Search results for: market data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 27370

Search results for: market data

25900 Pragmatism in Adaptive Reuse of Obsolete Industrial Land in China

Authors: Yong Li

Abstract:

Major cities in China has experienced a shift from production based on manufacturing industry to tertiary industry. How to make a better use of existing obsolete industrial land within urban cores has become a difficult problem for many policymakers. City governments regard old manufacturing industrial land as an important source of land to facilitate the development of the cities. Despite the announcement of policies in promoting that, a large portion of industrial land is still not properly redeveloped and most of them became obsolete. The study uses the project of Xinyi International Club as a case to examine the process of adaptive reuse of obsolete industrial space in Guangzhou, China. It attempts to elucidate the underlying mechanisms by identifying the key forces from both the government and the private sectors in influencing the process. The study found that market forces in transforming industrial space are exerting a strong impact on the existing land use planning system in Chinese cities. Pragmatic relaxation of the formal land use the regulatory framework and government supportive land-use intervention have also been crucial towards achieving successful implementation of the restructuring project and making it a showcase. This study questions whether these extraordinary measures, in particular, the use of temporary land use permit, are sustainable in facilitating the transformation of derelict industrial land, and in informing future industrial land-use restructuring policies. It concludes that, while the land use regulatory system in China is becoming increasingly dynamic and flexible, it remains ill-equipped in responding positively to the market, which is characterized by an increasing bargaining power of the private sector. A comprehensive appraisal of the overall impacts of these adaptive re-uses on society is wanting.

Keywords: China, land alteration, obsolete industrial properties, urban planning

Procedia PDF Downloads 146
25899 Application of the Urban Forest Credit Standard as a Tool for Compensating CO2 Emissions in the Metalworking Industry: A Case Study in Brazil

Authors: Marie Madeleine Sarzi Inacio, Ligiane Carolina Leite Dauzacker, Rodrigo Henriques Lopes Da Silva

Abstract:

The climate changes resulting from human activity have increased interest in more sustainable production practices to reduce and offset pollutant emissions. Brazil, with its vast areas capable of carbon absorption, holds a significant advantage in this context. However, to optimize the country's sustainable potential, it is important to establish a robust carbon market with clear rules for the eligibility and validation of projects aimed at reducing and offsetting Greenhouse Gas (GHG) emissions. In this study, our objective is to conduct a feasibility analysis through a case study to evaluate the implementation of an urban forest credits standard in Brazil, using the Urban Forest Credits (UFC) model implemented in the United States as a reference. Thus, the city of Ribeirão Preto, located in Brazil, was selected to assess the availability of green areas. With the CO2 emissions value from the metalworking industry, it was possible to analyze information in the case study, considering the activity. The QGIS software was used to map potential urban forest areas, which can connect to various types of geospatial databases. Although the chosen municipality has little vegetative coverage, the mapping identified at least eight areas that fit the standard definitions within the delimited urban perimeter. The outlook was positive, and the implementation of projects like Urban Forest Credits (UFC) adapted to the Brazilian reality has great potential to benefit the country in the carbon market and contribute to achieving its Greenhouse Gas (GHG) emission reduction goals.

Keywords: carbon neutrality, metalworking industry, carbon credits, urban forestry credits

Procedia PDF Downloads 76
25898 AI-Driven Solutions for Optimizing Master Data Management

Authors: Srinivas Vangari

Abstract:

In the era of big data, ensuring the accuracy, consistency, and reliability of critical data assets is crucial for data-driven enterprises. Master Data Management (MDM) plays a crucial role in this endeavor. This paper investigates the role of Artificial Intelligence (AI) in enhancing MDM, focusing on how AI-driven solutions can automate and optimize various stages of the master data lifecycle. By integrating AI (Quantitative and Qualitative Analysis) into processes such as data creation, maintenance, enrichment, and usage, organizations can achieve significant improvements in data quality and operational efficiency. Quantitative analysis is employed to measure the impact of AI on key metrics, including data accuracy, processing speed, and error reduction. For instance, our study demonstrates an 18% improvement in data accuracy and a 75% reduction in duplicate records across multiple systems post-AI implementation. Furthermore, AI’s predictive maintenance capabilities reduced data obsolescence by 22%, as indicated by statistical analyses of data usage patterns over a 12-month period. Complementing this, a qualitative analysis delves into the specific AI-driven strategies that enhance MDM practices, such as automating data entry and validation, which resulted in a 28% decrease in manual errors. Insights from case studies highlight how AI-driven data cleansing processes reduced inconsistencies by 25% and how AI-powered enrichment strategies improved data relevance by 24%, thus boosting decision-making accuracy. The findings demonstrate that AI significantly enhances data quality and integrity, leading to improved enterprise performance through cost reduction, increased compliance, and more accurate, real-time decision-making. These insights underscore the value of AI as a critical tool in modern data management strategies, offering a competitive edge to organizations that leverage its capabilities.

Keywords: artificial intelligence, master data management, data governance, data quality

Procedia PDF Downloads 18
25897 Assistive Kitchenware Design for Hemiparetics

Authors: Daniel F. Madrinan-Chiquito

Abstract:

Hemiparesis affects about eight out of ten stroke survivors, causing weakness or the inability to move one side of the body. One-sided weakness can affect arms, hands, legs, or facial muscles. People with one-sided weakness may have trouble performing everyday activities such as eating, cooking, dressing, and using the bathroom. Rehabilitation treatments, exercises at home, and assistive devices can help with mobility and recovery. Historically, such treatments and devices were developed within the fields of medicine and biomedical engineering. However, innovators outside of the traditional medical device community, such as Industrial Designers, have recently brought their knowledge and expertise to assistive technologies. Primary and secondary research was done in three parts. The primary research collected data by talking with several occupational therapists currently attending to stroke patients, and surveys were given to patients with hemiparesis and hemiplegia. The secondary research collected data through observation and testing of products currently marketed for single-handed people. Modern kitchenware available in the market for people with an acquired brain injury has deficiencies in both aesthetic and functional values. Object design for people with hemiparesis or hemiplegia has not been meaningfully explored. Most cookware is designed for use with two hands and possesses little room for adaptation to the needs of one-handed individuals. This project focuses on the design and development of two kitchenware devices. These devices assist hemiparetics with different cooking-related tasks such as holding, grasping, cutting, slicing, chopping, grating, and other essential activities. These intentionally designed objects will improve the quality of life of hemiparetics by enabling greater independence and providing an enhanced ability for precision tasks in a cooking environment.

Keywords: assistive technologies, hemiparetics, industrial design, kitchenware

Procedia PDF Downloads 106
25896 Genetic Data of Deceased People: Solving the Gordian Knot

Authors: Inigo de Miguel Beriain

Abstract:

Genetic data of deceased persons are of great interest for both biomedical research and clinical use. This is due to several reasons. On the one hand, many of our diseases have a genetic component; on the other hand, we share genes with a good part of our biological family. Therefore, it would be possible to improve our response considerably to these pathologies if we could use these data. Unfortunately, at the present moment, the status of data on the deceased is far from being satisfactorily resolved by the EU data protection regulation. Indeed, the General Data Protection Regulation has explicitly excluded these data from the category of personal data. This decision has given rise to a fragmented legal framework on this issue. Consequently, each EU member state offers very different solutions. For instance, Denmark considers the data as personal data of the deceased person for a set period of time while some others, such as Spain, do not consider this data as such, but have introduced some specifically focused regulations on this type of data and their access by relatives. This is an extremely dysfunctional scenario from multiple angles, not least of which is scientific cooperation at the EU level. This contribution attempts to outline a solution to this dilemma through an alternative proposal. Its main hypothesis is that, in reality, health data are, in a sense, a rara avis within data in general because they do not refer to one person but to several. Hence, it is possible to think that all of them can be considered data subjects (although not all of them can exercise the corresponding rights in the same way). When the person from whom the data were obtained dies, the data remain as personal data of his or her biological relatives. Hence, the general regime provided for in the GDPR may apply to them. As these are personal data, we could go back to thinking in terms of a general prohibition of data processing, with the exceptions provided for in Article 9.2 and on the legal bases included in Article 6. This may be complicated in practice, given that, since we are dealing with data that refer to several data subjects, it may be complex to refer to some of these bases, such as consent. Furthermore, there are theoretical arguments that may oppose this hypothesis. In this contribution, it is shown, however, that none of these objections is of sufficient substance to delegitimize the argument exposed. Therefore, the conclusion of this contribution is that we can indeed build a general framework on the processing of personal data of deceased persons in the context of the GDPR. This would constitute a considerable improvement over the current regulatory framework, although it is true that some clarifications will be necessary for its practical application.

Keywords: collective data conceptual issues, data from deceased people, genetic data protection issues, GDPR and deceased people

Procedia PDF Downloads 154
25895 A Study on Economic Impacts of Entrepreneurial Firms and Self-Employment: Minority Ethnics in Putatan, Penampang, Inanam, Menggatal, Uitm, Tongod, Sabah, Malaysia

Authors: Lizinis Cassendra Frederick Dony, Jirom Jeremy Frederick Dony, Andrew Nicholas, Dewi Binti Tajuddin

Abstract:

Starting and surviving a business is influenced by various entrepreneurship socio-economics activities. The study revealed that some of the entrepreneurs are not registered under SME but running own business as an intermediary with the private organization entrusted as “Self-Employed.” SME is known as “Small Medium Enterprise” contributes growth in Malaysia. Therefore, the entrepreneurialism business interest and entrepreneurial intention enhancing new spurring production, expanding employment opportunities, increasing productivity, promoting exports, stimulating innovation and providing new avenue in the business market place. This study has identified the unique contribution to the full understanding of complex mechanisms through entrepreneurship obstacles and education impacts on happiness and well-being to society. Moreover, “Ethnic” term has defined as a curious meaning refers to a classification of a large group of people customs implies to ancestral, racial, national, tribal, religious, linguistic and cultural origins. It is a social phenomenon.1 According to Sabah data population is amounting to 2,389,494 showed the predominant ethnic group being the Kadazan Dusun (18.4%) followed by Bajau (17.3%) and Malays (15.3%). For the year 2010, data statistic immigrants population report showed the amount to 239,765 people which cover 4% of the Sabahan’s population.2 Sabah has numerous group of talented entrepreneurs. The business environment among the minority ethnics are influenced with the business sentiment competition. The literature on ethnic entrepreneurship recognizes two main type entrepreneurships: the middleman and enclave entrepreneurs. According to Adam Smith,3 there are evidently some principles disposition to admire and maintain the distinction business rank status and cause most universal business sentiments. Due to credit barriers competition, the minority ethnics are losing the business market and since 2014, many illegal immigrants have been found to be using permits of the locals to operate businesses in Malaysia.4 The development of small business entrepreneurship among the minority ethnics in Sabah evidenced based variety of complex perception and differences concepts. The studies also confirmed the effects of heterogeneity on group decision and thinking caused partly by excessive pre-occupation with maintaining cohesiveness and the presence of cultural diversity in groups should reduce its probability.5 The researchers proposed that there are seven success determinants particularly to determine the involvement of minority ethnics comparing to the involvement of the immigrants in Sabah. Although, (SMEs) have always been considered the backbone of the economy development, the minority ethnics are often categorized it as the “second-choice.’ The study showed that illegal immigrants entrepreneur imposed a burden on Sabahan social programs as well as the prison, court and health care systems. The tension between the need for cheap labor and the impulse to protect Malaysian in Sabah workers, entrepreneurs and taxpayers, among the subjects discussed in this study. This is clearly can be advantages and disadvantages to the Sabah economic development.

Keywords: entrepreneurial firms, self-employed, immigrants, minority ethnic, economic impacts

Procedia PDF Downloads 412
25894 Structure Conduct and Performance of Rice Milling Industry in Sri Lanka

Authors: W. A. Nalaka Wijesooriya

Abstract:

The increasing paddy production, stabilization of domestic rice consumption and the increasing dynamism of rice processing and domestic markets call for a rethinking of the general direction of the rice milling industry in Sri Lanka. The main purpose of the study was to explore levels of concentration in rice milling industry in Polonnaruwa and Hambanthota which are the major hubs of the country for rice milling. Concentration indices reveal that the rice milling industry in Polonnaruwa operates weak oligopsony and is highly competitive in Hambanthota. According to the actual quantity of paddy milling per day, 47 % is less than 8Mt/Day, while 34 % is 8-20 Mt/day, and the rest (19%) is greater than 20 Mt/day. In Hambanthota, nearly 50% of the mills belong to the range of 8-20 Mt/day. Lack of experience of the milling industry, poor knowledge on milling technology, lack of capital and finding an output market are the major entry barriers to the industry. Major problems faced by all the rice millers are the lack of a uniform electricity supply and low quality paddy. Many of the millers emphasized that the rice ceiling price is a constraint to produce quality rice. More than 80% of the millers in Polonnaruwa which is the major parboiling rice producing area have mechanical dryers. Nearly 22% millers have modern machineries like color sorters, water jet polishers. Major paddy purchasing method of large scale millers in Polonnaruwa is through brokers. In Hambanthota major channel is miller purchasing from paddy farmers. Millers in both districts have major rice selling markets in Colombo and suburbs. Huge variation can be observed in the amount of pledge (for paddy storage) loans. There is a strong relationship among the storage ability, credit affordability and the scale of operation of rice millers. The inter annual price fluctuation ranged 30%-35%. Analysis of market margins by using series of secondary data shows that farmers’ share on rice consumer price is stable or slightly increases in both districts. In Hambanthota a greater share goes to the farmer. Only four mills which have obtained the Good Manufacturing Practices (GMP) certification from Sri Lanka Standards Institution can be found. All those millers are small quantity rice exporters. Priority should be given for the Small and medium scale millers in distribution of storage paddy of PMB during the off season. The industry needs a proper rice grading system, and it is recommended to introduce a ceiling price based on graded rice according to the standards. Both husk and rice bran were underutilized. Encouraging investment for establishing rice oil manufacturing plant in Polonnaruwa area is highly recommended. The current taxation procedure needs to be restructured in order to ensure the sustainability of the industry.

Keywords: conduct, performance, structure (SCP), rice millers

Procedia PDF Downloads 328
25893 Trade Openness, Productivity Growth And Economic Growth: Nigeria’s Experience

Authors: S. O. Okoro

Abstract:

Some words become the catch phrase of a particular decade. Globalization, Openness, and Privatization are certainly among the most frequently encapsulation of 1990’s; the market is ‘in’, ‘the state is out’. In the 1970’s, there were many political economists who spoke of autarky as one possible response to global economic forces. Be self-contained, go it alone, put up barriers to trans-nationalities, put in place import-substitution industrialization policy and grow domestic industries. In 1990’s, the emasculation of the state is by no means complete, but there is an acceptance that the state’s power is circumscribed by forces beyond its control and potential leverage. Autarky is no longer as a policy option. Nigeria, since its emergence as an independent nation, has evolved two macroeconomic management regimes of the interventionist and market friendly styles. This paper investigates Nigeria’s growth performance over the periods incorporating these two regimes and finds that there is no structural break in Total Factor Productivity, (TFP) growth and besides, the TFP growth over the entire period of study 1970-2012 is very negligible and hence growth can only be achieved by the unsustainable factor accumulation. Another important finding of this work is that the openness-human capital interaction term has a significant impact on the TFP growth, but the sign of the estimated coefficient does not meet it a theoretical expectation. This is because the negative coefficient on the human capital outweighs the positive openness effect. The poor quality of human capital is considered to have given rise to this. Given these results a massive investment in the education sector is required. The investment should be targeted at reforms that go beyond mere structural reforms to a reform agenda that will improve the quality of human capital in Nigeria.

Keywords: globalization, emasculation, openness and privatization, total factor productivity

Procedia PDF Downloads 242
25892 Communication Layer Security in Smart Farming: A Survey on Wireless Technologies

Authors: Hossein Mohammadi Rouzbahani, Hadis Karimipour, Evan Fraser, Ali Dehghantanha, Emily Duncan, Arthur Green, Conchobhair Russell

Abstract:

Human population growth has driven rising demand for food that has, in turn, imposed huge impacts on the environment. In an effort to reconcile our need to produce more sustenance while also protecting the world’s ecosystems, farming is becoming more reliant on smart tools and communication technologies. Developing a smart farming framework allows farmers to make more efficient use of inputs, thus protecting water quality and biodiversity habitat. Internet of Things (IoT), which has revolutionized every sphere of the economy, is being applied to agriculture by connecting on-farm devices and providing real-time monitoring of everything from environmental conditions to market signals through to animal health data. However, utilizing IoT means farming networks are now vulnerable to malicious activities, mostly when wireless communications are highly employed. With that in mind, this research aims to review different utilized communication technologies in smart farming. Moreover, possible cyber-attacks are investigated to discover the vulnerabilities of communication technologies considering the most frequent cyber-attacks that have been happened.

Keywords: smart farming, Internet of Things, communication layer, cyber-attack

Procedia PDF Downloads 242
25891 A Proposal for U-City (Smart City) Service Method Using Real-Time Digital Map

Authors: SangWon Han, MuWook Pyeon, Sujung Moon, DaeKyo Seo

Abstract:

Recently, technologies based on three-dimensional (3D) space information are being developed and quality of life is improving as a result. Research on real-time digital map (RDM) is being conducted now to provide 3D space information. RDM is a service that creates and supplies 3D space information in real time based on location/shape detection. Research subjects on RDM include the construction of 3D space information with matching image data, complementing the weaknesses of image acquisition using multi-source data, and data collection methods using big data. Using RDM will be effective for space analysis using 3D space information in a U-City and for other space information utilization technologies.

Keywords: RDM, multi-source data, big data, U-City

Procedia PDF Downloads 433
25890 Agile Methodology for Modeling and Design of Data Warehouses -AM4DW-

Authors: Nieto Bernal Wilson, Carmona Suarez Edgar

Abstract:

The organizations have structured and unstructured information in different formats, sources, and systems. Part of these come from ERP under OLTP processing that support the information system, however these organizations in OLAP processing level, presented some deficiencies, part of this problematic lies in that does not exist interesting into extract knowledge from their data sources, as also the absence of operational capabilities to tackle with these kind of projects.  Data Warehouse and its applications are considered as non-proprietary tools, which are of great interest to business intelligence, since they are repositories basis for creating models or patterns (behavior of customers, suppliers, products, social networks and genomics) and facilitate corporate decision making and research. The following paper present a structured methodology, simple, inspired from the agile development models as Scrum, XP and AUP. Also the models object relational, spatial data models, and the base line of data modeling under UML and Big data, from this way sought to deliver an agile methodology for the developing of data warehouses, simple and of easy application. The methodology naturally take into account the application of process for the respectively information analysis, visualization and data mining, particularly for patterns generation and derived models from the objects facts structured.

Keywords: data warehouse, model data, big data, object fact, object relational fact, process developed data warehouse

Procedia PDF Downloads 409
25889 Identifying Model to Predict Deterioration of Water Mains Using Robust Analysis

Authors: Go Bong Choi, Shin Je Lee, Sung Jin Yoo, Gibaek Lee, Jong Min Lee

Abstract:

In South Korea, it is difficult to obtain data for statistical pipe assessment. In this paper, to address these issues, we find that various statistical model presented before is how data mixed with noise and are whether apply in South Korea. Three major type of model is studied and if data is presented in the paper, we add noise to data, which affects how model response changes. Moreover, we generate data from model in paper and analyse effect of noise. From this we can find robustness and applicability in Korea of each model.

Keywords: proportional hazard model, survival model, water main deterioration, ecological sciences

Procedia PDF Downloads 743
25888 Automated Testing to Detect Instance Data Loss in Android Applications

Authors: Anusha Konduru, Zhiyong Shan, Preethi Santhanam, Vinod Namboodiri, Rajiv Bagai

Abstract:

Mobile applications are increasing in a significant amount, each to address the requirements of many users. However, the quick developments and enhancements are resulting in many underlying defects. Android apps create and handle a large variety of 'instance' data that has to persist across runs, such as the current navigation route, workout results, antivirus settings, or game state. Due to the nature of Android, an app can be paused, sent into the background, or killed at any time. If the instance data is not saved and restored between runs, in addition to data loss, partially-saved or corrupted data can crash the app upon resume or restart. However, it is difficult for the programmer to manually test this issue for all the activities. This results in the issue of data loss that the data entered by the user are not saved when there is any interruption. This issue can degrade user experience because the user needs to reenter the information each time there is an interruption. Automated testing to detect such data loss is important to improve the user experience. This research proposes a tool, DroidDL, a data loss detector for Android, which detects the instance data loss from a given android application. We have tested 395 applications and found 12 applications with the issue of data loss. This approach is proved highly accurate and reliable to find the apps with this defect, which can be used by android developers to avoid such errors.

Keywords: Android, automated testing, activity, data loss

Procedia PDF Downloads 237
25887 Big Data: Appearance and Disappearance

Authors: James Moir

Abstract:

The mainstay of Big Data is prediction in that it allows practitioners, researchers, and policy analysts to predict trends based upon the analysis of large and varied sources of data. These can range from changing social and political opinions, patterns in crimes, and consumer behaviour. Big Data has therefore shifted the criterion of success in science from causal explanations to predictive modelling and simulation. The 19th-century science sought to capture phenomena and seek to show the appearance of it through causal mechanisms while 20th-century science attempted to save the appearance and relinquish causal explanations. Now 21st-century science in the form of Big Data is concerned with the prediction of appearances and nothing more. However, this pulls social science back in the direction of a more rule- or law-governed reality model of science and away from a consideration of the internal nature of rules in relation to various practices. In effect Big Data offers us no more than a world of surface appearance and in doing so it makes disappear any context-specific conceptual sensitivity.

Keywords: big data, appearance, disappearance, surface, epistemology

Procedia PDF Downloads 421
25886 From Data Processing to Experimental Design and Back Again: A Parameter Identification Problem Based on FRAP Images

Authors: Stepan Papacek, Jiri Jablonsky, Radek Kana, Ctirad Matonoha, Stefan Kindermann

Abstract:

FRAP (Fluorescence Recovery After Photobleaching) is a widely used measurement technique to determine the mobility of fluorescent molecules within living cells. While the experimental setup and protocol for FRAP experiments are usually fixed, data processing part is still under development. In this paper, we formulate and solve the problem of data selection which enhances the processing of FRAP images. We introduce the concept of the irrelevant data set, i.e., the data which are almost not reducing the confidence interval of the estimated parameters and thus could be neglected. Based on sensitivity analysis, we both solve the problem of the optimal data space selection and we find specific conditions for optimizing an important experimental design factor, e.g., the radius of bleach spot. Finally, a theorem announcing less precision of the integrated data approach compared to the full data case is proven; i.e., we claim that the data set represented by the FRAP recovery curve lead to a larger confidence interval compared to the spatio-temporal (full) data.

Keywords: FRAP, inverse problem, parameter identification, sensitivity analysis, optimal experimental design

Procedia PDF Downloads 278
25885 Exploring the Feasibility of Utilizing Blockchain in Cloud Computing and AI-Enabled BIM for Enhancing Data Exchange in Construction Supply Chain Management

Authors: Tran Duong Nguyen, Marwan Shagar, Qinghao Zeng, Aras Maqsoodi, Pardis Pishdad, Eunhwa Yang

Abstract:

Construction supply chain management (CSCM) involves the collaboration of many disciplines and actors, which generates vast amounts of data. However, inefficient, fragmented, and non-standardized data storage often hinders this data exchange. The industry has adopted building information modeling (BIM) -a digital representation of a facility's physical and functional characteristics to improve collaboration, enhance transmission security, and provide a common data exchange platform. Still, the volume and complexity of data require tailored information categorization, aligning with stakeholders' preferences and demands. To address this, artificial intelligence (AI) can be integrated to handle this data’s magnitude and complexities. This research aims to develop an integrated and efficient approach for data exchange in CSCM by utilizing AI. The paper covers five main objectives: (1) Investigate existing framework and BIM adoption; (2) Identify challenges in data exchange; (3) Propose an integrated framework; (4) Enhance data transmission security; and (5) Develop data exchange in CSCM. The proposed framework demonstrates how integrating BIM and other technologies, such as cloud computing, blockchain, and AI applications, can significantly improve the efficiency and accuracy of data exchange in CSCM.

Keywords: construction supply chain management, BIM, data exchange, artificial intelligence

Procedia PDF Downloads 26
25884 Representation Data without Lost Compression Properties in Time Series: A Review

Authors: Nabilah Filzah Mohd Radzuan, Zalinda Othman, Azuraliza Abu Bakar, Abdul Razak Hamdan

Abstract:

Uncertain data is believed to be an important issue in building up a prediction model. The main objective in the time series uncertainty analysis is to formulate uncertain data in order to gain knowledge and fit low dimensional model prior to a prediction task. This paper discusses the performance of a number of techniques in dealing with uncertain data specifically those which solve uncertain data condition by minimizing the loss of compression properties.

Keywords: compression properties, uncertainty, uncertain time series, mining technique, weather prediction

Procedia PDF Downloads 428
25883 European Hinterland and Foreland: Impact of Accessibility, Connectivity, Inter-Port Competition on Containerization

Authors: Dial Tassadit Rania, Figueiredo De Oliveira Gabriel

Abstract:

In this paper, we investigate the relationship between ports and their hinterland and foreland environments and the competitive relationship between the ports themselves. These two environments are changing, evolving and introducing new challenges for commercial and economic development at the regional, national and international levels. Because of the rise of the containerization phenomenon, shipping costs and port handling costs have considerably decreased due to economies of scale. The volume of maritime trade has increased substantially and the markets served by the ports have expanded. On these bases, overlapping hinterlands can give rise to the phenomenon of competition between ports. Our main contribution comparing to the existing literature on this issue, is to build a set of hinterland, foreland and competition indicators. Using these indicators? we investigate the effect of hinterland accessibility, foreland connectivity and inter-ports competition on containerized traffic of Europeans ports. For this, we have a 10-year panel database from 2004 to 2014. Our hinterland indicators are given by two indicators of accessibility; they describe the market potential of a port and are calculated using information on population and wealth (GDP). We then calculate population and wealth for different neighborhoods within a distance from a port ranging from 100 to 1000km. For the foreland, we produce two indicators: port connectivity and number of partners for each port. Finally, we compute the two indicators of inter-port competition and a market concentration indicator (Hirshmann-Herfindhal) for different neighborhood-distances around the port. We then apply a fixed-effect model to test the relationship above. Again, with a fixed effects model, we do a sensitivity analysis for each of these indicators to support the results obtained. The econometric results of the general model given by the regression of the accessibility indicators, the LSCI for port i, and the inter-port competition indicator on the containerized traffic of European ports show a positive and significant effect for accessibility to wealth and not to the population. The results are positive and significant for the two indicators of connectivity and competition as well. One of the main results of this research is that the port development given here by the increase of its containerized traffic is strongly related to the development of its hinterland and foreland environment. In addition, it is the market potential, given by the wealth of the hinterland that has an impact on the containerized traffic of a port. However, accessibility to a large population pool is not important for understanding the dynamics of containerized port traffic. Furthermore, in order to continue to develop, a port must penetrate its hinterland at a deep level exceeding 100 km around the port and seek markets beyond this perimeter. The port authorities could focus their marketing efforts on the immediate hinterland, which can, as the results shows, not be captive and thus engage new approaches of port governance to make it more attractive.

Keywords: accessibility, connectivity, European containerization, European hinterland and foreland, inter-port competition

Procedia PDF Downloads 195
25882 Data Mining As A Tool For Knowledge Management: A Review

Authors: Maram Saleh

Abstract:

Knowledge has become an essential resource in today’s economy and become the most important asset of maintaining competition advantage in organizations. The importance of knowledge has made organizations to manage their knowledge assets and resources through all multiple knowledge management stages such as: Knowledge Creation, knowledge storage, knowledge sharing and knowledge use. Researches on data mining are continues growing over recent years on both business and educational fields. Data mining is one of the most important steps of the knowledge discovery in databases process aiming to extract implicit, unknown but useful knowledge and it is considered as significant subfield in knowledge management. Data miming have the great potential to help organizations to focus on extracting the most important information on their data warehouses. Data mining tools and techniques can predict future trends and behaviors, allowing businesses to make proactive, knowledge-driven decisions. This review paper explores the applications of data mining techniques in supporting knowledge management process as an effective knowledge discovery technique. In this paper, we identify the relationship between data mining and knowledge management, and then focus on introducing some application of date mining techniques in knowledge management for some real life domains.

Keywords: Data Mining, Knowledge management, Knowledge discovery, Knowledge creation.

Procedia PDF Downloads 208
25881 Anomaly Detection Based Fuzzy K-Mode Clustering for Categorical Data

Authors: Murat Yazici

Abstract:

Anomalies are irregularities found in data that do not adhere to a well-defined standard of normal behavior. The identification of outliers or anomalies in data has been a subject of study within the statistics field since the 1800s. Over time, a variety of anomaly detection techniques have been developed in several research communities. The cluster analysis can be used to detect anomalies. It is the process of associating data with clusters that are as similar as possible while dissimilar clusters are associated with each other. Many of the traditional cluster algorithms have limitations in dealing with data sets containing categorical properties. To detect anomalies in categorical data, fuzzy clustering approach can be used with its advantages. The fuzzy k-Mode (FKM) clustering algorithm, which is one of the fuzzy clustering approaches, by extension to the k-means algorithm, is reported for clustering datasets with categorical values. It is a form of clustering: each point can be associated with more than one cluster. In this paper, anomaly detection is performed on two simulated data by using the FKM cluster algorithm. As a significance of the study, the FKM cluster algorithm allows to determine anomalies with their abnormality degree in contrast to numerous anomaly detection algorithms. According to the results, the FKM cluster algorithm illustrated good performance in the anomaly detection of data, including both one anomaly and more than one anomaly.

Keywords: fuzzy k-mode clustering, anomaly detection, noise, categorical data

Procedia PDF Downloads 54
25880 Factors Influencing Student's Decision to Pursue a Hospitality and Tourism Program

Authors: Zeenath Solih

Abstract:

The aim of the study is to analyze the factors that influence the decision to pursue a hospitality and tourism program for students of Maldives when pursuing higher education options. This research would further explore the implications and relationship between the universities and students. Quantitative research method will be used to demonstrate the hypothesis and achieve the objectives of this research, a questionnaire consisting of 30 closed questions will be used which will be analyzed based on SPSS18 software to handle and extract the data.10 public school and 3 private schools with secondary education and 3 universities with higher education facilities and a total of 500 students participated in the survey. The findings include selection criteria for decision making for higher studies being the university’s reputation, excellence and quality of educational program, the preference of pursuing further studies from a public over private universities and the academic, cultural and socio demographic factors that influence the students choice of program and university. Finally the study will provide valuable insight to how universities need to market their programs to attract the right students.

Keywords: choice criteria, higher education, hospitality and tourism studies, information sources

Procedia PDF Downloads 270
25879 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encyption Scheme

Authors: Victor Onomza Waziri, John K. Alhassan, Idris Ismaila, Noel Dogonyara

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud. Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy or confidentiality, availability and integrity of the data and user’s security. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute a theoretical presentations in a high-level computational processes that are based on number theory that is derivable from abstract algebra which can easily be integrated and leveraged in the Cloud computing interface with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based on cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, Fully Homomorphic Encryption Scheme

Procedia PDF Downloads 480
25878 Effects of Foam Rolling with Different Application Volumes on the Isometric Force of the Calf Muscle with Consideration of Muscle Activity

Authors: T. Poppendieker, H. Maurer, C. Segieth

Abstract:

Over the past ten years, foam rolling has become a new trend in the fitness and health market. It is also a frequently used technique for self-massage. However, the scope of effects from foam rolling has only recently started to be researched and understood. The focus of this study is to examine the effects of prolonged foam rolling on muscle performance. Isometric muscle force was used as a parameter to determine an improving impact of the myofascial roller in two different application volumes. Besides the maximal muscle force, data were also collected on muscle activation during all tests. Twenty-four (17 females, 7 males) healthy students with an average age of 23.4 ± 2.8 years were recruited. The study followed a cross-over pre-/post design in which the order of conditions was counterbalanced. The subjects performed a one-minute and three-minute foam rolling application set on two separate days. Isometric maximal muscle force of the dominant calf was tested before and after the self-myofascial release application. The statistic software program SPSS 22 was used to analyze the data of the maximal isometric force of the calf muscle by a 2 x 2 (time of measurement x intervention) analysis of variance with repeated measures. The statistic significance level was set at p ≤ 0.05. Neither for the main effect of time of measurement (F(1,23) = .93, p = .36, f = .20) nor for the interaction of time of measurement x intervention (F(1,23) = 1.99, p = .17, f = 0.29) significant p-values were found. However, the effect size indicates a mean interaction effect with a tendency of greater pre-post improvements under the three-minute foam rolling condition. Changes in maximal force did not correlate with changes in EMG-activity (r = .02, p = .95 in the short and r = -.11, p = .65 in the long rolling condition). Results support findings of previous studies and suggest a positive potential for use of the foam roll as a means for keeping muscle force at least at the same performance level while leading to an increase in flexibility.

Keywords: application volume differences, foam rolling, isometric maximal force, self-myofascial release

Procedia PDF Downloads 287
25877 The Effect of Gender Role Socialization on Marketing of Gendered Products: The Case of Cultural Ghana

Authors: Priscilla Adoley Moffat

Abstract:

One common element of African cultures is gender role socialization. This is a significant component of African cultures because gender roles are considered in these cultures, to define males and females and distinguish males from females. Various studies have established the impact of gender role socialization on individuals, on activities of individuals, including business activities, and on society, in general. This study further examined the effect of gender role socialization on the marketing of gendered products. The study sought to establish whether gender role socialization affects marketing, particularly word-of-mouth marketing, of gender-specific products. For a comprehensive examination of the influence of gender role socialization on word-of-mouth marketing of gendered products, 2150 respondents (1075 males and 1075 females), comprising 550 students of Marketing from various Ghanaian universities/colleges and 1600 other individuals (100 from each of the 16 regions of Ghana, representing the various cultures) were randomly sampled and interviewed. The study found that females are more willing to market male products than males when tasked to market female products. Also, females are more efficient in marketing male products than males in marketing female products. Again, most female audiences feel uncomfortable or embarrassed and are less receptive when approached by a male marketer of female products. Then, the study found that the fear of stigmatization is a major influencer of males’ negative attitude towards marketing of female products and that female marketers of male products, however, suffer less or no stigma. Aside from its addition to the literature on the impact of gender role socialization on marketing and, for that matter, the influence of socialization on marketing, the findings of the study are useful to multinational companies, which become better informed in their strategy when assigning marketing roles, especially in Africa.

Keywords: gender, socialization, marketing, gendered, role, Ghana

Procedia PDF Downloads 63
25876 An Approximation of Daily Rainfall by Using a Pixel Value Data Approach

Authors: Sarisa Pinkham, Kanyarat Bussaban

Abstract:

The research aims to approximate the amount of daily rainfall by using a pixel value data approach. The daily rainfall maps from the Thailand Meteorological Department in period of time from January to December 2013 were the data used in this study. The results showed that this approach can approximate the amount of daily rainfall with RMSE=3.343.

Keywords: daily rainfall, image processing, approximation, pixel value data

Procedia PDF Downloads 387
25875 A Next-Generation Blockchain-Based Data Platform: Leveraging Decentralized Storage and Layer 2 Scaling for Secure Data Management

Authors: Kenneth Harper

Abstract:

The rapid growth of data-driven decision-making across various industries necessitates advanced solutions to ensure data integrity, scalability, and security. This study introduces a decentralized data platform built on blockchain technology to improve data management processes in high-volume environments such as healthcare and financial services. The platform integrates blockchain networks using Cosmos SDK and Polkadot Substrate alongside decentralized storage solutions like IPFS and Filecoin, and coupled with decentralized computing infrastructure built on top of Avalanche. By leveraging advanced consensus mechanisms, we create a scalable, tamper-proof architecture that supports both structured and unstructured data. Key features include secure data ingestion, cryptographic hashing for robust data lineage, and Zero-Knowledge Proof mechanisms that enhance privacy while ensuring compliance with regulatory standards. Additionally, we implement performance optimizations through Layer 2 scaling solutions, including ZK-Rollups, which provide low-latency data access and trustless data verification across a distributed ledger. The findings from this exercise demonstrate significant improvements in data accessibility, reduced operational costs, and enhanced data integrity when tested in real-world scenarios. This platform reference architecture offers a decentralized alternative to traditional centralized data storage models, providing scalability, security, and operational efficiency.

Keywords: blockchain, cosmos SDK, decentralized data platform, IPFS, ZK-Rollups

Procedia PDF Downloads 28
25874 The Effect of Measurement Distribution on System Identification and Detection of Behavior of Nonlinearities of Data

Authors: Mohammad Javad Mollakazemi, Farhad Asadi, Aref Ghafouri

Abstract:

In this paper, we considered and applied parametric modeling for some experimental data of dynamical system. In this study, we investigated the different distribution of output measurement from some dynamical systems. Also, with variance processing in experimental data we obtained the region of nonlinearity in experimental data and then identification of output section is applied in different situation and data distribution. Finally, the effect of the spanning the measurement such as variance to identification and limitation of this approach is explained.

Keywords: Gaussian process, nonlinearity distribution, particle filter, system identification

Procedia PDF Downloads 516
25873 The Role of Creative Works Dissemination Model in EU Copyright Law Modernization

Authors: Tomas Linas Šepetys

Abstract:

In online content-sharing service platforms, the ability of creators to restrict illicit use of audiovisual creative works has effectively been abolished, largely due to specific infrastructure where a huge volume of copyrighted audiovisual content can be made available to the public. The European Union legislator has attempted to strengthen the positions of creators in the realm of online content-sharing services. Article 17 of the new Digital Single Market Directive considers online content-sharing service providers to carry out acts of communication to the public of any creative content uploaded to their platforms by users and posits requirements to obtain licensing agreements. While such regulation intends to assert authors‘ ability to effectively control the dissemination of their creative works, it also creates threats of parody content overblocking through automated content monitoring. Such potentially paradoxical outcome of the efforts of the EU legislator to deliver economic safeguards for the creators in the online content-sharing service platforms leads to presume lack of informity on legislator‘s part regarding creative works‘ economic exploitation opportunities provided to creators in the online content-sharing infrastructure. Analysis conducted in this scientific research discloses that the aforementioned irregularities of parody and other creative content dissemination are caused by EU legislators‘ lack of assessment of value extraction conditions for parody creators in the online content-sharing service platforms. Historical and modeling research method application reveals the existence of two creative content dissemination models and their unique mechanisms of commercial value creation. Obligations to obtain licenses and liability over creative content uploaded to their platforms by users set in Article 17 of the Digital Single Market Directive represent technological replication of the proprietary dissemination model where the creator is able to restrict access to creative content apart from licensed retail channels. The online content-sharing service platforms represent an open dissemination model where the economic potential of creative content is based on the infrastructure of unrestricted access by users and partnership with advertising services offered by the platform. Balanced modeling of proprietary dissemination models in such infrastructure requires not only automated content monitoring measures but also additional regulatory monitoring solutions to separate parody and other types of creative content. An example of the Digital Single Market Directive proves that regulation can dictate not only the technological establishment of a proprietary dissemination model but also a partial reduction of the open dissemination model and cause a disbalance between the economic interests of creators relying on such models. The results of this scientific research conclude an informative role of the creative works dissemination model in the EU copyright law modernization process. A thorough understanding of the commercial prospects of the open dissemination model intrinsic to the online content-sharing service platform structure requires and encourages EU legislators to regulate safeguards for parody content dissemination. Implementing such safeguards would result in a common application of proprietary and open dissemination models in the online content-sharing service platforms and balanced protection of creators‘ economic interests explicitly based on those creative content dissemination models.

Keywords: copyright law, creative works dissemination model, digital single market directive, online content-sharing services

Procedia PDF Downloads 74
25872 Building a Scalable Telemetry Based Multiclass Predictive Maintenance Model in R

Authors: Jaya Mathew

Abstract:

Many organizations are faced with the challenge of how to analyze and build Machine Learning models using their sensitive telemetry data. In this paper, we discuss how users can leverage the power of R without having to move their big data around as well as a cloud based solution for organizations willing to host their data in the cloud. By using ScaleR technology to benefit from parallelization and remote computing or R Services on premise or in the cloud, users can leverage the power of R at scale without having to move their data around.

Keywords: predictive maintenance, machine learning, big data, cloud based, on premise solution, R

Procedia PDF Downloads 379
25871 Trusting the Big Data Analytics Process from the Perspective of Different Stakeholders

Authors: Sven Gehrke, Johannes Ruhland

Abstract:

Data is the oil of our time, without them progress would come to a hold [1]. On the other hand, the mistrust of data mining is increasing [2]. The paper at hand shows different aspects of the concept of trust and describes the information asymmetry of the typical stakeholders of a data mining project using the CRISP-DM phase model. Based on the identified influencing factors in relation to trust, problematic aspects of the current approach are verified using various interviews with the stakeholders. The results of the interviews confirm the theoretically identified weak points of the phase model with regard to trust and show potential research areas.

Keywords: trust, data mining, CRISP DM, stakeholder management

Procedia PDF Downloads 94