Search results for: Hidden Markov model
15736 Petri Net Modeling and Simulation of a Call-Taxi System
Authors: T. Godwin
Abstract:
A call-taxi system is a type of taxi service where a taxi could be requested through a phone call or mobile app. A schematic functioning of a call-taxi system is modeled using Petri net, which provides the necessary conditions for a taxi to be assigned by a dispatcher to pick a customer as well as the conditions for the taxi to be released by the customer. A Petri net is a graphical modeling tool used to understand sequences, concurrences, and confluences of activities in the working of discrete event systems. It uses tokens on a directed bipartite multi-graph to simulate the activities of a system. The Petri net model is translated into a simulation model and a call-taxi system is simulated. The simulation model helps in evaluating the operation of a call-taxi system based on the fleet size as well as the operating policies for call-taxi assignment and empty call-taxi repositioning. The developed Petri net based simulation model can be used to decide the fleet size as well as the call-taxi assignment policies for a call-taxi system.Keywords: call-taxi, discrete event system, petri net, simulation modeling
Procedia PDF Downloads 42915735 Modeling Waiting and Service Time for Patients: A Case Study of Matawale Health Centre, Zomba, Malawi
Authors: Moses Aron, Elias Mwakilama, Jimmy Namangale
Abstract:
Spending more time on long queues for a basic service remains a common challenge to most developing countries, including Malawi. For health sector in particular, Out-Patient Department (OPD) experiences long queues. This puts the lives of patients at risk. However, using queuing analysis to under the nature of the problems and efficiency of service systems, such problems can be abated. Based on a kind of service, literature proposes different possible queuing models. However, unlike using generalized assumed models proposed by literature, use of real time case study data can help in deeper understanding the particular problem model and how such a model can vary from one day to the other and also from each case to another. As such, this study uses data obtained from one urban HC for BP, Pediatric and General OPD cases to investigate an average queuing time for patients within the system. It seeks to highlight the proper queuing model by investigating the kind of distributions functions over patient’s arrival time, inter-arrival time, waiting time and service time. Comparable with the standard set values by WHO, the study found that patients at this HC spend more waiting times than service times. On model investigation, different days presented different models ranging from an assumed M/M/1, M/M/2 to M/Er/2. As such, through sensitivity analysis, in general, a commonly assumed M/M/1 model failed to fit the data but rather an M/Er/2 demonstrated to fit well. An M/Er/3 model seemed to be good in terms of measuring resource utilization, proposing a need to increase medical personnel at this HC. However, an M/Er/4 showed to cause more idleness of human resources.Keywords: health care, out-patient department, queuing model, sensitivity analysis
Procedia PDF Downloads 43915734 An Improved Multiple Scattering Reflectance Model Based on Specular V-Cavity
Authors: Hongbin Yang, Mingxue Liao, Changwen Zheng, Mengyao Kong, Chaohui Liu
Abstract:
Microfacet-based reflection models are widely used to model light reflections for rough surfaces. Microfacet models have become the standard surface material building block for describing specular components with varying roughness; and yet, while they possess many desirable properties as well as produce convincing results, their design ignores important sources of scattering, which can cause a significant loss of energy. Specifically, they only simulate the single scattering on the microfacets and ignore the subsequent interactions. As the roughness increases, the interaction will become more and more important. So a multiple-scattering microfacet model based on specular V-cavity is presented for this important open problem. However, it spends much unnecessary rendering time because of setting the same number of scatterings for different roughness surfaces. In this paper, we design a geometric attenuation term G to compute the BRDF (Bidirectional reflection distribution function) of multiple scattering of rough surfaces. Moreover, we consider determining the number of scattering by deterministic heuristics for different roughness surfaces. As a result, our model produces a similar appearance of the objects with the state of the art model with significantly improved rendering efficiency. Finally, we derive a multiple scattering BRDF based on the original microfacet framework.Keywords: bidirectional reflection distribution function, BRDF, geometric attenuation term, multiple scattering, V-cavity model
Procedia PDF Downloads 12015733 Numerical Study on Parallel Rear-Spoiler on Super Cars
Authors: Anshul Ashu
Abstract:
Computers are applied to the vehicle aerodynamics in two ways. One of two is Computational Fluid Dynamics (CFD) and other is Computer Aided Flow Visualization (CAFV). Out of two CFD is chosen because it shows the result with computer graphics. The simulation of flow field around the vehicle is one of the important CFD applications. The flow field can be solved numerically using panel methods, k-ε method, and direct simulation methods. The spoiler is the tool in vehicle aerodynamics used to minimize unfavorable aerodynamic effects around the vehicle and the parallel spoiler is set of two spoilers which are designed in such a manner that it could effectively reduce the drag. In this study, the standard k-ε model of the simplified version of Bugatti Veyron, Audi R8 and Porsche 911 are used to simulate the external flow field. Flow simulation is done for variable Reynolds number. The flow simulation consists of three different levels, first over the model without a rear spoiler, second for over model with single rear spoiler, and third over the model with parallel rear-spoiler. The second and third level has following parameter: the shape of the spoiler, the angle of attack and attachment position. A thorough analysis of simulations results has been found. And a new parallel spoiler is designed. It shows a little improvement in vehicle aerodynamics with a decrease in vehicle aerodynamic drag and lift. Hence, it leads to good fuel economy and traction force of the model.Keywords: drag, lift, flow simulation, spoiler
Procedia PDF Downloads 50415732 Predicting Returns Volatilities and Correlations of Stock Indices Using Multivariate Conditional Autoregressive Range and Return Models
Authors: Shay Kee Tan, Kok Haur Ng, Jennifer So-Kuen Chan
Abstract:
This paper extends the conditional autoregressive range (CARR) model to multivariate CARR (MCARR) model and further to the two-stage MCARR-return model to model and forecast volatilities, correlations and returns of multiple financial assets. The first stage model fits the scaled realised Parkinson volatility measures using individual series and their pairwise sums of indices to the MCARR model to obtain in-sample estimates and forecasts of volatilities for these individual and pairwise sum series. Then covariances are calculated to construct the fitted variance-covariance matrix of returns which are imputed into the stage-two return model to capture the heteroskedasticity of assets’ returns. We investigate different choices of mean functions to describe the volatility dynamics. Empirical applications are based on the Standard and Poor 500, Dow Jones Industrial Average and Dow Jones United States Financial Service Indices. Results show that the stage-one MCARR models using asymmetric mean functions give better in-sample model fits than those based on symmetric mean functions. They also provide better out-of-sample volatility forecasts than those using CARR models based on two robust loss functions with the scaled realised open-to-close volatility measure as the proxy for the unobserved true volatility. We also find that the stage-two return models with constant means and multivariate Student-t errors give better in-sample fits than the Baba, Engle, Kraft, and Kroner type of generalized autoregressive conditional heteroskedasticity (BEKK-GARCH) models. The estimates and forecasts of value-at-risk (VaR) and conditional VaR based on the best MCARR-return models for each asset are provided and tested using Kupiec test to confirm the accuracy of the VaR forecasts.Keywords: range-based volatility, correlation, multivariate CARR-return model, value-at-risk, conditional value-at-risk
Procedia PDF Downloads 10615731 Analysis of Aerodynamic Forces Acting on a Train Passing Through a Tornado
Authors: Masahiro Suzuki, Nobuyuki Okura
Abstract:
The crosswind effect on ground transportations has been extensively investigated for decades. The effect of tornado, however, has been hardly studied in spite of the fact that even heavy ground vehicles, namely, trains were overturned by tornadoes with casualties in the past. Therefore, aerodynamic effects of the tornado on the train were studied by several approaches in this study. First, an experimental facility was developed to clarify aerodynamic forces acting on a vehicle running through a tornado. Our experimental set-up consists of two apparatus. One is a tornado simulator, and the other is a moving model rig. PIV measurements showed that the tornado simulator can generate a swirling-flow field similar to those of the natural tornadoes. The flow field has the maximum tangential velocity of 7.4 m/s and the vortex core radius of 96 mm. The moving model rig makes a 1/40 scale model train of single-car/three-car unit run thorough the swirling flow with the maximum speed of 4.3 m/s. The model car has 72 pressure ports on its surface to estimate the aerodynamic forces. The experimental results show that the aerodynamic forces vary its magnitude and direction depends on the location of the vehicle in the flow field. Second, the aerodynamic forces on the train were estimated by using Rankin vortex model. The Rankin vortex model is a simple tornado model which widely used in the field of civil engineering. The estimated aerodynamic forces on the middle car were fairly good agreement with the experimental results. Effects of the vortex core radius and the path of the train on the aerodynamic forces were investigated using the Rankin vortex model. The results shows that the side and lift forces increases as the vortex core radius increases, while the yawing moment is maximum when the core radius is 0.3875 times of the car length. Third, a computational simulation was conducted to clarify the flow field around the train. The simulated results qualitatively agreed with the experimental ones.Keywords: aerodynamic force, experimental method, tornado, train
Procedia PDF Downloads 23815730 Calibration Model of %Titratable Acidity (Citric Acid) for Intact Tomato by Transmittance SW-NIR Spectroscopy
Authors: K. Petcharaporn, S. Kumchoo
Abstract:
The acidity (citric acid) is one of the chemical contents that can refer to the internal quality and the maturity index of tomato. The titratable acidity (%TA) can be predicted by a non-destructive method prediction by using the transmittance short wavelength (SW-NIR). Spectroscopy in the wavelength range between 665-955 nm. The set of 167 tomato samples divided into groups of 117 tomatoes sample for training set and 50 tomatoes sample for test set were used to establish the calibration model to predict and measure %TA by partial least squares regression (PLSR) technique. The spectra were pretreated with MSC pretreatment and it gave the optimal result for calibration model as (R = 0.92, RMSEC = 0.03%) and this model obtained high accuracy result to use for %TA prediction in test set as (R = 0.81, RMSEP = 0.05%). From the result of prediction in test set shown that the transmittance SW-NIR spectroscopy technique can be used for a non-destructive method for %TA prediction of tomatoes.Keywords: tomato, quality, prediction, transmittance, titratable acidity, citric acid
Procedia PDF Downloads 27515729 Computational Fluid Dynamics Analysis of Convergent–Divergent Nozzle and Comparison against Theoretical and Experimental Results
Authors: Stewart A. Keir, Faik A. Hamad
Abstract:
This study aims to use both analytical and experimental methods of analysis to examine the accuracy of Computational Fluid Dynamics (CFD) models that can then be used for more complex analyses, accurately representing more elaborate flow phenomena such as internal shockwaves and boundary layers. The geometry used in the analytical study and CFD model is taken from the experimental rig. The analytical study is undertaken using isentropic and adiabatic relationships and the output of the analytical study, the 'shockwave location tool', is created. The results from the analytical study are then used to optimize the redesign an experimental rig for more favorable placement of pressure taps and gain a much better representation of the shockwaves occurring in the divergent section of the nozzle. The CFD model is then optimized through the selection of different parameters, e.g. turbulence models (Spalart-Almaras, Realizable k-epsilon & Standard k-omega) in order to develop an accurate, robust model. The results from the CFD model can then be directly compared to experimental and analytical results in order to gauge the accuracy of each method of analysis. The CFD model will be used to visualize the variation of various parameters such as velocity/Mach number, pressure and turbulence across the shock. The CFD results will be used to investigate the interaction between the shock wave and the boundary layer. The validated model can then be used to modify the nozzle designs which may offer better performance and ease of manufacture and may present feasible improvements to existing high-speed flow applications.Keywords: CFD, nozzle, fluent, gas dynamics, shock-wave
Procedia PDF Downloads 23615728 Simulation-Based Validation of Safe Human-Robot-Collaboration
Authors: Titanilla Komenda
Abstract:
Human-machine-collaboration defines a direct interaction between humans and machines to fulfil specific tasks. Those so-called collaborative machines are used without fencing and interact with humans in predefined workspaces. Even though, human-machine-collaboration enables a flexible adaption to variable degrees of freedom, industrial applications are rarely found. The reasons for this are not technical progress but rather limitations in planning processes ensuring safety for operators. Until now, humans and machines were mainly considered separately in the planning process, focusing on ergonomics and system performance respectively. Within human-machine-collaboration, those aspects must not be seen in isolation from each other but rather need to be analysed in interaction. Furthermore, a simulation model is needed that can validate the system performance and ensure the safety for the operator at any given time. Following on from this, a holistic simulation model is presented, enabling a simulative representation of collaborative tasks – including both, humans and machines. The presented model does not only include a geometry and a motion model of interacting humans and machines but also a numerical behaviour model of humans as well as a Boole’s probabilistic sensor model. With this, error scenarios can be simulated by validating system behaviour in unplanned situations. As these models can be defined on the basis of Failure Mode and Effects Analysis as well as probabilities of errors, the implementation in a collaborative model is discussed and evaluated regarding limitations and simulation times. The functionality of the model is shown on industrial applications by comparing simulation results with video data. The analysis shows the impact of considering human factors in the planning process in contrast to only meeting system performance. In this sense, an optimisation function is presented that meets the trade-off between human and machine factors and aids in a successful and safe realisation of collaborative scenarios.Keywords: human-machine-system, human-robot-collaboration, safety, simulation
Procedia PDF Downloads 36415727 Calculating Non-Unique Sliding Modes for Switched Dynamical Systems
Authors: Eugene Stepanov, Arkadi Ponossov
Abstract:
Ordinary differential equations with switching nonlinearities constitute a very useful tool in many applications. The solutions of such equations can usually be calculated analytically if they cross the discontinuities transversally. Otherwise, one has trajectories that slides along the discontinuity, and the calculations become less straightforward in this case. For instance, one of the problems one faces is non-uniqueness of the sliding modes. In the presentation, it is proposed to apply the theory of hybrid dynamical systems to calculate the solutions that are ‘hidden’ in the discontinuities. Roughly, one equips the underlying switched system with an explicitly designed discrete dynamical system (‘automaton’), which governs the dynamics of the switched system. This construction ‘splits’ the dynamics, which, as it is shown in the presentation, gives uniqueness of the resulting hybrid trajectories and at the same time provides explicit formulae for them. Projecting the hybrid trajectories back onto the original continuous system explains non-uniqueness of its trajectories. The automaton is designed with the help of the attractors of the specially constructed adjoint dynamical system. Several examples are provided in the presentation, which supports the efficiency of the suggested scheme. The method can be of interest in control theory, gene regulatory networks, neural field models and other fields, where switched dynamics is a part of the analysis.Keywords: hybrid dynamical systems, singular perturbation analysis, sliding modes, switched dynamics
Procedia PDF Downloads 16815726 Investigating a Deterrence Function for Work Trips for Perth Metropolitan Area
Authors: Ali Raouli, Amin Chegenizadeh, Hamid Nikraz
Abstract:
The Perth metropolitan area and its surrounding regions have been expanding rapidly in recent decades and it is expected that this growth will continue in the years to come. With this rapid growth and the resulting increase in population, consideration should be given to strategic planning and modelling for the future expansion of Perth. The accurate estimation of projected traffic volumes has always been a major concern for the transport modelers and planners. Development of a reliable strategic transport model depends significantly on the inputs data into the model and the calibrated parameters of the model to reflect the existing situation. Trip distribution is the second step in four-step modelling (FSM) which is complex due to its behavioral nature. Gravity model is the most common method for trip distribution. The spatial separation between the Origin and Destination (OD) zones will be reflected in gravity model by applying deterrence functions which provide an opportunity to include people’s behavior in choosing their destinations based on distance, time and cost of their journeys. Deterrence functions play an important role for distribution of the trips within a study area and would simulate the trip distances and therefore should be calibrated for any particular strategic transport model to correctly reflect the trip behavior within the modelling area. This paper aims to review the most common deterrence functions and propose a calibrated deterrence function for work trips within the Perth Metropolitan Area based on the information obtained from the latest available Household data and Perth and Region Travel Survey (PARTS) data. As part of this study, a four-step transport model using EMME software has been developed for Perth Metropolitan Area to assist with the analysis and findings.Keywords: deterrence function, four-step modelling, origin destination, transport model
Procedia PDF Downloads 17215725 Development of a Tilt-Rotor Aircraft Model Using System Identification Technique
Authors: Ferdinando Montemari, Antonio Vitale, Nicola Genito, Giovanni Cuciniello
Abstract:
The introduction of tilt-rotor aircraft into the existing civilian air transportation system will provide beneficial effects due to tilt-rotor capability to combine the characteristics of a helicopter and a fixed-wing aircraft into one vehicle. The disposability of reliable tilt-rotor simulation models supports the development of such vehicle. Indeed, simulation models are required to design automatic control systems that increase safety, reduce pilot's workload and stress, and ensure the optimal aircraft configuration with respect to flight envelope limits, especially during the most critical flight phases such as conversion from helicopter to aircraft mode and vice versa. This article presents a process to build a simplified tilt-rotor simulation model, derived from the analysis of flight data. The model aims to reproduce the complex dynamics of tilt-rotor during the in-flight conversion phase. It uses a set of scheduled linear transfer functions to relate the autopilot reference inputs to the most relevant rigid body state variables. The model also computes information about the rotor flapping dynamics, which are useful to evaluate the aircraft control margin in terms of rotor collective and cyclic commands. The rotor flapping model is derived through a mixed theoretical-empirical approach, which includes physical analytical equations (applicable to helicopter configuration) and parametric corrective functions. The latter are introduced to best fit the actual rotor behavior and balance the differences existing between helicopter and tilt-rotor during flight. Time-domain system identification from flight data is exploited to optimize the model structure and to estimate the model parameters. The presented model-building process was applied to simulated flight data of the ERICA Tilt-Rotor, generated by using a high fidelity simulation model implemented in FlightLab environment. The validation of the obtained model was very satisfying, confirming the validity of the proposed approach.Keywords: flapping dynamics, flight dynamics, system identification, tilt-rotor modeling and simulation
Procedia PDF Downloads 20315724 A Simple Finite Element Method for Glioma Tumor Growth Model with Density Dependent Diffusion
Authors: Shangerganesh Lingeshwaran
Abstract:
In this presentation, we have performed numerical simulations for a reaction-diffusion equation with various nonlinear density-dependent diffusion operators and proliferation functions. The mathematical model represented by parabolic partial differential equation is considered to study the invasion of gliomas (the most common type of brain tumors) and to describe the growth of cancer cells and response to their treatment. The unknown quantity of the given reaction-diffusion equation is the density of cancer cells and the mathematical model based on the proliferation and migration of glioma cells. A standard Galerkin finite element method is used to perform the numerical simulations of the given model. Finally, important observations on the each of nonlinear diffusion functions and proliferation functions are presented with the help of computational results.Keywords: glioma invasion, nonlinear diffusion, reaction-diffusion, finite eleament method
Procedia PDF Downloads 23415723 Analysing Techniques for Fusing Multimodal Data in Predictive Scenarios Using Convolutional Neural Networks
Authors: Philipp Ruf, Massiwa Chabbi, Christoph Reich, Djaffar Ould-Abdeslam
Abstract:
In recent years, convolutional neural networks (CNN) have demonstrated high performance in image analysis, but oftentimes, there is only structured data available regarding a specific problem. By interpreting structured data as images, CNNs can effectively learn and extract valuable insights from tabular data, leading to improved predictive accuracy and uncovering hidden patterns that may not be apparent in traditional structured data analysis. In applying a single neural network for analyzing multimodal data, e.g., both structured and unstructured information, significant advantages in terms of time complexity and energy efficiency can be achieved. Converting structured data into images and merging them with existing visual material offers a promising solution for applying CNN in multimodal datasets, as they often occur in a medical context. By employing suitable preprocessing techniques, structured data is transformed into image representations, where the respective features are expressed as different formations of colors and shapes. In an additional step, these representations are fused with existing images to incorporate both types of information. This final image is finally analyzed using a CNN.Keywords: CNN, image processing, tabular data, mixed dataset, data transformation, multimodal fusion
Procedia PDF Downloads 12815722 Improving the Employee Transfer Experience within an Organization
Authors: Drew Fockler
Abstract:
This research examines how to improve an employee’s experience when transferring between departments within an organization. This research includes a historical review of a Canadian retail organization. Based on this historical review, gaps are identified between current and future visions to show where problems with existing training and development practices need to be resolved to reduce front-line employee turnover within an organization. The strategies within this paper support leaders through the LEAD: Listen, Explore, Act and Develop, Change Management Model. The LEAD Change Management Model supports the change process. This research proposes three possible solutions to improve an employee who is transferring between departments. The best solution to resolve the problem of improving an employee moving between departments experience is creating a Training Manager position within the retail store. A Training Manager position could support both employees and leadership with training and development of staff who are moving between departments. Within this research, an implementation plan using the TransX Model was created. The TransX Model is a hybrid of Leader-Member Exchange Theory and Transformational Leadership Theory to facilitate this organizational change within an organization by creating a common vision. Finally, this research provides the next steps as well as future considerations to enhance the training manager role within an organization.Keywords: employee transfers, employee engagement, human resources, employee induction, TransX model, lead change management model
Procedia PDF Downloads 8115721 Analysis of Genomics Big Data in Cloud Computing Using Fuzzy Logic
Authors: Mohammad Vahed, Ana Sadeghitohidi, Majid Vahed, Hiroki Takahashi
Abstract:
In the genomics field, the huge amounts of data have produced by the next-generation sequencers (NGS). Data volumes are very rapidly growing, as it is postulated that more than one billion bases will be produced per year in 2020. The growth rate of produced data is much faster than Moore's law in computer technology. This makes it more difficult to deal with genomics data, such as storing data, searching information, and finding the hidden information. It is required to develop the analysis platform for genomics big data. Cloud computing newly developed enables us to deal with big data more efficiently. Hadoop is one of the frameworks distributed computing and relies upon the core of a Big Data as a Service (BDaaS). Although many services have adopted this technology, e.g. amazon, there are a few applications in the biology field. Here, we propose a new algorithm to more efficiently deal with the genomics big data, e.g. sequencing data. Our algorithm consists of two parts: First is that BDaaS is applied for handling the data more efficiently. Second is that the hybrid method of MapReduce and Fuzzy logic is applied for data processing. This step can be parallelized in implementation. Our algorithm has great potential in computational analysis of genomics big data, e.g. de novo genome assembly and sequence similarity search. We will discuss our algorithm and its feasibility.Keywords: big data, fuzzy logic, MapReduce, Hadoop, cloud computing
Procedia PDF Downloads 30315720 Numerical Modeling and Characteristic Analysis of a Parabolic Trough Solar Collector
Authors: Alibakhsh Kasaeian, Mohammad Sameti, Zahra Noori, Mona Rastgoo Bahambari
Abstract:
Nowadays, the parabolic trough solar collector technology has become the most promising large-scale technology among various solar thermal generations. In this paper, a detailed numerical heat transfer model for a parabolic trough collector with nanofluid is presented based on the finite difference approach for which a MATLAB code was developed. The model was used to simulate the performance of a parabolic trough solar collector’s linear receiver, called a heat collector element (HCE). In this model, the heat collector element of the receiver was discretized into several segments in axial directions and energy balances were used for each control volume. All the heat transfer correlations, the thermodynamic equations and the optical properties were considered in details and the set of algebraic equations were solved simultaneously using iterative numerical solutions. The modeling assumptions and limitations are also discussed, along with recommendations for model improvement.Keywords: heat transfer, nanofluid, numerical analysis, trough
Procedia PDF Downloads 37515719 Inventory Policy Above Country Level for Cooperating Countries for Vaccines
Authors: Aysun Pınarbaşı, Béla Vizvári
Abstract:
The countries are the units that procure the vaccines during the COVID-19 pandemic. The delivered quantities are huge. The countries must bear the inventory holding cost according to the variation of stock quantities. This cost depends on the speed of the vaccination in the country. This speed is time-dependent. The vaccinated portion of the population can be approximated by the cumulative distribution function of the Cauchy distribution. A model is provided for determining the minimal-cost inventory policy, and its optimality conditions are provided. The model is solved for 20 countries for different numbers of procurements. The results reveal the individual behavior of each country. We provide an inventory policy for the pandemic period for the countries. This paper presents a deterministic model for vaccines with a demand rate variable over time for the countries. It is aimed to provide an analytical model to deal with the minimization of holding cost and develop inventory policies regarding this aim to be used for a variety of perishable products such as vaccines. The saturation process is introduced, and an approximation of the vaccination curve of the countries has been discussed. According to this aspect, a deterministic model for inventory policy has been developed.Keywords: covid-19, vaccination, inventory policy, bounded total demand, inventory holding cost, cauchy distribution, sigmoid function
Procedia PDF Downloads 7915718 A Mathematical Investigation of the Turkevich Organizer Theory in the Citrate Method for the Synthesis of Gold Nanoparticles
Authors: Emmanuel Agunloye, Asterios Gavriilidis, Luca Mazzei
Abstract:
Gold nanoparticles are commonly synthesized by reducing chloroauric acid with sodium citrate. This method, referred to as the citrate method, can produce spherical gold nanoparticles (NPs) in the size range 10-150 nm. Gold NPs of this size are useful in many applications. However, the NPs are usually polydisperse and irreproducible. A better understanding of the synthesis mechanisms is thus required. This work thoroughly investigated the only model that describes the synthesis. This model combines mass and population balance equations, describing the NPs synthesis through a sequence of chemical reactions. Chloroauric acid reacts with sodium citrate to form aurous chloride and dicarboxy acetone. The latter organizes aurous chloride in a nucleation step and concurrently degrades into acetone. The unconsumed precursor then grows the formed nuclei. However, depending on the pH, both the precursor and the reducing agent react differently thus affecting the synthesis. In this work, we investigated the model for different conditions of pH, temperature and initial reactant concentrations. To solve the model, we used Parsival, a commercial numerical code, whilst to test it, we considered various conditions studied experimentally by different researchers, for which results are available in the literature. The model poorly predicted the experimental data. We believe that this is because the model does not account for the acid-base properties of both chloroauric acid and sodium citrate.Keywords: citrate method, gold nanoparticles, Parsival, population balance equations, Turkevich organizer theory
Procedia PDF Downloads 20615717 Fecundity and Egg Laying in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae): Model Development and Field Validation
Authors: Muhammad Noor Ul Ane, Dong-Soon Kim, Myron P. Zalucki
Abstract:
Models can be useful to help understand population dynamics of insects under diverse environmental conditions and in developing strategies to manage pest species better. Adult longevity and fecundity of Helicoverpa armigera (Hübner) were evaluated against a wide range of constant temperatures (15, 20, 25, 30, 35 and 37.5ᵒC). The modified Sharpe and DeMichele model described adult aging rate and was used to estimate adult physiological age. Maximum fecundity of H. armigera was 973 egg/female at 25ᵒC decreasing to 72 eggs/female at 37.5ᵒC. The relationship between adult fecundity and temperature was well described by an extreme value function. Age-specific cumulative oviposition rate and age-specific survival rate were well described by a two-parameter Weibull function and sigmoid function, respectively. An oviposition model was developed using three temperature-dependent components: total fecundity, age-specific oviposition rate, and age-specific survival rate. The oviposition model was validated against independent field data and described the field occurrence pattern of egg population of H. armigera very well. Our model should be a useful component for population modeling of H. armigera and can be independently used for the timing of sprays in management programs of this key pest species.Keywords: cotton bollworm, life table, temperature-dependent adult development, temperature-dependent fecundity
Procedia PDF Downloads 15615716 Co-Integration Model for Predicting Inflation Movement in Nigeria
Authors: Salako Rotimi, Oshungade Stephen, Ojewoye Opeyemi
Abstract:
The maintenance of price stability is one of the macroeconomic challenges facing Nigeria as a nation. This paper attempts to build a co-integration multivariate time series model for inflation movement in Nigeria using data extracted from the abstract of statistics of the Central Bank of Nigeria (CBN) from 2008 to 2017. The Johansen cointegration test suggests at least one co-integration vector describing the long run relationship between Consumer Price Index (CPI), Food Price Index (FPI) and Non-Food Price Index (NFPI). All three series show increasing pattern, which indicates a sign of non-stationary in each of the series. Furthermore, model predictability was established with root-mean-square-error, mean absolute error, mean average percentage error, and Theil’s unbiased statistics for n-step forecasting. The result depicts that the long run coefficient of a consumer price index (CPI) has a positive long-run relationship with the food price index (FPI) and non-food price index (NFPI).Keywords: economic, inflation, model, series
Procedia PDF Downloads 24715715 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs –Sigmoid, ReLU, and Tanh–have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment with multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLUReLU) combination. Our results show that using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).Keywords: activation function, universal approximation function, neural networks, convergence
Procedia PDF Downloads 16115714 Biodiversity and Climate Change: Consequences for Norway Spruce Mountain Forests in Slovakia
Authors: Jozef Mindas, Jaroslav Skvarenina, Jana Skvareninova
Abstract:
Study of the effects of climate change on Norway Spruce (Picea abies) forests has mainly focused on the diversity of tree species diversity of tree species as a result of the ability of species to tolerate temperature and moisture changes as well as some effects of disturbance regime changes. The tree species’ diversity changes in spruce forests due to climate change have been analyzed via gap model. Forest gap model is a dynamic model for calculation basic characteristics of individual forest trees. Input ecological data for model calculations have been taken from the permanent research plots located in primeval forests in mountainous regions in Slovakia. The results of regional scenarios of the climatic change for the territory of Slovakia have been used, from which the values are according to the CGCM3.1 (global) model, KNMI and MPI (regional) models. Model results for conditions of the climate change scenarios suggest a shift of the upper forest limit to the region of the present subalpine zone, in supramontane zone. N. spruce representation will decrease at the expense of beech and precious broadleaved species (Acer sp., Sorbus sp., Fraxinus sp.). The most significant tree species diversity changes have been identified for the upper tree line and current belt of dwarf pine (Pinus mugo) occurrence. The results have been also discussed in relation to most important disturbances (wind storms, snow and ice storms) and phenological changes which consequences are little known. Special discussion is focused on biomass production changes in relation to carbon storage diversity in different carbon pools.Keywords: biodiversity, climate change, Norway spruce forests, gap model
Procedia PDF Downloads 29215713 Identity Management in Virtual Worlds Based on Biometrics Watermarking
Authors: S. Bader, N. Essoukri Ben Amara
Abstract:
With the technological development and rise of virtual worlds, these spaces are becoming more and more attractive for cybercriminals, hidden behind avatars and fictitious identities. Since access to these spaces is not restricted or controlled, some impostors take advantage of gaining unauthorized access and practicing cyber criminality. This paper proposes an identity management approach for securing access to virtual worlds. The major purpose of the suggested solution is to install a strong security mechanism to protect virtual identities represented by avatars. Thus, only legitimate users, through their corresponding avatars, are allowed to access the platform resources. Access is controlled by integrating an authentication process based on biometrics. In the request process for registration, a user fingerprint is enrolled and then encrypted into a watermark utilizing a cancelable and non-invertible algorithm for its protection. After a user personalizes their representative character, the biometric mark is embedded into the avatar through a watermarking procedure. The authenticity of the avatar identity is verified when it requests authorization for access. We have evaluated the proposed approach on a dataset of avatars from various virtual worlds, and we have registered promising performance results in terms of authentication accuracy, acceptation and rejection rates.Keywords: identity management, security, biometrics authentication and authorization, avatar, virtual world
Procedia PDF Downloads 26915712 A Bi-Objective Model to Optimize the Total Time and Idle Probability for Facility Location Problem Behaving as M/M/1/K Queues
Authors: Amirhossein Chambari
Abstract:
This article proposes a bi-objective model for the facility location problem subject to congestion (overcrowding). Motivated by implementations to locate servers in internet mirror sites, communication networks, one-server-systems, so on. This model consider for situations in which immobile (or fixed) service facilities are congested (or queued) by stochastic demand to behave as M/M/1/K queues. We consider for this problem two simultaneous perspectives; (1) Customers (desire to limit times of accessing and waiting for service) and (2) Service provider (desire to limit average facility idle-time). A bi-objective model is setup for facility location problem with two objective functions; (1) Minimizing sum of expected total traveling and waiting time (customers) and (2) Minimizing the average facility idle-time percentage (service provider). The proposed model belongs to the class of mixed-integer nonlinear programming models and the class of NP-hard problems. In addition, to solve the model, controlled elitist non-dominated sorting genetic algorithms (Controlled NSGA-II) and controlled elitist non-dominated ranking genetic algorithms (NRGA-I) are proposed. Furthermore, the two proposed metaheuristics algorithms are evaluated by establishing standard multiobjective metrics. Finally, the results are analyzed and some conclusions are given.Keywords: bi-objective, facility location, queueing, controlled NSGA-II, NRGA-I
Procedia PDF Downloads 58715711 A System Dynamics Approach to Exploring Personality Traits in Young Children
Authors: Misagh Faezipour
Abstract:
System dynamics is a systems engineering approach that can help address the complex challenges in different systems. Little is known about how the brain represents people to predict behavior. This work is based on how the brain simulates different personal behavior and responds to them in the case of young children ages one to five. As we know, children’s minds/brains are just as clean as a crystal, and throughout time, in their surroundings, families, and education center, they grow to develop and have different kinds of behavior towards the world and the society they live in. Hence, this work aims to identify how young children respond to various personality behavior and observes their reactions towards them from a system dynamics perspective. We will be exploring the Big Five personality traits in young children. A causal model is developed in support of the system dynamics approach. These models graphically present the factors and factor relationships that contribute to the big five personality traits and provide a better understanding of the entire behavior model. A simulator will be developed that includes a set of causal model factors and factor relationships. The simulator models the behavior of different factors related to personality traits and their impacts and can help make more informed decisions in a risk-free environment.Keywords: personality traits, systems engineering, system dynamics, causal model, behavior model
Procedia PDF Downloads 10015710 Inherited Intergenerational Trauma – The Society for Black People in South Central Los Angeles
Authors: Kevin R. Collins Sr.
Abstract:
In South Central Los Angeles, Black people have endured various forms of trauma that spans across generations. This includes the horrors of slavery and the aftermaths of the Jim Crow Laws, institutionalized racism, and legislative segregation, just to name a few. The individuals born from the 1900’s until today have continued to transmit the traumas experienced across generations. Parents unconsciously transmit the hidden trauma, and the children take these experiences and apply it to the society they live in. Although there are some who attempt to break the cycle of transmitted trauma, the remninsce still remain and play a huge role in how they interact with others. The attempt of this discussion is to bring these traumatic experiences to the surface and attack them head on. It is important that we do this to allow not only the suffering individuals but the suffering society to heal. As a society, looking at the humane side of it and attempting to stop the racial injustice placed on black people to relieve them of the stress that some. If not all,, endure in this great United States of America. Changing the behavior as a country to create an improved since of common unity within. If we solve our own racial and social issues within this country, maybe we can solve these same issues that have been the footstool to the many wars we see around the world. Thus, breaking the cycle of inherited intergenerational trauma.Keywords: intergenerational trauma, inherited trauma, transmission of trauma, blacks in South central LA, black trauma in America
Procedia PDF Downloads 10215709 Deep Reinforcement Learning-Based Computation Offloading for 5G Vehicle-Aware Multi-Access Edge Computing Network
Authors: Ziying Wu, Danfeng Yan
Abstract:
Multi-Access Edge Computing (MEC) is one of the key technologies of the future 5G network. By deploying edge computing centers at the edge of wireless access network, the computation tasks can be offloaded to edge servers rather than the remote cloud server to meet the requirements of 5G low-latency and high-reliability application scenarios. Meanwhile, with the development of IOV (Internet of Vehicles) technology, various delay-sensitive and compute-intensive in-vehicle applications continue to appear. Compared with traditional internet business, these computation tasks have higher processing priority and lower delay requirements. In this paper, we design a 5G-based Vehicle-Aware Multi-Access Edge Computing Network (VAMECN) and propose a joint optimization problem of minimizing total system cost. In view of the problem, a deep reinforcement learning-based joint computation offloading and task migration optimization (JCOTM) algorithm is proposed, considering the influences of multiple factors such as concurrent multiple computation tasks, system computing resources distribution, and network communication bandwidth. And, the mixed integer nonlinear programming problem is described as a Markov Decision Process. Experiments show that our proposed algorithm can effectively reduce task processing delay and equipment energy consumption, optimize computing offloading and resource allocation schemes, and improve system resource utilization, compared with other computing offloading policies.Keywords: multi-access edge computing, computation offloading, 5th generation, vehicle-aware, deep reinforcement learning, deep q-network
Procedia PDF Downloads 12315708 Zebrafish Larvae Model: A High Throughput Screening Tool to Study Autism
Authors: Shubham Dwivedi, Raghavender Medishetti, Rita Rani, Aarti Sevilimedu, Pushkar Kulkarni, Yogeeswari Perumal
Abstract:
Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder of early onset, characterized by impaired sociability, cognitive function and stereotypies. There is a significant urge to develop and establish new animal models with ASD-like characteristics for better understanding of underlying mechanisms. The aim of the present study was to develop a cost and time effective zebrafish model with quantifiable parameters to facilitate mechanistic studies as well as high-throughput screening of new molecules for autism. Zebrafish embryos were treated with valproic acid and a battery of behavioral tests (anxiety, inattentive behavior, irritability and social impairment) was performed on larvae at 7th day post fertilization, followed by study of molecular markers of autism. This model shows a significant behavioural impairment in valproic acid treated larvae in comparison to control which was again supported by alteration in few marker genes and proteins of autism. The model also shows a rescue of behavioural despair with positive control drugs. The model shows robust parameters to study behavior, molecular mechanism and drug screening approach in a single frame. Thus we postulate that our 7 days zebrafish larval model for autism can help in high throughput screening of new molecules on autism.Keywords: autism, zebrafish, valproic acid, neurodevelopment, behavioral assay
Procedia PDF Downloads 16415707 High-Resolution Flood Hazard Mapping Using Two-Dimensional Hydrodynamic Model Anuga: Case Study of Jakarta, Indonesia
Authors: Hengki Eko Putra, Dennish Ari Putro, Tri Wahyu Hadi, Edi Riawan, Junnaedhi Dewa Gede, Aditia Rojali, Fariza Dian Prasetyo, Yudhistira Satya Pribadi, Dita Fatria Andarini, Mila Khaerunisa, Raditya Hanung Prakoswa
Abstract:
Catastrophe risk management can only be done if we are able to calculate the exposed risks. Jakarta is an important city economically, socially, and politically and in the same time exposed to severe floods. On the other hand, flood risk calculation is still very limited in the area. This study has calculated the risk of flooding for Jakarta using 2-Dimensional Model ANUGA. 2-Dimensional model ANUGA and 1-Dimensional Model HEC-RAS are used to calculate the risk of flooding from 13 major rivers in Jakarta. ANUGA can simulate physical and dynamical processes between the streamflow against river geometry and land cover to produce a 1-meter resolution inundation map. The value of streamflow as an input for the model obtained from hydrological analysis on rainfall data using hydrologic model HEC-HMS. The probabilistic streamflow derived from probabilistic rainfall using statistical distribution Log-Pearson III, Normal and Gumbel, through compatibility test using Chi Square and Smirnov-Kolmogorov. Flood event on 2007 is used as a comparison to evaluate the accuracy of model output. Property damage estimations were calculated based on flood depth for 1, 5, 10, 25, 50, and 100 years return period against housing value data from the BPS-Statistics Indonesia, Centre for Research and Development of Housing and Settlements, Ministry of Public Work Indonesia. The vulnerability factor was derived from flood insurance claim. Jakarta's flood loss estimation for the return period of 1, 5, 10, 25, 50, and 100 years, respectively are Rp 1.30 t; Rp 16.18 t; Rp 16.85 t; Rp 21.21 t; Rp 24.32 t; and Rp 24.67 t of the total value of building Rp 434.43 t.Keywords: 2D hydrodynamic model, ANUGA, flood, flood modeling
Procedia PDF Downloads 280