able to detect different phases. Due to the thermal and structural concerns, it is impractical to sustain a direct contact between the US transducer and working fluid. Hence the transducer should be located outside of the cooling channel which results in additional interfaces and creates ambiguities on the applicability of the present method. In this work, an exploratory research is prompted so as to determine detection ability and applicability of the US technique on the cryogenic boiling process for a cooling cycle where the US transducer is taken place outside of the channel. Boiling of the cryogenics is a complex phenomenon which mainly brings several hindrances for experimental protocol because of thermal properties. Thus substitute materials are purposefully selected based on such parameters to simplify experiments. Aside from that, nucleate and film boiling regimes emerging during the boiling process are simply simulated using non-deformable stainless steel balls, air-bubble injection apparatuses and air clearances instead of conducting a real-time boiling process. A versatile detection algorithm is perennially developed concerning exploratory studies afterward. According to the algorithm developed, the phases can be distinguished 99% as no-phase, air-bubble, and air-film presences. The results show the detection ability and applicability of the US technique for an exploratory purpose.Keywords: Ultrasound, ultrasonic, multiphase flow, boiling, cryogenics, detection algorithm
Procedia PDF Downloads 1704812 Suppression Subtractive Hybridization Technique for Identification of the Differentially Expressed Genes
Authors: Tuhina-khatun, Mohamed Hanafi Musa, Mohd Rafii Yosup, Wong Mui Yun, Aktar-uz-Zaman, Mahbod Sahebi
Abstract:
Suppression subtractive hybridization (SSH) method is valuable tool for identifying differentially regulated genes in disease specific or tissue specific genes important for cellular growth and differentiation. It is a widely used method for separating DNA molecules that distinguish two closely related DNA samples. SSH is one of the most powerful and popular methods for generating subtracted cDNA or genomic DNA libraries. It is based primarily on a suppression polymerase chain reaction (PCR) technique and combines normalization and subtraction in a solitary procedure. The normalization step equalizes the abundance of DNA fragments within the target population, and the subtraction step excludes sequences that are common to the populations being compared. This dramatically increases the probability of obtaining low-abundance differentially expressed cDNAs or genomic DNA fragments and simplifies analysis of the subtracted library. SSH technique is applicable to many comparative and functional genetic studies for the identification of disease, developmental, tissue specific, or other differentially expressed genes, as well as for the recovery of genomic DNA fragments distinguishing the samples under comparison.Keywords: suppression subtractive hybridization, differentially expressed genes, disease specific genes, tissue specific genes
Procedia PDF Downloads 4334811 Multi-Stage Classification for Lung Lesion Detection on CT Scan Images Applying Medical Image Processing Technique
Authors: Behnaz Sohani, Sahand Shahalinezhad, Amir Rahmani, Aliyu Aliyu
Abstract:
Recently, medical imaging and specifically medical image processing is becoming one of the most dynamically developing areas of medical science. It has led to the emergence of new approaches in terms of the prevention, diagnosis, and treatment of various diseases. In the process of diagnosis of lung cancer, medical professionals rely on computed tomography (CT) scans, in which failure to correctly identify masses can lead to incorrect diagnosis or sampling of lung tissue. Identification and demarcation of masses in terms of detecting cancer within lung tissue are critical challenges in diagnosis. In this work, a segmentation system in image processing techniques has been applied for detection purposes. Particularly, the use and validation of a novel lung cancer detection algorithm have been presented through simulation. This has been performed employing CT images based on multilevel thresholding. The proposed technique consists of segmentation, feature extraction, and feature selection and classification. More in detail, the features with useful information are selected after featuring extraction. Eventually, the output image of lung cancer is obtained with 96.3% accuracy and 87.25%. The purpose of feature extraction applying the proposed approach is to transform the raw data into a more usable form for subsequent statistical processing. Future steps will involve employing the current feature extraction method to achieve more accurate resulting images, including further details available to machine vision systems to recognise objects in lung CT scan images.Keywords: lung cancer detection, image segmentation, lung computed tomography (CT) images, medical image processing
Procedia PDF Downloads 1014810 A Novel Search Pattern for Motion Estimation in High Efficiency Video Coding
Authors: Phong Nguyen, Phap Nguyen, Thang Nguyen
Abstract:
High Efficiency Video Coding (HEVC) or H.265 Standard fulfills the demand of high resolution video storage and transmission since it achieves high compression ratio. However, it requires a huge amount of calculation. Since Motion Estimation (ME) block composes about 80 % of calculation load of HEVC, there are a lot of researches to reduce the computation cost. In this paper, we propose a new algorithm to lower the number of Motion Estimation’s searching points. The number of computing points in search pattern is down from 77 for Diamond Pattern and 81 for Square Pattern to only 31. Meanwhile, the Peak Signal to Noise Ratio (PSNR) and bit rate are almost equal to those of conventional patterns. The motion estimation time of new algorithm reduces by at 68.23%, 65.83%compared to the recommended search pattern of diamond pattern, square pattern, respectively.Keywords: motion estimation, wide diamond, search pattern, H.265, test zone search, HM software
Procedia PDF Downloads 6114809 Geographic Information System-Based Identification of Road Traffic Crash Hotspots on Rural Roads in Oman
Authors: Mohammed Bakhit Kashoob, Mohammed Salim Al-Maashani, Ahmed Abdullah Al-Marhoon
Abstract:
The use of Geographic Information System (GIS) tools in the analysis of traffic crash data can help to identify locations or hotspots with high instances or risk of traffic crashes. The identification of traffic crash hotspots can effectively improve road safety measures. Mapping of road traffic crash hotspots can help the concerned authorities to give priority and take targeted measures and improvements to the road structure at these locations to reduce traffic crashes and fatalities. In Oman, there are countless rural roads that have more risks for traveling vehicles compared to urban roads. The likelihood of traffic crashes as well as fatality rate may increase with the presence of risks that are associated with the rural type of community. In this paper, the traffic crash hotspots on rural roads in Oman are specified using spatial analysis methods in GIS and traffic crash data. These hotspots are ranked based on the frequency of traffic crash occurrence (i.e., number of traffic crashes) and the rate of fatalities. The result of this study presents a map visualization of locations on rural roads with high traffic crashes and high fatalities rates.Keywords: road safety, rural roads, traffic crash, GIS tools
Procedia PDF Downloads 1494808 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation
Procedia PDF Downloads 1994807 [Keynote Talk]: Green Supply Chain Management Concepts Applied on Brazilian Animal Nutrition Industries
Authors: Laura G. Caixeta, Maico R. Severino
Abstract:
One of the biggest challenges that the industries find nowadays is to incorporate sustainability practices into its operations. The Green Supply Chain Management (GSCM) concept assists industries in such incorporation. For the full application of this concept is important that enterprises of a same supply chain have the GSCM practices coordinated among themselves. Note that this type of analyses occurs on the context of developed countries and sectors considered big impactors (as automotive, mineral, among others). The propose of this paper is to analyze as the GSCM concepts are applied on the Brazilian animal nutrition industries. The method used was the Case Study. For this, it was selected a supply chain relationship composed by animal nutrition products manufacturer (Enterprise A) and its supplier of animal waste, such as blood, viscera, among others (Enterprise B). First, a literature review was carried out to identify the main GSCM practices. Second, it was done an individual analysis of each one selected enterprise of the application of GSCM concept. For the observed practices, the coordination of each practice in this supply chain was studied. And, it was developed propose of GSCM applications for the practices no observed. The findings of this research were: a) the systematization of main GSCM practices, as: Internal Environment Management, Green Consumption, Green Design, Green Manufacturing, Green Marketing, Green Packaging, Green Procurement, Green Recycling, Life Cycle Analysis, Consultation Selection Method, Environmental Risk Sharing, Investment Recovery, and Reduced Transportation Time; b) the identification of GSCM practices on Enterprise A (7 full application, 3 partial application and 3 no application); c) the identification of GSCM practices on Enterprise B (2 full application, 2 partial application and 9 no application); d) the identification of how is the incentive and the coordination of the GSCM practices on this relationship by Enterprise A; e) proposals of application and coordination of the others GSCM practices on this supply chain relationship. Based on the study, it can be concluded that its possible apply GSCM on animal nutrition industries, and when occurs the motivation on the application of GSCM concepts by a supply chain echelon, these concepts are deployed for the others supply chain echelons by the coordination (orchestration) of the first echelon.Keywords: animal nutrition industries, coordination, green supply chain management, supply chain management, sustainability
Procedia PDF Downloads 1314806 Scheduling Algorithm Based on Load-Aware Queue Partitioning in Heterogeneous Multi-Core Systems
Authors: Hong Kai, Zhong Jun Jie, Chen Lin Qi, Wang Chen Guang
Abstract:
There are inefficient global scheduling parallelism and local scheduling parallelism prone to processor starvation in current scheduling algorithms. Regarding this issue, this paper proposed a load-aware queue partitioning scheduling strategy by first allocating the queues according to the number of processor cores, calculating the load factor to specify the load queue capacity, and it assigned the awaiting nodes to the appropriate perceptual queues through the precursor nodes and the communication computation overhead. At the same time, real-time computation of the load factor could effectively prevent the processor from being starved for a long time. Experimental comparison with two classical algorithms shows that there is a certain improvement in both performance metrics of scheduling length and task speedup ratio.Keywords: load-aware, scheduling algorithm, perceptual queue, heterogeneous multi-core
Procedia PDF Downloads 1454805 An Integrated Approach for Optimal Selection of Machining Parameters in Laser Micro-Machining Process
Authors: A. Gopala Krishna, M. Lakshmi Chaitanya, V. Kalyana Manohar
Abstract:
In the existent analysis, laser micro machining (LMM) of Silicon carbide (SiCp) reinforced Aluminum 7075 Metal Matrix Composite (Al7075/SiCp MMC) was studied. While machining, Because of the intense heat generated, A layer gets formed on the work piece surface which is called recast layer and this layer is detrimental to the surface quality of the component. The recast layer needs to be as small as possible for precise applications. Therefore, The height of recast layer and the depth of groove which are conflicting in nature were considered as the significant manufacturing criteria, Which determines the pursuit of a machining process obtained in LMM of Al7075/10%SiCp composite. The present work formulates the depth of groove and height of recast layer in relation to the machining parameters using the Response Surface Methodology (RSM) and correspondingly, The formulated mathematical models were put to use for optimization. Since the effect of machining parameters on the depth of groove and height of recast layer was contradictory, The problem was explicated as a multi objective optimization problem. Moreover, An evolutionary Non-dominated sorting genetic algorithm (NSGA-II) was employed to optimize the model established by RSM. Subsequently this algorithm was also adapted to achieve the Pareto optimal set of solutions that provide a detailed illustration for making the optimal solutions. Eventually experiments were conducted to affirm the results obtained from RSM and NSGA-II.Keywords: Laser Micro Machining (LMM), depth of groove, Height of recast layer, Response Surface Methodology (RSM), non-dominated sorting genetic algorithm
Procedia PDF Downloads 3454804 Ultrasound/Microwave Assisted Extraction Recovery and Identification of Bioactive Compounds (Polyphenols) from Tarbush (Fluorensia cernua)
Authors: Marisol Rodriguez-Duarte, Aide Saenz-Galindo, Carolina Flores-Gallegos, Raul Rodriguez-Herrera, Juan Ascacio-Valdes
Abstract:
The plant known as tarbush (Fluorensia cernua) is a plant originating in northern Mexico, mainly in the states of Coahuila, Durango, San Luis Potosí, Zacatecas and Chihuahua. It is a branched shrub that belongs to the family Asteraceae, has oval leaves of 6 to 11 cm in length and also has small yellow flowers. In Mexico, the tarbush is a very appreciated plant because it has been used as a traditional medicinal agent, for the treatment of gastrointestinal diseases, skin infections and as a healing agent. This plant has been used mainly as an infusion. Due to its traditional use, the content and type of phytochemicals present in the plant are currently unknown and are responsible for its biological properties, so its recovery and identification is very important because the compounds that it contains have relevant applications in the field of food, pharmaceuticals and medicine. The objective of this work was to determine the best extraction condition of phytochemical compounds (mainly polyphenolic compounds) from the leaf using ultrasound/microwave assisted extraction (U/M-AE). To reach the objective, U/M-AE extractions were performed evaluating three mass/volume ratios (1:8, 1:12, 1:16), three ethanol/water solvent concentrations (0%, 30% and 70%), ultrasound extraction time of 20 min and 5 min at 70°C of microwave treatment. All experiments were performed using a fractional factorial experimental design. Once the best extraction condition was defined, the compounds were recovered by liquid column chromatography using Amberlite XAD-16, the polyphenolic fraction was recovered with ethanol and then evaporated. The recovered polyphenolic compounds were quantified by spectrophotometric techniques and identified by HPLC/ESI/MS. The results obtained showed that the best extraction condition of the compounds was using a mass/volume ratio of 1:8 and solvent ethanol/water concentration of 70%. The concentration obtained from polyphenolic compounds using this condition was 22.74 mg/g and finally, 16 compounds of polyphenolic origin were identified. The results obtained in this work allow us to postulate the Mexican plant known as tarbush as a relevant source of bioactive polyphenolic compounds of food, pharmaceutical and medicinal interest.Keywords: U/M-AE, tarbush, polyphenols, identification
Procedia PDF Downloads 1634803 Knowledge Discovery and Data Mining Techniques in Textile Industry
Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler
Abstract:
This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.Keywords: data mining, textile production, decision trees, classification
Procedia PDF Downloads 3494802 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 854801 Mammographic Multi-View Cancer Identification Using Siamese Neural Networks
Authors: Alisher Ibragimov, Sofya Senotrusova, Aleksandra Beliaeva, Egor Ushakov, Yuri Markin
Abstract:
Mammography plays a critical role in screening for breast cancer in women, and artificial intelligence has enabled the automatic detection of diseases in medical images. Many of the current techniques used for mammogram analysis focus on a single view (mediolateral or craniocaudal view), while in clinical practice, radiologists consider multiple views of mammograms from both breasts to make a correct decision. Consequently, computer-aided diagnosis (CAD) systems could benefit from incorporating information gathered from multiple views. In this study, the introduce a method based on a Siamese neural network (SNN) model that simultaneously analyzes mammographic images from tri-view: bilateral and ipsilateral. In this way, when a decision is made on a single image of one breast, attention is also paid to two other images – a view of the same breast in a different projection and an image of the other breast as well. Consequently, the algorithm closely mimics the radiologist's practice of paying attention to the entire examination of a patient rather than to a single image. Additionally, to the best of our knowledge, this research represents the first experiments conducted using the recently released Vietnamese dataset of digital mammography (VinDr-Mammo). On an independent test set of images from this dataset, the best model achieved an AUC of 0.87 per image. Therefore, this suggests that there is a valuable automated second opinion in the interpretation of mammograms and breast cancer diagnosis, which in the future may help to alleviate the burden on radiologists and serve as an additional layer of verification.Keywords: breast cancer, computer-aided diagnosis, deep learning, multi-view mammogram, siamese neural network
Procedia PDF Downloads 1384800 Integrated Intensity and Spatial Enhancement Technique for Color Images
Authors: Evan W. Krieger, Vijayan K. Asari, Saibabu Arigela
Abstract:
Video imagery captured for real-time security and surveillance applications is typically captured in complex lighting conditions. These less than ideal conditions can result in imagery that can have underexposed or overexposed regions. It is also typical that the video is too low in resolution for certain applications. The purpose of security and surveillance video is that we should be able to make accurate conclusions based on the images seen in the video. Therefore, if poor lighting and low resolution conditions occur in the captured video, the ability to make accurate conclusions based on the received information will be reduced. We propose a solution to this problem by using image preprocessing to improve these images before use in a particular application. The proposed algorithm will integrate an intensity enhancement algorithm with a super resolution technique. The intensity enhancement portion consists of a nonlinear inverse sign transformation and an adaptive contrast enhancement. The super resolution section is a single image super resolution technique is a Fourier phase feature based method that uses a machine learning approach with kernel regression. The proposed technique intelligently integrates these algorithms to be able to produce a high quality output while also being more efficient than the sequential use of these algorithms. This integration is accomplished by performing the proposed algorithm on the intensity image produced from the original color image. After enhancement and super resolution, a color restoration technique is employed to obtain an improved visibility color image.Keywords: dynamic range compression, multi-level Fourier features, nonlinear enhancement, super resolution
Procedia PDF Downloads 554