Search results for: reactive MgO cement
175 Nanoporous Metals Reinforced with Fullerenes
Authors: Deni̇z Ezgi̇ Gülmez, Mesut Kirca
Abstract:
Nanoporous (np) metals have attracted considerable attention owing to their cellular morphological features at atomistic scale which yield ultra-high specific surface area awarding a great potential to be employed in diverse applications such as catalytic, electrocatalytic, sensing, mechanical and optical. As one of the carbon based nanostructures, fullerenes are also another type of outstanding nanomaterials that have been extensively investigated due to their remarkable chemical, mechanical and optical properties. In this study, the idea of improving the mechanical behavior of nanoporous metals by inclusion of the fullerenes, which offers a new metal-carbon nanocomposite material, is examined and discussed. With this motivation, tensile mechanical behavior of nanoporous metals reinforced with carbon fullerenes is investigated by classical molecular dynamics (MD) simulations. Atomistic models of the nanoporous metals with ultrathin ligaments are obtained through a stochastic process simply based on the intersection of spherical volumes which has been used previously in literature. According to this technique, the atoms within the ensemble of intersecting spherical volumes is removed from the pristine solid block of the selected metal, which results in porous structures with spherical cells. Following this, fullerene units are added into the cellular voids to obtain final atomistic configurations for the numerical tensile tests. Several numerical specimens are prepared with different number of fullerenes per cell and with varied fullerene sizes. LAMMPS code was used to perform classical MD simulations to conduct uniaxial tension experiments on np models filled by fullerenes. The interactions between the metal atoms are modeled by using embedded atomic method (EAM) while adaptive intermolecular reactive empirical bond order (AIREBO) potential is employed for the interaction of carbon atoms. Furthermore, atomic interactions between the metal and carbon atoms are represented by Lennard-Jones potential with appropriate parameters. In conclusion, the ultimate goal of the study is to present the effects of fullerenes embedded into the cellular structure of np metals on the tensile response of the porous metals. The results are believed to be informative and instructive for the experimentalists to synthesize hybrid nanoporous materials with improved properties and multifunctional characteristics.Keywords: fullerene, intersecting spheres, molecular dynamic, nanoporous metals
Procedia PDF Downloads 239174 A Case Report on Anesthetic Considerations in a Neonate with Isolated Oesophageal Atresia with Radiological Fallacy
Authors: T. Rakhi, Thrivikram Shenoy
Abstract:
Esophageal atresia is a disorder of maldevelopment of esophagus with or without a connection to the trachea. Radiological reviews are needed in consultation with the pediatric surgeon and neonatologist and we report a rare case of esophageal atresia associated with atrial septal defect-patent ductus arteriosus complex. A 2-day old female baby born at term, weighing 3.010kg, admitted to the Neonatal Intensive Care Unit with respiratory distress and excessive oral secretions. On examination, continuous murmur and cyanosis were seen. Esophageal atresia was suspected, after a failed attempt to pass a nasogastric tube. Chest radiograph showed coiling of the nasogastric tube and absent gas shadow in the abdomen. Echocardiography confirmed Patent Ductus Arteriosus with Atrial Septal Defect not in failure and was diagnosed with esophageal atresia with suspected fistula posted for surgical repair. After preliminary management with oxygenation, suctioning in prone position and antibiotics, investigations revealed Hb 17gms serum biochemistry, coagulation profile and C-Reactive Protein Test normal. The baby was premedicated with 5mcg of fentanyl and 100 mcg of midazolam and a rapid awake laryngoscopy was done to rule out difficult airway followed by induction with o2 air, sevo and atracurium 2 mg. Placement of a 3.5 tube was uneventful at first attempt and after confirming bilateral air entry positioned in the lateral position for Right thoracotomy. A pulse oximeter, Echocardiogram, Non-invasive Blood Pressure, temperature and a precordial stethoscope in left axilla were essential monitors. During thoracotomy, both the ends of the esophagus and the fistula could not be located after thorough search suggesting an on table finding of type A esophageal atresia. The baby was repositioned for gastrostomy, and cervical esophagostomy ventilated overnight and extubated uneventful. Absent gas shadow was overlooked and the purpose of this presentation is to create an awareness between the neonatologist, pediatric surgeons and anesthesiologist regarding variation of typing of Tracheoesophageal fistula pre and intraoperatively. A need for imaging modalities warranted for a definitive diagnosis in the presence of a gasless stomach.Keywords: anesthetic, atrial septal defects, esophageal atresia, patent ductus arteriosus, perioperative, chest x-ray
Procedia PDF Downloads 179173 Multi-Analyte Indium Gallium Zinc Oxide-Based Dielectric Electrolyte-Insulator-Semiconductor Sensing Membranes
Authors: Chyuan Haur Kao, Hsiang Chen, Yu Sheng Tsai, Chen Hao Hung, Yu Shan Lee
Abstract:
Dielectric electrolyte-insulator-semiconductor sensing membranes-based biosensors have been intensively investigated because of their simple fabrication, low cost, and fast response. However, to enhance their sensing performance, it is worthwhile to explore alternative materials, distinct processes, and novel treatments. An ISFET can be viewed as a variation of MOSFET with the dielectric oxide layer as the sensing membrane. Then, modulation on the work function of the gate caused by electrolytes in various ion concentrations could be used to calculate the ion concentrations. Recently, owing to the advancement of CMOS technology, some high dielectric materials substrates as the sensing membranes of electrolyte-insulator-semiconductor (EIS) structures. The EIS with a stacked-layer of SiO₂ layer between the sensing membrane and the silicon substrate exhibited a high pH sensitivity and good long-term stability. IGZO is a wide-bandgap (~3.15eV) semiconductor of the III-VI semiconductor group with several preferable properties, including good transparency, high electron mobility, wide band gap, and comparable with CMOS technology. IGZO was sputtered by reactive radio frequency (RF) on a p-type silicon wafer with various gas ratios of Ar:O₂ and was treated with rapid thermal annealing in O₂ ambient. The sensing performance, including sensitivity, hysteresis, and drift rate was measured and XRD, XPS, and AFM analyses were also used to study the material properties of the IGZO membrane. Moreover, IGZO was used as a sensing membrane in dielectric EIS bio-sensor structures. In addition to traditional pH sensing capability, detection for concentrations of Na+, K+, urea, glucose, and creatinine was performed. Moreover, post rapid thermal annealing (RTA) treatment was confirmed to improve the material properties and enhance the multi-analyte sensing capability for various ions or chemicals in solutions. In this study, the IGZO sensing membrane with annealing in O₂ ambient exhibited a higher sensitivity, higher linearity, higher H+ selectivity, lower hysteresis voltage and lower drift rate. Results indicate that the IGZO dielectric sensing membrane on the EIS structure is promising for future bio-medical device applications.Keywords: dielectric sensing membrane, IGZO, hydrogen ion, plasma, rapid thermal annealing
Procedia PDF Downloads 251172 The Role of Nickel on the High-Temperature Corrosion of Modell Alloys (Stainless Steels) before and after Breakaway Corrosion at 600°C: A Microstructural Investigation
Authors: Imran Hanif, Amanda Persdotter, Sedigheh Bigdeli, Jesper Liske, Torbjorn Jonsson
Abstract:
Renewable fuels such as biomass/waste for power production is an attractive alternative to fossil fuels in order to achieve a CO₂ -neutral power generation. However, the combustion results in the release of corrosive species. This puts high demands on the corrosion resistance of the alloys used in the boiler. Stainless steels containing nickel and/or nickel containing coatings are regarded as suitable corrosion resistance material especially in the superheater regions. However, the corrosive environment in the boiler caused by the presence of water vapour and reactive alkali very rapidly breaks down the primary protection, i.e., the Cr-rich oxide scale formed on stainless steels. The lifetime of the components, therefore, relies on the properties of the oxide scale formed after breakaway, i.e., the secondary protection. The aim of the current study is to investigate the role of varying nickel content (0–82%) on the high-temperature corrosion of model alloys with 18% Cr (Fe in balance) in the laboratory mimicking industrial conditions at 600°C. The influence of nickel is investigated on both the primary protection and especially the secondary protection, i.e., the scale formed after breakaway, during the oxidation/corrosion process in the dry O₂ (primary protection) and more aggressive environment such as H₂O, K₂CO₃ and KCl (secondary protection). All investigated alloys experience a very rapid loss of the primary protection, i.e., the Cr-rich (Cr, Fe)₂O₃, and the formation of secondary protection in the aggressive environments. The microstructural investigation showed that secondary protection of all alloys has a very similar microstructure in all more aggressive environments consisting of an outward growing iron oxide and inward growing spinel-oxide (Fe, Cr, Ni)₃O₄. The oxidation kinetics revealed that it is possible to influence the protectiveness of the scale formed after breakaway (secondary protection) through the amount of nickel in the alloy. The difference in oxidation kinetics of the secondary protection is linked to the microstructure and chemical composition of the complex spinel-oxide. The detailed microstructural investigations were carried out using the extensive analytical techniques such as electron back scattered diffraction (EBSD), energy dispersive X-rays spectroscopy (EDS) via the scanning and transmission electron microscopy techniques and results are compared with the thermodynamic calculations using the Thermo-Calc software.Keywords: breakaway corrosion, EBSD, high-temperature oxidation, SEM, TEM
Procedia PDF Downloads 142171 Effects of Hawthorn (Crataegus monogyna) Polyphenols on Oxymyoglobin and Myofibrillar Proteins Stability in Meat
Authors: Valentin Nicorescu, Nicoleta C. Predescu, Camelia Papuc, Iuliana Gajaila, Carmen D. Petcu
Abstract:
The oxidation of the fresh muscle oxymyoglobin (bright red colour) to metmyoglobin (brown colour) leads to discoloration of red meats. After slaughter, enzymatic systems involved in metmyoglobin reduction are continually depleted as time post-mortem progresses, thus the meat colour is affected. Phenolic compounds are able to scavenge reactive species involved in oxymyoglobin oxidation and to reduce metmyoglobin to oxymyoglobin. The aim of this study was to investigate the effect of polyphenols extracted from hawthorn fruits on the stability of oxymyoglobin and myofibrillar proteins in ground pork subject to refrigeration for 6 days. Hawthorn polyphenols (HP) were added in ground pork in 100, 200 and 300 ppm concentrations. Oxymyoglobin and metmyoglobin were evaluated spectrophotometrically at every 2 days and electrophoretic pattern of myofibrillar proteins was investigated at days 0 and 6 by Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE). For all meat samples, oxymyoglobin concentration significantly decreased during the first 4 days of refrigeration. After 6 days, the significant decrease of oxymyoglobin concentration continued only in the negative control samples. In samples treated with HP and butylated hydroxylanisole (BHA - positive control), oxymyoglobin concentration increased after 6 days of refrigeration, the highest levels complying with the following order: 100 ppm HP > 200 ppm HP > 300 ppm HP > 100 ppm BHA. The increase in metmyoglobin was coincidental with the decrease in oxymyoglobin; metmyoglobin concentration progressively increased during the first 4 days of refrigeration in all meat samples. After 6 days, in meat samples treated with HP and BHA, lower metmyoglobin concentrations were found (compared to day 4), respecting the following order: 100 ppm HP < 200 ppm HP < 300 ppm HP < 100 ppm BHA. These results showed that hawthorn polyphenols and BHA reduced metmyoglobin (MbFe3+) to oxymyoglobin (MbFe2+), and the strongest reducing character was recorded for 100 ppm HP. After 6 days of refrigeration, electrophoretic pattern of myofibrillar proteins showed minor changes compared to day 0, indicating that HP prevent protein degradation as well as synthetic antioxidant BHA. Also, HP did not induce cross-links in the myofibrillar proteins, to form protein aggregates, and no risk of reducing their ability to retain water was identified. The pattern of oxymyoglobin and metmyoglobin concentrations determined in this study showed that hawthorn polyphenols are able to reduce metmyoglobin to oxymyoglobin and to delay oxymyoglobin oxidation, especially when they are added to ground meat in concentration of 100 ppm. This work was carried out through Partnerships in priority areas Program – PN II, implemented with the support of MEN – UEFISCDI (Romania), project nr. 149/2014.Keywords: Hawthorn polyphenols, metmyoglobin, oxymyoglobin, proteins stability
Procedia PDF Downloads 218170 Implementing Mindfulness into Wellness Plans: Assisting Individuals with Substance Abuse and Addiction
Authors: Michele M. Mahr
Abstract:
The purpose of this study is to educate, inform, and facilitate scholarly conversation and discussion regarding the implementation of mindfulness techniques when working with individuals with substance use disorder (SUD) or addictive behaviors in mental health. Mindfulness can be recognized as the present moment, non-judgmental awareness, initiated by concentrated attention that is non-reactive and as openheartedly as possible. Individuals with SUD or addiction typically are challenged with triggers, environmental situations, cravings, or social pressures which may deter them from remaining abstinent from their drug of choice or addictive behavior. Also, mindfulness is recognized as one of the cognitive and behavioral treatment approaches and is both a physical and mental practice that encompasses individuals to become aware of internal situations and experiences with undivided attention. That said, mindfulness may be an effective strategy for individuals to employ during these experiences. This study will reveal how mental health practitioners and addiction counselors may find mindfulness to be an essential component of increasing wellness when working with individuals seeking mental health treatment. To this end, mindfulness is simply the ability individuals have to know what is actually happening as it is occurring and what they are experiencing at the moment. In the context of substance abuse and addiction, individuals may employ breathing techniques, meditation, and cognitive restructuring of the mind to become aware of present moment experiences. Furthermore, the notion of mindfulness has been directly connected to the development of neuropathways. The creation of the neural pathways then leads to creating thoughts which leads to developing new coping strategies and adaptive behaviors. Mindfulness strategies can assist individuals in connecting the mind with the body, allowing the individual to remain centered and focused. All of these mentioned above are vital components to recovery during substance abuse and addiction treatment. There are a variety of therapeutic modalities applying the key components of mindfulness, such as Mindfulness-Based Stress Reduction (MBSR) and Mindfulness-Based Cognitive Therapy for depression (MBCT). This study will provide an overview of both MBSR and MBCT in relation to treating individuals with substance abuse and addiction. The author will also provide strategies for readers to employ when working with clients. Lastly, the author will create and foster a safe space for discussion and engaging conversation among participants to ask questions, share perspectives, and be educated on the numerous benefits of mindfulness within wellness.Keywords: mindfulness, wellness, substance abuse, mental health
Procedia PDF Downloads 77169 Response of Planktonic and Aggregated Bacterial Cells to Water Disinfection with Photodynamic Inactivation
Authors: Thayse Marques Passos, Brid Quilty, Mary Pryce
Abstract:
The interest in developing alternative techniques to obtain safe water, free from pathogens and hazardous substances, is growing in recent times. The photodynamic inactivation of microorganisms (PDI) is a promising ecologically-friendly and multi-target approach for water disinfection. It uses visible light as an energy source combined with a photosensitiser (PS) to transfer energy/electrons to a substrate or molecular oxygen generating reactive oxygen species, which cause cidal effects towards cells. PDI has mainly been used in clinical studies and investigations on its application to disinfect water is relatively recent. The majority of studies use planktonic cells. However, in their natural environments, bacteria quite often do not occur as freely suspended cells (planktonic) but in cell aggregates that are either freely floating or attached to surfaces as biofilms. Microbes can form aggregates and biofilms as a strategy to protect them from environmental stress. As aggregates, bacteria have a better metabolic function, they communicate more efficiently, and they are more resistant to biocide compounds than their planktonic forms. Among the bacteria that are able to form aggregates are members of the genus Pseudomonas, they are a very diverse group widely distributed in the environment. Pseudomonas species can form aggregates/biofilms in water and can cause particular problems in water distribution systems. The aim of this study was to evaluate the effectiveness of photodynamic inactivation in killing a range of planktonic cells including Escherichia coli DSM 1103, Staphylococcus aureus DSM 799, Shigella sonnei DSM 5570, Salmonella enterica and Pseudomonas putida DSM 6125, and aggregating cells of Pseudomonas fluorescens DSM 50090, Pseudomonas aeruginosa PAO1. The experiments were performed in glass Petri dishes, containing the bacterial suspension and the photosensitiser, irradiated with a multi-LED (wavelengths 430nm and 660nm) for different time intervals. The responses of the cells were monitored using the pour plate technique and confocal microscopy. The study showed that bacteria belonging to Pseudomonads group tend to be more tolerant to PDI. While E. coli, S. aureus, S. sonnei and S. enterica required a dosage ranging from 39.47 J/cm2 to 59.21 J/cm2 for a 5 log reduction, Pseudomonads needed a dosage ranging from 78.94 to 118.42 J/cm2, a higher dose being required when the cells aggregated.Keywords: bacterial aggregation, photoinactivation, Pseudomonads, water disinfection
Procedia PDF Downloads 296168 An Overview of the Porosity Classification in Carbonate Reservoirs and Their Challenges: An Example of Macro-Microporosity Classification from Offshore Miocene Carbonate in Central Luconia, Malaysia
Authors: Hammad T. Janjuhah, Josep Sanjuan, Mohamed K. Salah
Abstract:
Biological and chemical activities in carbonates are responsible for the complexity of the pore system. Primary porosity is generally of natural origin while secondary porosity is subject to chemical reactivity through diagenetic processes. To understand the integrated part of hydrocarbon exploration, it is necessary to understand the carbonate pore system. However, the current porosity classification scheme is limited to adequately predict the petrophysical properties of different reservoirs having various origins and depositional environments. Rock classification provides a descriptive method for explaining the lithofacies but makes no significant contribution to the application of porosity and permeability (poro-perm) correlation. The Central Luconia carbonate system (Malaysia) represents a good example of pore complexity (in terms of nature and origin) mainly related to diagenetic processes which have altered the original reservoir. For quantitative analysis, 32 high-resolution images of each thin section were taken using transmitted light microscopy. The quantification of grains, matrix, cement, and macroporosity (pore types) was achieved using a petrographic analysis of thin sections and FESEM images. The point counting technique was used to estimate the amount of macroporosity from thin section, which was then subtracted from the total porosity to derive the microporosity. The quantitative observation of thin sections revealed that the mouldic porosity (macroporosity) is the dominant porosity type present, whereas the microporosity seems to correspond to a sum of 40 to 50% of the total porosity. It has been proven that these Miocene carbonates contain a significant amount of microporosity, which significantly complicates the estimation and production of hydrocarbons. Neglecting its impact can increase uncertainty about estimating hydrocarbon reserves. Due to the diversity of geological parameters, the application of existing porosity classifications does not allow a better understanding of the poro-perm relationship. However, the classification can be improved by including the pore types and pore structures where they can be divided into macro- and microporosity. Such studies of microporosity identification/classification represent now a major concern in limestone reservoirs around the world.Keywords: overview of porosity classification, reservoir characterization, microporosity, carbonate reservoir
Procedia PDF Downloads 154167 Hepatoprotective Action of Emblica officinalis Linn. against Radiation and Lead Induced Changes in Swiss Albino Mice
Authors: R. K. Purohit
Abstract:
Ionizing radiation induces cellular damage through direct ionization of DNA and other cellular targets and indirectly via reactive oxygen species which may include effects from epigenetic changes. So there is a need of hour is to search for an ideal radioprotector which could minimize the deleterious and damaging effects caused by ionizing radiation. Radioprotectors are agents which reduce the radiation effects on cell when applied prior to exposure of radiation. The aim of this study was to access the efficacy of Emblica officinalis in reducing radiation and lead induced changes in mice liver. For the present experiment, healthy male Swiss albino mice (6-8 weeks) were selected and maintained under standard conditions of temperature and light. Fruit extract of Emblica was fed orally at the dose of 0.01 ml/animal/day. The animal were divided into seven groups according to the treatment i.e. lead acetate solution as drinking water (group-II) or exposed to 3.5 or 7.0 Gy gamma radiation (group-III) or combined treatment of radiation and lead acetate (group-IV). The animals of experimental groups were administered Emblica extract seven days prior to radiation or lead acetate treatment (group V, VI and VII) respectively. The animals from all the groups were sacrificed by cervical dislocation at each post-treatment intervals of 1, 2, 4, 7, 14 and 28 days. After sacrificing the animals pieces of liver were taken out and some of them were kept at -20°C for different biochemical parameters. The histopathological changes included cytoplasmic degranulation, vacuolation, hyperaemia, pycnotic and crenated nuclei. The changes observed in the control groups were compared with the respective experimental groups. An increase in the value of total proteins, glycogen, acid phosphtase, alkaline phosphatase activity and RNA was observed up to day-14 in the non drug treated group and day 7 in the Emblica treated groups, thereafter value declined up to day-28 without reaching to normal. The value of cholesterol and DNA showed a decreasing trend up to day -14 in non drug treated groups and day-7 in drug treated groups, thereafter value elevated up to day-28. The biochemical parameters were observed in the form of increase or decrease in the values. The changes were found dose dependent. After combined treatment of radiation and lead acetate synergistic effect were observed. The liver of Emblica treated animals exhibited less severe damage as compared to non-drug treated animals at all the corresponding intervals. An early and fast recovery was also noticed in Emblica pretreated animals. Thus, it appears that Emblica is potent enough to check lead and radiation induced heptic lesion in Swiss albino mice.Keywords: radiation, lead , emblica, mice, liver
Procedia PDF Downloads 322166 Sustainable Nanoengineering of Copper Oxide: Harnessing Its Antimicrobial and Anticancer Capabilities
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: copper oxide nanoparticles, green synthesis, nanotechnology, microbial infection
Procedia PDF Downloads 64165 Characterization and Modification of the Optical Properties of Zirconia Ceramics for Aesthetic Dental Restorations
Authors: R. A. Shahmiri, O. Standard, J. Hart, C. C. Sorrell
Abstract:
Yttrium stabilized tetragonal zirconium polycrystalline (Y-TZP) has been used as a dental biomaterial. The strength and toughness of zirconia can be accounted for by its toughening mechanisms, such as crack deflection, zone shielding, contact shielding, and crack bridging. Prevention of crack propagation is of critical importance in high-fatigue situations, such as those encountered in mastication and para-function. However, the poor translucency of Y-TZP means that it may not meet the aesthetic requirements due to its white/grey appearance in polycrystalline form. To improve optical property of the Zirconia, precise evaluation of its refractive index is of significance. Zirconia`s optical properties need to be studied more in depth. Number of studies assumed, scattered light is isotropically distributed over all angles from biological media when defining optical parameters. Nevertheless, optical behaviour of real biological material depends on angular scattering of light by anisotropy material. Therefore, the average cosine of the scattering angle (which represent recovery phase function in the scattering angular distribution) usually characterized by anisotropy material. It has been identified that yttrium anti-sites present in the space charge layer have no significant role in the absorption of light in the visible range. Addition of cation dopant to polycrystalline zirconia results in segregate to grain boundaries and grain growth. Intrinsic and extrinsic properties of ZrO2 and their effect on optical properties need to be investigated. Intrinsic properties such as chemical composition, defect structure (oxygen vacancy), phase configuration (porosity, second phase) and distribution of phase need to be studied to comprehend their effect on refraction index, absorption/reflection and scattering. Extrinsic properties such as surface structure, thickness, underlying tooth structure, cement layer (type, thickness), and light source (natural, curing, artificial) of ZrO2 need to be studied to understand their effect on colour and translucency of material. This research reviewed effect of stabilization of tetragonal zirconia on optical property of zirconia for dental application.Keywords: optical properties, zirconia dental biomaterial, chemical composition, phase composition
Procedia PDF Downloads 395164 Acid Soil Amelioration Using Coal Bio-Briquette Ash and Waste Concrete in China
Abstract:
The decrease in agricultural production due to soil deterioration has been an urgent task. Soil acidification is a potentially serious land degradation issue and it will have a major impact on agricultural productivity and sustainable farming systems. In China, acid soil is mainly distributed in the southern part, the decrease in agricultural production and heavy metal contamination are serious problems. In addition, not only environmental and health problems due to the exhaust gas such as mainly sulfur dioxide (SO₂) but also the generation of a huge amount of construction and demolition wastes with the accelerating urbanization has emerged as a social problem in China. Therefore, the need for the recycling and reuse of both desulfurization waste and waste concrete is very urgent and necessary. So we have investigated the effectiveness as acid soil amendments of both coal bio-briquette ash and waste concrete. In this paper, acid soil (AS1) in Nanjing (pH=6.0, EC=1.6dSm-1) and acid soil (AS2) in Guangzhou (pH=4.1, EC=0.2dSm-1) were investigated in soil amelioration test. Soil amendments were three coal bio-briquette ashes (BBA1, BBA2 and BBA3), the waste cement fine powders (CFP) ( < 200µm (particle diameter)), waste concrete particles (WCP) ( < 4.75mm ( < 0.6mm, 0.6-1.0mm, 1.0-2.0mm, 2.0-4.75mm)), and six mixtures with two coal bio-briquette ashes (BBA2 and BBA3), CFP, WCP( < 0.6mm) and WCP(2.0-4.75mm). In acid soil amelioration test, the three BBAs, CFP and various WCPs based on exchangeable calcium concentration were added to two acid soils. The application rates were from 0 wt% to 3.5 wt% in AS1 test and from 0 wt% to 6.0 wt% in AS2 test, respectively. Soil chemical properties (pH, EC, exchangeable and soluble ions (Na, Ca, Mg, K)) before and after mixing with soil amendments were measured. In addition, Al toxicity and the balance of salts (CaO, K₂O, MgO) in soil after amelioration was evaluated. The order of pH and exchangeable Ca concentration that is effective for acid soil amelioration was WCP(0.6mm) > CFP > WCP(2.0-4.25mm) > BB1 > BB2 > BB3. In all AS 1 and AS 2 amelioration tests using three BBAs, the pH and EC increased slightly with the increase of application rate and reached to the appropriate value range of both pH and EC in BBA1 only. Because BBA1 was higher value in pH and exchangeable Ca. After that, soil pH and EC with the increase in the application rate of BBA2, BBA3 and by using CFP, WC( < 0.6mm), WC(2.0-4.75mm) as soil amendment reached to each appropriate value range, respectively. In addition, the mixture amendments with BBA2, BBA3 CFP, WC( < 0.6mm), and WC(2.0-4.75mm) could ameliorate at a smaller amount of application rate in case of BBA only. And the exchangeable Al concentration decreased drastically with the increase in pH due to soil amelioration and was under the standard value. Lastly, the heavy metal (Cd, As, Se, Ni, Cr, Pb, Mo, B, Cu, Zn) contents in new soil amendments were under control standard values for agricultural use in China. Thus we could propose a new acid soil amelioration method using coal bio-briquette ash and waste concrete in China.Keywords: acid soil, coal bio-briquette ash, soil amelioration, waste concrete
Procedia PDF Downloads 182163 Proposals to Increase the Durability of Concrete Affected by Acid Mine Waters
Authors: Cristian Rodriguez, Jose M. Davila, Aguasanta M. Sarmiento, María L. de la Torre
Abstract:
There are many acidic environments that degrade structural concrete, such as those found in water treatment plants, sports facilities, and more, but one of the most aggressive is undoubtedly the water from acid mine drainage. This phenomenon occurs in all pyrite mining facilities and, to a lesser extent, in coal mines and is characterised by very low pH values and high sulphate, metal, and metalloid contents. This phenomenon causes significant damage to the concrete, mainly attacking the binder. In addition, the process is accentuated by the action of acidophilic bacteria, which accelerate the cracking of the concrete. Due to the damage that concrete experiences in acidic environments, the authors of this study aimed to enhance its performance in various aspects. Thus, two solutions have been proposed to improve the concrete durability, acting both on the mass of the material itself with the incorporation of fibres, and on its surface, proposing treatments with two different paints. The incorporation of polypropylene fibres in the concrete mass aims to improve the tensile strength of concrete, being this parameter the most affected in this type of degradation. The protection of the concrete with surface paint is intended to improve the performance against abrasion while reducing the access of water to the interior of the mass of the material. Sulpho-resistant cement has been used in all the mass concrete mixtures that have been prepared, in addition to complying with the requirements of the current Spanish standard, equivalent to the Eurocodes. For the polypropylene fibres, two alternatives have been used, with 1.7 and 3.4 kg/m³, while as surface treatment, the use of two paints has been analysed, one based on polyurethane and the other on asphalt-type paint. The proposed treatments have been analysed by means of indirect tensile tests and pressure sandblasting, thus analysing the effects of abrasion. The results obtained have confirmed a slight increase in the tensile strength of mass concrete by incorporating polypropylene fibres, being slightly higher for a ratio of 3.4 kg/m³, with an improvement of slightly more than 5% in the tensile strength of concrete. However, the use of fibres in concrete greatly reduces the loss of concrete mass due to abrasion. This improvement against abrasion is even more significant when paint is used as an external protection measure, with a much lower loss of mass with both paints. Acknowledgments: This work has been supported by MICIU/AEI/10.13039/501100011033/FEDER, UE, throughout the project PID2021-123130OB-I00.Keywords: degradation, concrete, tensile strength, abrasion
Procedia PDF Downloads 15162 Fabric-Reinforced Cementitious Matrix (FRCM)-Repaired Corroded Reinforced Concrete (RC) Beams under Monotonic and Fatigue Loads
Authors: Mohammed Elghazy, Ahmed El Refai, Usama Ebead, Antonio Nanni
Abstract:
Rehabilitating corrosion-damaged reinforced concrete (RC) structures has been accomplished using various techniques such as steel plating, external post-tensioning, and external bonding of fiber reinforced polymer (FRP) composites. This paper reports on the use of an innovative technique to strengthen corrosion-damaged RC structures using fabric-reinforced cementitious matrix (FRCM) composites. FRCM consists of dry-fiber fabric embedded in cement-based matrix. Twelve large-scale RC beams were constructed and tested in flexural monotonic and fatigue loads. Prior to testing, ten specimens were subjected to accelerated corrosion process for 140 days leading to an average mass loss in the tensile steel bars of 18.8 %. Corrosion was restricted to the main reinforcement located in the middle third of the beam span. Eight corroded specimens were repaired and strengthened while two virgin and two corroded-unrepaired/unstrengthened beams were used as benchmarks for comparison purpose. The test parameters included the FRCM materials (Carbon-FRCM, PBO-FRCM), the number of FRCM plies, the strengthening scheme, and the type of loading (monotonic and fatigue). The effects of the pervious parameters on the flexural response, the mode of failure, and the fatigue life were reported. Test results showed that corrosion reduced the yield and ultimate strength of the beams. The corroded-unrepaired specimen failed to meet the provisions of the ACI-318 code for crack width criteria. The use of FRCM significantly increased the ultimate strength of the corroded specimen by 21% and 65% more than that of the corroded-unrepaired specimen. Corrosion significantly decreased the fatigue life of the corroded-unrepaired beam by 77% of that of the virgin beam. The fatigue life of the FRCM repaired-corroded beams increased to 1.5 to 3.8 times that of the corroded-unrepaired beam but was lower than that of the virgin specimen. The specimens repaired with U-wrapped PBO-FRCM strips showed higher fatigue life than those repaired with the end-anchored bottom strips having similar number of PBO-FRCM-layers. PBO-FRCM was more effective than Carbon-FRCM in restoring the fatigue life of the corroded specimens.Keywords: corrosion, concrete, fabric-reinforced cementitious matrix (FRCM), fatigue, flexure, repair
Procedia PDF Downloads 296161 Implementation of Correlation-Based Data Analysis as a Preliminary Stage for the Prediction of Geometric Dimensions Using Machine Learning in the Forming of Car Seat Rails
Authors: Housein Deli, Loui Al-Shrouf, Hammoud Al Joumaa, Mohieddine Jelali
Abstract:
When forming metallic materials, fluctuations in material properties, process conditions, and wear lead to deviations in the component geometry. Several hundred features sometimes need to be measured, especially in the case of functional and safety-relevant components. These can only be measured offline due to the large number of features and the accuracy requirements. The risk of producing components outside the tolerances is minimized but not eliminated by the statistical evaluation of process capability and control measurements. The inspection intervals are based on the acceptable risk and are at the expense of productivity but remain reactive and, in some cases, considerably delayed. Due to the considerable progress made in the field of condition monitoring and measurement technology, permanently installed sensor systems in combination with machine learning and artificial intelligence, in particular, offer the potential to independently derive forecasts for component geometry and thus eliminate the risk of defective products - actively and preventively. The reliability of forecasts depends on the quality, completeness, and timeliness of the data. Measuring all geometric characteristics is neither sensible nor technically possible. This paper, therefore, uses the example of car seat rail production to discuss the necessary first step of feature selection and reduction by correlation analysis, as otherwise, it would not be possible to forecast components in real-time and inline. Four different car seat rails with an average of 130 features were selected and measured using a coordinate measuring machine (CMM). The run of such measuring programs alone takes up to 20 minutes. In practice, this results in the risk of faulty production of at least 2000 components that have to be sorted or scrapped if the measurement results are negative. Over a period of 2 months, all measurement data (> 200 measurements/ variant) was collected and evaluated using correlation analysis. As part of this study, the number of characteristics to be measured for all 6 car seat rail variants was reduced by over 80%. Specifically, direct correlations for almost 100 characteristics were proven for an average of 125 characteristics for 4 different products. A further 10 features correlate via indirect relationships so that the number of features required for a prediction could be reduced to less than 20. A correlation factor >0.8 was assumed for all correlations.Keywords: long-term SHM, condition monitoring, machine learning, correlation analysis, component prediction, wear prediction, regressions analysis
Procedia PDF Downloads 48160 DC Bus Voltage Ripple Control of Photo Voltaic Inverter in Low Voltage Ride-Trough Operation
Authors: Afshin Kadri
Abstract:
Using Renewable Energy Resources (RES) as a type of DG unit is developing in distribution systems. The connection of these generation units to existing AC distribution systems changes the structure and some of the operational aspects of these grids. Most of the RES requires to power electronic-based interfaces for connection to AC systems. These interfaces consist of at least one DC/AC conversion unit. Nowadays, grid-connected inverters must have the required feature to support the grid under sag voltage conditions. There are two curves in these conditions that show the magnitude of the reactive component of current as a function of voltage drop value and the required minimum time value, which must be connected to the grid. This feature is named low voltage ride-through (LVRT). Implementing this feature causes problems in the operation of the inverter that increases the amplitude of high-frequency components of the injected current and working out of maximum power point in the photovoltaic panel connected inverters are some of them. The important phenomenon in these conditions is ripples in the DC bus voltage that affects the operation of the inverter directly and indirectly. The losses of DC bus capacitors which are electrolytic capacitors, cause increasing their temperature and decreasing its lifespan. In addition, if the inverter is connected to the photovoltaic panels directly and has the duty of maximum power point tracking, these ripples cause oscillations around the operating point and decrease the generating energy. Using a bidirectional converter in the DC bus, which works as a buck and boost converter and transfers the ripples to its DC bus, is the traditional method to eliminate these ripples. In spite of eliminating the ripples in the DC bus, this method cannot solve the problem of reliability because it uses an electrolytic capacitor in its DC bus. In this work, a control method is proposed which uses the bidirectional converter as the fourth leg of the inverter and eliminates the DC bus ripples using an injection of unbalanced currents into the grid. Moreover, the proposed method works based on constant power control. In this way, in addition, to supporting the amplitude of grid voltage, it stabilizes its frequency by injecting active power. Also, the proposed method can eliminate the DC bus ripples in deep voltage drops, which cause increasing the amplitude of the reference current more than the nominal current of the inverter. The amplitude of the injected current for the faulty phases in these conditions is kept at the nominal value and its phase, together with the phase and amplitude of the other phases, are adjusted, which at the end, the ripples in the DC bus are eliminated, however, the generated power decreases.Keywords: renewable energy resources, voltage drop value, DC bus ripples, bidirectional converter
Procedia PDF Downloads 76159 Synthesis of Temperature Sensitive Nano/Microgels by Soap-Free Emulsion Polymerization and Their Application in Hydrate Sediments Drilling Operations
Authors: Xuan Li, Weian Huang, Jinsheng Sun, Fuhao Zhao, Zhiyuan Wang, Jintang Wang
Abstract:
Natural gas hydrates (NGHs) as promising alternative energy sources have gained increasing attention. Hydrate-bearing formation in marine areas is highly unconsolidated formation and is fragile, which is composed of weakly cemented sand-clay and silty sediments. During the drilling process, the invasion of drilling fluid can easily lead to excessive water content in the formation. It will change the soil liquid plastic limit index, which significantly affects the formation quality, leading to wellbore instability due to the metastable character of hydrate-bearing sediments. Therefore, controlling the filtrate loss into the formation in the drilling process has to be highly regarded for protecting the stability of the wellbore. In this study, the temperature-sensitive nanogel of P(NIPAM-co-AMPS-co-tBA) was prepared by soap-free emulsion polymerization, and the temperature-sensitive behavior was employed to achieve self-adaptive plugging in hydrate sediments. First, the effects of additional amounts of AMPS, tBA, and cross-linker MBA on the microgel synthesis process and temperature-sensitive behaviors were investigated. Results showed that, as a reactive emulsifier, AMPS can not only participate in the polymerization reaction but also act as an emulsifier to stabilize micelles and enhance the stability of nanoparticles. The volume phase transition temperature (VPTT) of nanogels gradually decreased with the increase of the contents of hydrophobic monomer tBA. An increase in the content of the cross-linking agent MBA can lead to a rise in the coagulum content and instability of the emulsion. The plugging performance of nanogel was evaluated in a core sample with a pore size distribution range of 100-1000nm. The temperature-sensitive nanogel can effectively improve the microfiltration performance of drilling fluid. Since a combination of a series of nanogels could have a wide particle size distribution at any temperature, around 200nm to 800nm, the self-adaptive plugging capacity of nanogels for the hydrate sediments was revealed. Thermosensitive nanogel is a potential intelligent plugging material for drilling operations in natural gas hydrate-bearing sediments.Keywords: temperature-sensitive nanogel, NIPAM, self-adaptive plugging performance, drilling operations, hydrate-bearing sediments
Procedia PDF Downloads 171158 Characterization of a Lipolytic Enzyme of Pseudomonas nitroreducens Isolated from Mealworm's Gut
Authors: Jung-En Kuan, Whei-Fen Wu
Abstract:
In this study, a symbiotic bacteria from yellow mealworm's (Tenebrio molitor) mid-gut was isolated with characteristics of growth on minimal-tributyrin medium. After a PCR-amplification of its 16s rDNA, the resultant nucleotide sequences were then analyzed by schemes of the phylogeny trees. Accordingly, it was designated as Pseudomonas nitroreducens D-01. Next, by searching the lipolytic enzymes in its protein data bank, one of those potential lipolytic α/β hydrolases was identified, again using PCR-amplification and nucleotide-sequencing methods. To construct an expression of this lipolytic gene in plasmids, the target-gene primers were then designed, carrying the C-terminal his-tag sequences. Using the vector pET21a, a recombinant lipolytic hydrolase D gene with his-tag nucleotides was successfully cloned into it, of which the lipolytic D gene is under a control of the T7 promoter. After transformation of the resultant plasmids into Eescherichia coli BL21 (DE3), an IPTG inducer was used for the induction of the recombinant proteins. The protein products were then purified by metal-ion affinity column, and the purified proteins were found capable of forming a clear zone on tributyrin agar plate. Shortly, its enzyme activities were determined by degradation of p-nitrophenyl ester(s), and the substantial yellow end-product, p-nitrophenol, was measured at O.D.405 nm. Specifically, this lipolytic enzyme efficiently targets p-nitrophenyl butyrate. As well, it shows the most reactive activities at 40°C, pH 8 in potassium phosphate buffer. In thermal stability assays, the activities of this enzyme dramatically drop when the temperature is above 50°C. In metal ion assays, MgCl₂ and NH₄Cl induce the enzyme activities while MnSO₄, NiSO₄, CaCl₂, ZnSO₄, CoCl₂, CuSO₄, FeSO₄, and FeCl₃ reduce its activities. Besides, NaCl has no effects on its enzyme activities. Most organic solvents decrease the activities of this enzyme, such as hexane, methanol, ethanol, acetone, isopropanol, chloroform, and ethyl acetate. However, its enzyme activities increase when DMSO exists. All the surfactants like Triton X-100, Tween 80, Tween 20, and Brij35 decrease its lipolytic activities. Using Lineweaver-Burk double reciprocal methods, the function of the enzyme kinetics were determined such as Km = 0.488 (mM), Vmax = 0.0644 (mM/min), and kcat = 3.01x10³ (s⁻¹), as well the total efficiency of kcat/Km is 6.17 x10³ (mM⁻¹/s⁻¹). Afterwards, based on the phylogenetic analyses, this lipolytic protein is classified to type IV lipase by its homologous conserved region in this lipase family.Keywords: enzyme, esterase, lipotic hydrolase, type IV
Procedia PDF Downloads 133157 Green and Cost-Effective Biofabrication of Copper Oxide Nanoparticles: Exploring Antimicrobial and Anticancer Applications
Authors: Yemane Tadesse Gebreslassie, Fisseha Guesh Gebremeskel
Abstract:
Nanotechnology has made remarkable advancements in recent years, revolutionizing various scientific fields, industries, and research institutions through the utilization of metal and metal oxide nanoparticles. Among these nanoparticles, copper oxide nanoparticles (CuO NPs) have garnered significant attention due to their versatile properties and wide-range applications, particularly, as effective antimicrobial and anticancer agents. CuO NPs can be synthesized using different methods, including physical, chemical, and biological approaches. However, conventional chemical and physical approaches are expensive, resource-intensive, and involve the use of hazardous chemicals, which can pose risks to human health and the environment. In contrast, biological synthesis provides a sustainable and cost-effective alternative by eliminating chemical pollutants and allowing for the production of CuO NPs of tailored sizes and shapes. This comprehensive review focused on the green synthesis of CuO NPs using various biological resources, such as plants, microorganisms, and other biological derivatives. Current knowledge and recent trends in green synthesis methods for CuO NPs are discussed, with a specific emphasis on their biomedical applications, particularly in combating cancer and microbial infections. This review highlights the significant potential of CuO NPs in addressing these diseases. By capitalizing on the advantages of biological synthesis, such as environmental safety and the ability to customize nanoparticle characteristics, CuO NPs have emerged as promising therapeutic agents for a wide range of conditions. This review presents compelling findings, demonstrating the remarkable achievements of biologically synthesized CuO NPs as therapeutic agents. Their unique properties and mechanisms enable effective combating against cancer cells and various harmful microbial infections. CuO NPs exhibit potent anticancer activity through diverse mechanisms, including induction of apoptosis, inhibition of angiogenesis, and modulation of signaling pathways. Additionally, their antimicrobial activity manifests through various mechanisms, such as disrupting microbial membranes, generating reactive oxygen species, and interfering with microbial enzymes. This review offers valuable insights into the substantial potential of biologically synthesized CuO NPs as an alternative approach for future therapeutic interventions against cancer and microbial infections.Keywords: biological synthesis, copper oxide nanoparticles, microbial infection, nanotechnology
Procedia PDF Downloads 62156 Long Short-Term Memory Stream Cruise Control Method for Automated Drift Detection and Adaptation
Authors: Mohammad Abu-Shaira, Weishi Shi
Abstract:
Adaptive learning, a commonly employed solution to drift, involves updating predictive models online during their operation to react to concept drifts, thereby serving as a critical component and natural extension for online learning systems that learn incrementally from each example. This paper introduces LSTM-SCCM “Long Short-Term Memory Stream Cruise Control Method”, a drift adaptation-as-a-service framework for online learning. LSTM-SCCM automates drift adaptation through prompt detection, drift magnitude quantification, dynamic hyperparameter tuning, performing shortterm optimization and model recalibration for immediate adjustments, and, when necessary, conducting long-term model recalibration to ensure deeper enhancements in model performance. LSTM-SCCM is incorporated into a suite of cutting-edge online regression models, assessing their performance across various types of concept drift using diverse datasets with varying characteristics. The findings demonstrate that LSTM-SCCM represents a notable advancement in both model performance and efficacy in handling concept drift occurrences. LSTM-SCCM stands out as the sole framework adept at effectively tackling concept drifts within regression scenarios. Its proactive approach to drift adaptation distinguishes it from conventional reactive methods, which typically rely on retraining after significant degradation to model performance caused by drifts. Additionally, LSTM-SCCM employs an in-memory approach combined with the Self-Adjusting Memory (SAM) architecture to enhance real-time processing and adaptability. The framework incorporates variable thresholding techniques and does not assume any particular data distribution, making it an ideal choice for managing high-dimensional datasets and efficiently handling large-scale data. Our experiments, which include abrupt, incremental, and gradual drifts across both low- and high-dimensional datasets with varying noise levels, and applied to four state-of-the-art online regression models, demonstrate that LSTM-SCCM is versatile and effective, rendering it a valuable solution for online regression models to address concept drift.Keywords: automated drift detection and adaptation, concept drift, hyperparameters optimization, online and adaptive learning, regression
Procedia PDF Downloads 11155 Comparative Analysis of the Antioxidant Capacities of Pre-Germinated and Germinated Pigmented Rice (Oryza sativa L. Cv. Superjami and Superhongmi)
Authors: Soo Im Chung, Lara Marie Pangan Lo, Yao Cheng Zhang, Su Jin Nam, Xingyue Jin, Mi Young Kang
Abstract:
Rice (Oryza sativa L.) is one of the most widely consumed grains. Due to the growing number of demand as a potential functional food and nutraceutical source and the increasing awareness of people towards healthy diet and good quality of living, more researches dwell upon the development of new rice cultivars for population consumption. However, studies on the antioxidant capacities of newly developed rice were limited as well as the effects of germination in these rice cultivars. Therefore, this study aimed to focus on analysis of the antioxidant potential of pre-germinated and germinated pigmented rice cultivars in South Korea such as purple cultivar Superjami (SJ) and red cultivar Super hongmi (SH) in comparison with the non-pigmented Normal Brown (NB) Rice. The powdered rice grain samples were extracted with 80% methanol and their antioxidant activities were determined. The Results showed that pre-germinated pigmented rice cultivars have higher Fe2+ Chelating Ability (Fe2+), Reducing Power (RP), 2,2´-azinobis[3-ethylbenzthiazoline]-6-sulfonic acid (ABTS) radical scavenging and Superoxide Dismutase activity than the control NB rice. Moreover, it is revealed that germination process induced a significant increased in the antioxidant activities of all the rice samples regardless of their strains. Purple rice SJ showed greater Fe2+ (88.82 + 0.53%), RP (0.82 + 0.01) , ABTS (143.63 + 2.38 mg VCEAC/100 g) and SOD (59.31 + 0.48%) activities than the red grain SH and the control NB having the lowest antioxidant potential among the three (3) rice samples examined. The Effective concentration at 50% (EC50) of 1, 1-Diphenyl-2-picrylhydrazyl (DPPH) and Hydroxyradical (-OH) Scavenging activity for the rice samples were also obtained. SJ showed lower EC50 in terms of its DPPH (3.81 + 0.15 mg/mL) and –OH (5.19 + 0.08 mg/mL) radical scavenging activities than the red grain SH and control NB rice indicating that at lower concentrations, it can readily exhibit antioxidant effects against reactive oxygen species (ROS). These results clearly suggest the higher antioxidant potential of pigmented rice varieties as compared with the widely consumed NB rice. Also, it is revealed in the study that even at lower concentrations, pigmented rice varieties can exhibit their antioxidant activities. Germination process further enhanced the antioxidant capacities of the rice samples regardless of their types. With these results at hand, these new rice varieties can be further developed as a good source of bio functional elements that can help alleviate the growing number of cases of metabolic disorders.Keywords: antioxidant capacity, germinated rice, pigmented rice, super hongmi, superjami
Procedia PDF Downloads 444154 The Association between C-Reactive Protein and Hypertension with Different US Participants Ethnicity-Findings from National Health and Nutrition Examination Survey 1999-2010
Authors: Ghada Abo-Zaid
Abstract:
The main objective of this study was to examine the association between the elevated level of CRP and incidence of hypertension before and after adjusting by age, BMI, gender, SES, smoking, diabetes, cholesterol LDL and cholesterol HDL and to determine whether the association were differ by race. Method: Cross sectional data for participations from age 17 to age 74 years who included in The National Health and Nutrition Examination Survey (NHANES) from 1999 to 2010 were analysed. CRP level was classified into three categories ( > 3mg/L, between 1mg/LL and 3mg/L, and < 3 mg/L). Blood pressure categorization was done using JNC 7 algorithm Hypertension defined as either systolic blood pressure (SBP) of 140 mmHg or more and disystolic blood pressure (DBP) of 90mmHg or greater, otherwise a self-reported prior diagnosis by a physician. Pre-hypertension was defined as (139 > SBP > 120 or 89 > DPB > 80). Multinominal regression model was undertaken to measure the association between CRP level and hypertension. Results: In univariable models, CRP concentrations > 3 mg/L were associated with a 73% greater risk of incident hypertension compared with CRP concentrations < 1 mg/L (Hypertension: odds ratio [OR] = 1.73; 95% confidence interval [CI], 1.50-1.99). Ethnic comparisons showed that American Mexican had the highest risk of incident hypertension (odds ratio [OR] = 2.39; 95% confidence interval [CI], 2.21-2.58).This risk was statistically insignificant, however, either after controlling by other variables (Hypertension: OR = 0.75; 95% CI, 0.52-1.08,), or categorized by race [American Mexican: odds ratio [OR] = 1.58; 95% confidence interval [CI], 0,58-4.26, Other Hispanic: odds ratio [OR] = 0.87; 95% confidence interval [CI], 0.19-4.42, Non-Hispanic white: odds ratio [OR] = 0.90; 95% confidence interval [CI], 0.50-1.59, Non-Hispanic Black: odds ratio [OR] = 0.44; 95% confidence interval [CI], 0.22-0,87]. The same results were found for pre-hypertension, and the Non-Hispanic black showed the highest significant risk for Pre-Hypertension (odds ratio [OR] = 1.60; 95% confidence interval [CI], 1.26-2.03). When CRP concentrations were between 1.0-3.0 mg/L, in an unadjusted models prehypertension was associated with higher likelihood of elevated CRP (OR = 1.37; 95% CI, 1.15-1.62). The same relationship was maintained in Non-Hispanic white, Non-Hispanic black, and other race (Non-Hispanic white: OR = 1.24; 95% CI, 1.03-1.48, Non-Hispanic black: OR = 1.60; 95% CI, 1.27-2.03, other race: OR = 2.50; 95% CI, 1.32-4.74) while the association was insignificant with American Mexican and other Hispanic. In the adjusted model, the relationship between CRP and prehypertension were no longer available. In contrary, Hypertension was not independently associated with elevated CRP, and the results were the same after grouped by race or adjusted by the confounder variables. The same results were obtained when SBP or DBP were on a continuous measure. Conclusions: This study confirmed the existence of an association between hypertension, prehypertension and elevated level of CRP, however this association was no longer available after adjusting by other variables. Ethic group differences were statistically significant at the univariable models, while it disappeared after controlling by other variables.Keywords: CRP, hypertension, ethnicity, NHANES, blood pressure
Procedia PDF Downloads 414153 To Compare Norepinephrine and Norepinephrine with Methylene Blue for the Management of Septic Shock
Authors: K. Rajarajeswaran, Krishna Prasad
Abstract:
Introduction: Refractory shock is a typical consequence of sepsis that does not improve with standard vasopressor therapy. A possible adjuvant therapeutic option for treating refractory shock in sepsis is methylene blue. This study looked at the effects of intravenous methylene blue plus norepinephrine given as a single bolus infusion on mortality and hemodynamic improvement in patients suffering from refractory shock. Methodology: This six-month observational prospective study was carried out at an intensive care unit, teaching hospital, and medical college. It involved 112 patients who had been diagnosed with refractory septic shock and needed vasopressor medication. Group B received injection norepinephrine 0.01 µg/kg/min infusion alone, while Group A received injection methylene blue 2 mg/kg iv single bolus (fixed dose) in addition to injection norepinephrine 0.01 µg/kg/min infusion. Both groups' noradrenaline doses were titrated to reach the desired MAP of 60–75 mm Hg. The amount of norepinephrine needed to sustain a MAP of more than 60 mm Hg was the data gathered. Serum lactate, procalcitonin level, C-reactive protein, length of stay in the intensive care unit (ICU), sequential organ failure assessment (SOFA) score, and duration of mechanical ventilation, incidence of acute kidney injury (AKI), and mortality were compared. Results: A total of 112 patients with refractory shock were included in the study. With the use of IV methylene blue, 36 (59.3%) patients showed significant improvement in MAP within 2 hours (77.12 ± 8.90 vs 74.28 ± 21.84, p = 0.005). Responders were 4.009 times more likely to have vasopressor-free time within 24 hours (19.5% vs 6.1%, p = 0.022, odds ratio 5.017, 95% confidence interval, 1.110–14.283). The serum lactate was lower, and urine output was higher in group I than in group II (p <0.05). Group I had a significantly greater reduction in SOFA score in 12 hours than group II. However, there was no significant difference in terms of mortality, length of ICU stay, ventilator free days, and incidence of AKI. In the responder group, there was a significant increase in the MAP and decrease in vasopressor requirement pre- and post-infusion of methylene blue (p < 0.05). Responder had shorter vasopressor-free days as compared with non-responder (5.44 vs 6.99, p = 0.007). Conclusion: When administered as adjuvant therapy, a single-dose bolus infusion of Methylene Blue plus Norepinephrine may aid in meeting early resuscitation goals for the management of patients with septic shock. But the patients' death rate, ICU stay duration, ventilator-free days, or incidence of AKI were unchanged.Keywords: norepinephrine, methylene blue, shock, vasopressor
Procedia PDF Downloads 19152 The Effect of Aerobic Training and Consumption of Apple Vinegar on Cardiovascular Risk Factor in Older Women
Authors: S. Fazelifar, M. Ghasemi
Abstract:
Aim: Recent studies on cardiovascular risk factors have been focused on the new markers of inflammatory diseases such as C-reactive protein (CRP). Research evidence shows that physical activity along with other factors such as reduced smoking, controlling blood pressure, control blood lipids TC, LDL-c, HDL-c and having a healthy weight can reduce the risk of chronic heart disease (CHD) .Therefore, the aim of this study was to determine the effect of twelve weeks aerobic exercise and consumption of apple vinegar on cardiovascular risk factor in older women. Methodology: 28 inactive women (mean body weight 72.13 ± 8.6 kg, height 157 ± 7.4cm, age 48.06 ± 5.18 years and BMI 28.2 ± 3.2 kg/m2) by recall and notice of investigation, among of the eligible voters recruited and randomly divided in 4 groups: control, apple vinegar, exercise, exercise + apple vinegar. The training program includes a 20-minute warm-up and stretching, running for 15 minutes in the first session with an intensity of 80% of maximum heart rate and an increase in one-minute run time in next training session. Also, subjects in experimental groups received daily specified amount of 50 ml apple vinegar. Blood samples were collected from the brachial vein in before and after training to measure CRP and blood lipids (cholesterol, HDL, VLDL, LDL). The levels of CRP were measured by ELISA way. K-S test to determine the normality of the data and analysis of variance for repeated measures was used to analyze the data. A significant difference in the p < 0/05 accepted. Results: The results indicated that individual characteristics including height, weight, age, and body mass index were not significantly different among the four groups. The results showed that levels of CRP and LDL cholesterol were significantly reduced in all groups at post-test compared to the pre-test. The HDL levels increased significantly in all groups in post-test compared to the pre-test. Analysis of the data indicates that levels of CRP, TC, and LDL were significantly reduced in all groups compared to the control group, while the changes in the other groups were not significant relative to each other. Conclusion: Results of this study showed that twelve weeks of aerobic exercise with apple vinegar cause a significant decrease in CRP, cholesterol, LDL, and significantly increased HDL levels. According to the results of this study, it is possible that aerobic exercise with apple vinegar can inhibit CRP and undesirable fats. Considering the strong association between the inflammatory indices and the prevalence of cardiovascular diseases, every factor that decreases these indices can reduce the cardiovascular complications.Keywords: aerobic exercise, apple vinegar, CRP, older women
Procedia PDF Downloads 472151 Phytochemical Composition and Biological Activities of the Vegetal Extracts of Six Aromatic and Medicinal Plants of Algerian Flora and Their Uses in Food and Pharmaceutical Industries
Authors: Ziani Borhane Eddine Cherif, Hazzi Mohamed, Mouhouche Fazia
Abstract:
The vegetal extracts of aromatic and medicinal plants start to have much of interest like potential sources of natural bioactive molecules. Many features are conferred by the nature of the chemical function of their major constituents (phenol, alcohol, aldehyde, cetone). This biopotential lets us to focalize on the study of three main biological activities, the antioxidant, antibiotic and insecticidal activities of six Algerian aromatic plants in the aim of making in evidence by the chromatographic analysis (CPG and CG/SM) the phytochemical compounds implicating in this effects. The contents of Oxygenated monoterpenes represented the most prominent group of constituents in the majority of plants. However, the α-Terpineol (28,3%), Carvacrol (47,3%), pulégone (39,5%), Chrysanthenone (27,4%), Thymol 23,9%, γ-Terpinene 23,9% and 2-Undecanone(94%) were the main components. The antioxyding activity of the Essential oils and no-volatils extracts was evaluated in vitro using four tests: inhibition of free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the 2,2-Azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) radical-scavenging activity (ABTS•+), the thiobarbituric acid reactive substances (TBARS) assays and the reducing power. The measures of the IC50 of these natural compounds revealed potent activity (between 254.64-462.76mg.l-1), almost similar to that of BHT, BHA, Tocopherol and Ascorbic acid (126,4-369,1 mg.l-1) and so far than the Trolox one (IC50= 2,82mg.l-1). Furthermore, three ethanol extracts were found to be remarkably effective toward DPPH and ABTS inhibition, compared to chemical antioxidant BHA and BHT (IC = 9.8±0.1 and 28±0.7 mg.l-1, respectively); for reducing power test it has also exhibited high activity. The study on the insecticidal activity effect by contact, inhalation, fecundity and fertility of Callosobruchus maculatus and Tribolium confusum showed a strong potential biocide reaching 95-100% mortality only after 24 hours. The antibiotic activity of our essential oils were evaluated by a qualitative study (aromatogramme) and quantitative (MIC, MBC and CML) on four bacteria (Gram+ and Gram-) and one strain of pathogenic yeast, the results of these tests showed very interesting action than that induced by the same reference antibiotics (Gentamycin, and Nystatin Ceftatidine) such that the inhibition diameters and MIC values for tested microorganisms were in the range of 23–58 mm and 0.015–0.25%(v/v) respectively.Keywords: aromatic plants, essential oils, no-volatils extracts, bioactive molecules, antioxidant activity, insecticidal activity, antibiotic activity
Procedia PDF Downloads 220150 Alkali Activated Materials Based on Natural Clay from Raciszyn
Authors: Michal Lach, Maria Hebdowska-Krupa, Justyna Stefanek, Artur Stanek, Anna Stefanska, Janusz Mikula, Marek Hebda
Abstract:
Limited resources of raw materials determine the necessity of obtaining materials from other sources. In this area, the most known and widespread are recycling processes, which are mainly focused on the reuse of material. Another possible solution used in various companies to achieve improvement in sustainable development is waste-free production. It involves the production exclusively from such materials, whose waste is included in the group of renewable raw materials. This means that they can: (i) be recycled directly during the manufacturing process of further products or (ii) be raw material obtained by other companies for the production of alternative products. The article presents the possibility of using post-production clay from the Jurassic limestone deposit "Raciszyn II" as a raw material for the production of alkali activated materials (AAM). Such products are currently increasingly used, mostly in various building applications. However, their final properties depend significantly on many factors; the most important of them are: chemical composition of the raw material, particle size, specific surface area, type and concentration of the activator and the temperature range of the heat treatment. Conducted mineralogical and chemical analyzes of clay from the “Raciszyn II” deposit confirmed that this material, due to its high content of aluminosilicates, can be used as raw material for the production of AAM. In order to obtain the product with the best properties, the optimization of the clay calcining process was also carried out. Based on the obtained results, it was found that this process should occur in the range between 750 oC and 800 oC. The use of a lower temperature causes getting a raw material with low metakaolin content which is the main component of materials suitable for alkaline activation processes. On the other hand, higher heat treatment temperatures cause thermal dissociation of large amounts of calcite, which is associated with the release of large amounts of CO2 and the formation of calcium oxide. This compound significantly accelerates the binding process, which consequently often prevents the correct formation of geopolymer mass. The effect of the use of various activators: (i) NaOH, (ii) KOH and (iii) a mixture of KOH to NaOH in a ratio of 10%, 25% and 50% by volume on the compressive strength of the AAM was also analyzed. Obtained results depending on the activator used were in the range from 25 MPa to 40 MPa. These values are comparable with the results obtained for materials produced on the basis of Portland cement, which is one of the most popular building materials.Keywords: alkaline activation, aluminosilicates, calcination, compressive strength
Procedia PDF Downloads 153149 Dry Modifications of PCL/Chitosan/PCL Tissue Scaffolds
Authors: Ozan Ozkan, Hilal Turkoglu Sasmazel
Abstract:
Natural polymers are widely used in tissue engineering applications, because of their biocompatibility, biodegradability and solubility in the physiological medium. On the other hand, synthetic polymers are also widely utilized in tissue engineering applications, because they carry no risk of infectious diseases and do not cause immune system reaction. However, the disadvantages of both polymer types block their individual usages as tissue scaffolds efficiently. Therefore, the idea of usage of natural and synthetic polymers together as a single 3D hybrid scaffold which has the advantages of both and the disadvantages of none has been entered to the literature. On the other hand, even though these hybrid structures support the cell adhesion and/or proliferation, various surface modification techniques applied to the surfaces of them to create topographical changes on the surfaces and to obtain reactive functional groups required for the immobilization of biomolecules, especially on the surfaces of synthetic polymers in order to improve cell adhesion and proliferation. In a study presented here, to improve the surface functionality and topography of the layer by layer electrospun 3D poly-epsilon-caprolactone/chitosan/poly-epsilon-caprolactone hybrid tissue scaffolds by using atmospheric pressure plasma method, thus to improve cell adhesion and proliferation of these tissue scaffolds were aimed. The formation/creation of the functional hydroxyl and amine groups and topographical changes on the surfaces of scaffolds were realized by using two different atmospheric pressure plasma systems (nozzle type and dielectric barrier discharge (DBD) type) carried out under different gas medium (air, Ar+O2, Ar+N2). The plasma modification time and distance for the nozzle type plasma system as well as the plasma modification time and the gas flow rate for DBD type plasma system were optimized with monitoring the changes in surface hydrophilicity by using contact angle measurements. The topographical and chemical characterizations of these modified biomaterials’ surfaces were carried out with SEM and ESCA, respectively. The results showed that the atmospheric pressure plasma modifications carried out with both nozzle type plasma and DBD plasma caused topographical and functionality changes on the surfaces of the layer by layer electrospun tissue scaffolds. However, the shelf life studies indicated that the hydrophilicity introduced to the surfaces was mainly because of the functionality changes. Therefore, according to the optimized results, samples treated with nozzle type air plasma modification applied for 9 minutes from a distance of 17 cm and Ar+O2 DBD plasma modification applied for 1 minute under 70 cm3/min O2 flow rate were found to have the highest hydrophilicity compared to pristine samples.Keywords: biomaterial, chitosan, hybrid, plasma
Procedia PDF Downloads 276148 Sedimentary, Diagenesis and Evaluation of High Quality Reservoir of Coarse Clastic Rocks in Nearshore Deep Waters in the Dongying Sag; Bohai Bay Basin
Authors: Kouassi Louis Kra
Abstract:
The nearshore deep-water gravity flow deposits in the Northern steep slope of Dongying depression, Bohai Bay basin, have been acknowledged as important reservoirs in the rift lacustrine basin. These deep strata term as coarse clastic sediment, deposit at the root of the slope have complex depositional processes and involve wide diagenetic events which made high-quality reservoir prediction to be complex. Based on the integrated study of seismic interpretation, sedimentary analysis, petrography, cores samples, wireline logging data, 3D seismic and lithological data, the reservoir formation mechanism deciphered. The Geoframe software was used to analyze 3-D seismic data to interpret the stratigraphy and build a sequence stratigraphic framework. Thin section identification, point counts were performed to assess the reservoir characteristics. The software PetroMod 1D of Schlumberger was utilized for the simulation of burial history. CL and SEM analysis were performed to reveal diagenesis sequences. Backscattered electron (BSE) images were recorded for definition of the textural relationships between diagenetic phases. The result showed that the nearshore steep slope deposits mainly consist of conglomerate, gravel sandstone, pebbly sandstone and fine sandstone interbedded with mudstone. The reservoir is characterized by low-porosity and ultra-low permeability. The diagenesis reactions include compaction, precipitation of calcite, dolomite, kaolinite, quartz cement and dissolution of feldspars and rock fragment. The main types of reservoir space are primary intergranular pores, residual intergranular pores, intergranular dissolved pores, intergranular dissolved pores, and fractures. There are three obvious anomalous high-porosity zones in the reservoir. Overpressure and early hydrocarbon filling are the main reason for abnormal secondary pores development. Sedimentary facies control the formation of high-quality reservoir, oil and gas filling preserves secondary pores from late carbonate cementation.Keywords: Bohai Bay, Dongying Sag, deep strata, formation mechanism, high-quality reservoir
Procedia PDF Downloads 135147 Study of Phase Separation Behavior in Flexible Polyurethane Foam
Authors: El Hatka Hicham, Hafidi Youssef, Saghiri Khalid, Ittobane Najim
Abstract:
Flexible polyurethane foam (FPUF) is a low-density cellular material generally used as a cushioning material in many applications such as furniture, bedding, packaging, etc. It is commercially produced during a continuous process, where a reactive mixture of foam chemicals is poured onto a moving conveyor. FPUFs are produced by the catalytic balancing of two reactions involved, the blowing reaction (isocyanate-water) and the gelation reaction (isocyanate-polyol). The microstructure of FPUF is generally composed of soft phases (polyol phases) and rigid domains that separate into two domains of different sizes: the rigid polyurea microdomains and the macrodomains (larger aggregates). The morphological features of FPUF are strongly influenced by the phase separation morphology that plays a key role in determining the global FPUF properties. This phase-separated morphology results from a thermodynamic incompatibility between soft segments derived from aliphatic polyether and hard segments derived from the commonly used aromatic isocyanate. In order to improve the properties of FPUF against the different stresses faced by this material during its use, we report in this work a study of the phase separation phenomenon in FPUF that has been examined using SAXS WAXS and FTIR. Indeed, we have studied with these techniques the effect of water, isocyanates, and alkaline chlorides on the phase separation behavior. SAXS was used to study the morphology of the microphase separated, WAXS to examine the nature of the hard segment packing, and FTIR to investigate the hydrogen bonding characteristics of the materials studied. The prepared foams were shown to have different levels of urea phase connectivity; the increase in water content in the FPUF formulation leads to an increase in the amount of urea formed and consequently the increase of the size of urea aggregates formed. Alkali chlorides (NaCl, KCl, and LiCl) incorporated into FPUF formulations show that is the ability to prevent hydrogen bond formation and subsequently alter the rigid domains. FPUFs prepared by different isocyanate structures showed that urea aggregates are difficult to be formed in foams prepared by asymmetric diisocyanate, while are more easily formed in foams prepared by symmetric and aliphatic diisocyanate.Keywords: flexible polyurethane foam, hard segments, phase separation, soft segments
Procedia PDF Downloads 163146 Role of Zinc Adminstration in Improvement of Faltering Growth in Egyption Children at Risk of Environmental Enteric Dysfunction
Authors: Ghada Mahmoud El Kassas, Maged Atta El Wakeel
Abstract:
Background: Environmental enteric dysfunction (EED) is impending trouble that flared up in the last decades to be pervasive in infants and children. EED is asymptomatic villous atrophy of the small bowel that is prevalent in the developing world and is associated with altered intestinal function and integrity. Evidence has suggested that supplementary zinc might ameliorate this damage by reducing gastrointestinal inflammation and may also benefit cognitive development. Objective: We tested whether zinc supplementation improves intestinal integrity, growth, and cognitive function in stunted children predicted to have EED. Methodology: This case–control prospective interventional study was conducted on 120 Egyptian Stunted children aged 1-10 years who recruited from the Nutrition clinic, the National research center, and 100 age and gender-matched healthy children as controls. At the primary phase of the study, Full history taking, clinical examination, and anthropometric measurements were done. Standard deviation score (SDS) for all measurements were calculated. Serum markers as Zonulin, Endotoxin core antibody (EndoCab), highly sensitive C-reactive protein (hsCRP), alpha1-acid glycoprotein (AGP), Tumor necrosis factor (TNF), and fecal markers such as myeloperoxidase (MPO), neopterin (NEO), and alpha-1-anti-trypsin (AAT) (as predictors of EED) were measured. Cognitive development was assessed (Bayley or Wechsler scores). Oral zinc at a dosage of 20 mg/d was supplemented to all cases and followed up for 6 months, after which the 2ry phase of the study included the previous clinical, laboratory, and cognitive assessment. Results: Serum and fecal inflammatory markers were significantly higher in cases compared to controls. Zonulin (P < 0.01), (EndoCab) (P < 0.001) and (AGP) (P < 0.03) markedly decreased in cases at the end of 2ry phase. Also (MPO), (NEO), and (AAT) showed a significant decline in cases at the end of the study (P < 0.001 for all). A significant increase in mid-upper arm circumference (MUAC) (P < 0.01), weight for age z-score, and skinfold thicknesses (P< 0.05 for both) was detected at end of the study, while height was not significantly affected. Cases also showed significant improvement of cognitive function at phase 2 of the study. Conclusion: Intestinal inflammatory state related to EED showed marked recovery after zinc supplementation. As a result, anthropometric and cognitive parameters showed obvious improvement with zinc supplementation.Keywords: stunting, cognitive function, environmental enteric dysfunction, zinc
Procedia PDF Downloads 190