Search results for: inclusive business models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 10122

Search results for: inclusive business models

8652 A Sentence-to-Sentence Relation Network for Recognizing Textual Entailment

Authors: Isaac K. E. Ampomah, Seong-Bae Park, Sang-Jo Lee

Abstract:

Over the past decade, there have been promising developments in Natural Language Processing (NLP) with several investigations of approaches focusing on Recognizing Textual Entailment (RTE). These models include models based on lexical similarities, models based on formal reasoning, and most recently deep neural models. In this paper, we present a sentence encoding model that exploits the sentence-to-sentence relation information for RTE. In terms of sentence modeling, Convolutional neural network (CNN) and recurrent neural networks (RNNs) adopt different approaches. RNNs are known to be well suited for sequence modeling, whilst CNN is suited for the extraction of n-gram features through the filters and can learn ranges of relations via the pooling mechanism. We combine the strength of RNN and CNN as stated above to present a unified model for the RTE task. Our model basically combines relation vectors computed from the phrasal representation of each sentence and final encoded sentence representations. Firstly, we pass each sentence through a convolutional layer to extract a sequence of higher-level phrase representation for each sentence from which the first relation vector is computed. Secondly, the phrasal representation of each sentence from the convolutional layer is fed into a Bidirectional Long Short Term Memory (Bi-LSTM) to obtain the final sentence representations from which a second relation vector is computed. The relations vectors are combined and then used in then used in the same fashion as attention mechanism over the Bi-LSTM outputs to yield the final sentence representations for the classification. Experiment on the Stanford Natural Language Inference (SNLI) corpus suggests that this is a promising technique for RTE.

Keywords: deep neural models, natural language inference, recognizing textual entailment (RTE), sentence-to-sentence relation

Procedia PDF Downloads 348
8651 A Survey of the Applications of Sentiment Analysis

Authors: Pingping Lin, Xudong Luo

Abstract:

Natural language often conveys emotions of speakers. Therefore, sentiment analysis on what people say is prevalent in the field of natural language process and has great application value in many practical problems. Thus, to help people understand its application value, in this paper, we survey various applications of sentiment analysis, including the ones in online business and offline business as well as other types of its applications. In particular, we give some application examples in intelligent customer service systems in China. Besides, we compare the applications of sentiment analysis on Twitter, Weibo, Taobao and Facebook, and discuss some challenges. Finally, we point out the challenges faced in the applications of sentiment analysis and the work that is worth being studied in the future.

Keywords: application, natural language processing, online comments, sentiment analysis

Procedia PDF Downloads 263
8650 Practical Strategies: Challenges in Transforming Theoretical Know-How into Practice for Offering Value-Added Amenities and Services

Authors: Mohammad Ayub Khan

Abstract:

With increased market segmentation and competition in the hotel industry, a hotel’s ability to constantly renovate its services and amenities is a business practice that can be termed as an attitude that is not only flexible but also malleable as a result of which a hotel/property is continually poised to face the ever-changing nature of the hospitality industry and upgrades that keep the hotel or brand in competition with current competitors. One such challenge is to competitively and creatively market value-added amenities, upgraded technology, and marketing all of these as a package to not only stay relevant in the market but also to retain and enhance revenues to ensure the future financial health of a hotel. This delicate balance between staying relevant and financially viable is a crucial challenge that this poster will explore, analyze, and present by specifically looking at the ability of a hotel/brand to effectively translate its theoretical need and practice of constantly staying updated, including strategically renovating, upgrading, modifying its services, into a tangible business practice. In what ways do hotels face this challenge? In what areas of the hotel is this business concept/action most effective and profitable are just some questions that this paper will attempt to answer.

Keywords: hospitality theory, renovations, value-added amenities, strategic planning

Procedia PDF Downloads 367
8649 The Role of Emotional Intelligence on Job Performance and Job Satisfaction: An Empirical Investigation of the Jordanian Universities

Authors: Alfalah Tasneem, Abdallah Bataineh, Falah Jannat, Alfalah Salsabeel

Abstract:

The term emotional intelligence has been unnoticed by a number of scholars in the early 1990s, which was then a major factor that many business managers became interested in understanding its meaning, functions and how it could be integrated in their business life, emotional intelligence is very important for the top managers, to operate in emotionally intelligence way to meet the needs of their employees. Speaking of emotional intelligence success is influenced by personal qualities such as self-awareness, motivation, empathy and relationship skills. The aim of this research is to critically evaluate the potential contribution of emotional intelligence for the Jordanian universities on the level of job satisfaction and the performance of faculty as well as its positive impact on the educational standards.

Keywords: emotional intelligence, higher education, job performance, job satisfaction

Procedia PDF Downloads 357
8648 Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies

Authors: M. Jerold, V. Sivasubramanian

Abstract:

In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.

Keywords: algae, biosorption, zero-valent, dye, wastewater

Procedia PDF Downloads 196
8647 Entrepreneurial Practice and Corruption in Tourism Sector: A Study of Entrepreneurial Orientation and Organizational Corruption in Nepali Star Hotels

Authors: Prabin Raj Gautam

Abstract:

Entrepreneurship in tourism sectors, particularly hotel entrepreneurship has contributed to Nepalese Gross Domestic Production (GDP). The tourist standard and star hotels in developing countries have not only been generating revenues but also providing international hospitality to the guest in the local areas. For doing so, these hotel enterprises must need to implement different business strategies to enhance and maintain their international business benchmark. The Entrepreneurial Orientation (EO) is core for making business strategies. Meanwhile, the corruption is labeled as negative factor for economic development. This paper presents the relationship between EO of Nepalese star hotels and organizational corruption. The study employed questionnaire survey as data collection tool under the quantitative methodology. Five hypotheses are developed and tested. After gathering the data form 216 questionnaire distributed to CEOs/Managers of the sample hotels, the findings show that out of five dimensions of EO, only autonomy, pro-activeness, and innovativeness are not significant to organizational corruption; however, risk-taking and competitive aggressiveness are found significant contributor. The descriptive statistics and structural equation modeling are employed to describe the data and fit the model.

Keywords: entrepreneurship, entrepreneurial orientation, organizational corruption, dimensions

Procedia PDF Downloads 318
8646 A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment

Authors: Hoi-Lam Ma, Sai-Ho Chung

Abstract:

In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly.

Keywords: transshipment, integrated berth allocation, variable-in-time quay crane assignment, quay crane assignment

Procedia PDF Downloads 169
8645 Numerical Study of the Influence of the Primary Stream Pressure on the Performance of the Ejector Refrigeration System Based on Heat Exchanger Modeling

Authors: Elhameh Narimani, Mikhail Sorin, Philippe Micheau, Hakim Nesreddine

Abstract:

Numerical models of the heat exchangers in ejector refrigeration system (ERS) were developed and validated with the experimental data. The models were based on the switched heat exchangers model using the moving boundary method, which were capable of estimating the zones’ lengths, the outlet temperatures of both sides and the heat loads at various experimental points. The developed models were utilized to investigate the influence of the primary flow pressure on the performance of an R245fa ERS based on its coefficient of performance (COP) and exergy efficiency. It was illustrated numerically and proved experimentally that increasing the primary flow pressure slightly reduces the COP while the exergy efficiency goes through a maximum before decreasing.

Keywords: Coefficient of Performance, COP, Ejector Refrigeration System, ERS, exergy efficiency (ηII), heat exchangers modeling, moving boundary method

Procedia PDF Downloads 202
8644 Correction Factors for Soil-Structure Interaction Predicted by Simplified Models: Axisymmetric 3D Model versus Fully 3D Model

Authors: Fu Jia

Abstract:

The effects of soil-structure interaction (SSI) are often studied using axial-symmetric three-dimensional (3D) models to avoid the high computational cost of the more realistic, fully 3D models, which require 2-3 orders of magnitude more computer time and storage. This paper analyzes the error and presents correction factors for system frequency, system damping, and peak amplitude of structural response computed by axisymmetric models, embedded in uniform or layered half-space. The results are compared with those for fully 3D rectangular foundations of different aspect ratios. Correction factors are presented for a range of the model parameters, such as fixed-base frequency, structure mass, height and length-to-width ratio, foundation embedment, soil-layer stiffness and thickness. It is shown that the errors are larger for stiffer, taller and heavier structures, deeper foundations and deeper soil layer. For example, for a stiff structure like Millikan Library (NS response; length-to-width ratio 1), the error is 6.5% in system frequency, 49% in system damping and 180% in peak amplitude. Analysis of a case study shows that the NEHRP-2015 provisions for reduction of base shear force due to SSI effects may be unsafe for some structures and need revision. The presented correction factor diagrams can be used in practical design and other applications.

Keywords: 3D soil-structure interaction, correction factors for axisymmetric models, length-to-width ratio, NEHRP-2015 provisions for reduction of base shear force, rectangular embedded foundations, SSI system frequency, SSI system damping

Procedia PDF Downloads 266
8643 The Analyzer: Clustering Based System for Improving Business Productivity by Analyzing User Profiles to Enhance Human Computer Interaction

Authors: Dona Shaini Abhilasha Nanayakkara, Kurugamage Jude Pravinda Gregory Perera

Abstract:

E-commerce platforms have revolutionized the shopping experience, offering convenient ways for consumers to make purchases. To improve interactions with customers and optimize marketing strategies, it is essential for businesses to understand user behavior, preferences, and needs on these platforms. This paper focuses on recommending businesses to customize interactions with users based on their behavioral patterns, leveraging data-driven analysis and machine learning techniques. Businesses can improve engagement and boost the adoption of e-commerce platforms by aligning behavioral patterns with user goals of usability and satisfaction. We propose TheAnalyzer, a clustering-based system designed to enhance business productivity by analyzing user-profiles and improving human-computer interaction. The Analyzer seamlessly integrates with business applications, collecting relevant data points based on users' natural interactions without additional burdens such as questionnaires or surveys. It defines five key user analytics as features for its dataset, which are easily captured through users' interactions with e-commerce platforms. This research presents a study demonstrating the successful distinction of users into specific groups based on the five key analytics considered by TheAnalyzer. With the assistance of domain experts, customized business rules can be attached to each group, enabling The Analyzer to influence business applications and provide an enhanced personalized user experience. The outcomes are evaluated quantitatively and qualitatively, demonstrating that utilizing TheAnalyzer’s capabilities can optimize business outcomes, enhance customer satisfaction, and drive sustainable growth. The findings of this research contribute to the advancement of personalized interactions in e-commerce platforms. By leveraging user behavioral patterns and analyzing both new and existing users, businesses can effectively tailor their interactions to improve customer satisfaction, loyalty and ultimately drive sales.

Keywords: data clustering, data standardization, dimensionality reduction, human computer interaction, user profiling

Procedia PDF Downloads 74
8642 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures

Authors: Jungyeol Hong, Dongjoo Park

Abstract:

The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.

Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership

Procedia PDF Downloads 177
8641 Modeling of Induced Voltage in Disconnected Grounded Conductor of Three-Phase Power Line

Authors: Misho Matsankov, Stoyan Petrov

Abstract:

The paper presents the methodology and the obtained mathematical models for determining the value of the grounding resistance of a disconnected conductor in a three-phase power line, for which the contact voltage is safe, by taking into account the potentials, induced by the non-disconnected phase conductors. The mathematical models have been obtained by implementing the experimental design techniques.

Keywords: contact voltage, experimental design, induced voltage, safety

Procedia PDF Downloads 176
8640 Practical Skill Education for Doctors in Training: Economical and Efficient Methods for Students to Receive Hands-on Experience

Authors: Nathaniel Deboever, Malcolm Breeze, Adrian Sheen

Abstract:

Basic surgical and suturing techniques are a fundamental requirement for all doctors. In order to gain confidence and competence, doctors in training need to obtain sufficient teaching and just as importantly: practice. Young doctors with an apt level of expertise on these simple surgical skills, which are often used in the Emergency Department, can help alleviate some pressure during a busy evening. Unfortunately, learning these skills can be quite difficult during medical school or even during junior doctor years. The aim of this project was to adequately train medical students attending University of Sydney’s Nepean Clinical School through a series of workshops highlighting practical skills, with hopes to further extend this program to junior doctors in the hospital. The sessions instructed basic skills via tutorials, demonstrations, and lastly, the sessions cemented these proficiencies with practical sessions. During such an endeavor, it is fundamental to employ models that appropriately resemble what students will encounter in the clinical setting. The sustainability of workshops is similarly important to the continuity of such a program. To address both these challenges, the authors have developed models including suturing platforms, knot tying, and vessel ligation stations, as well as a shave and punch biopsy models and ophthalmologic foreign body device. The unique aspect of this work is that we utilized hands-on teaching sessions, to address a gap in doctors-in-training and junior doctor curriculum. Presented to you through this poster are our approaches to creating models that do not employ animal products and therefore do not necessitate particular facilities or discarding requirements. Covering numerous skills that would be beneficial to all young doctors, these models are easily replicable and affordable. This exciting work allows for countless sessions at low cost, providing enough practice for students to perform these skills confidently as it has been shown through attendee questionnaires.

Keywords: medical education, surgical models, surgical simulation, surgical skills education

Procedia PDF Downloads 157
8639 Aerodynamic Investigation of Rear Vehicle by Geometry Variations on the Backlight Angle

Authors: Saud Hassan

Abstract:

This paper shows simulation for the prediction of the flow around the backlight angle of the passenger vehicle. The CFD simulations are carried out on different car models. The Ahmed model “bluff body” used as the stander model to study aerodynamics of the backlight angle. This paper described the airflow over the different car models with different backlight angles and also on the Ahmed model to determine the trailing vortices with the varying backlight angle of a passenger vehicle body. The CFD simulation is carried out with the Ahmed body which has simplified car model mainly used in automotive industry to investigate the flow over the car body surface. The main goal of the simulation is to study the behavior of trailing vortices of these models. In this paper the air flow over the slant angle of 0,5o, 12.5o, 20o, 30o, 40o are considered. As investigating on the rear backlight angle two dimensional flows occurred at the rear slant, on the other hand when the slant angle is 30o the flow become three dimensional. Above this angle sudden drop occurred in drag.

Keywords: aerodynamics, Ahemd vehicle , backlight angle, finite element method

Procedia PDF Downloads 783
8638 Recurrent Neural Networks for Complex Survival Models

Authors: Pius Marthin, Nihal Ata Tutkun

Abstract:

Survival analysis has become one of the paramount procedures in the modeling of time-to-event data. When we encounter complex survival problems, the traditional approach remains limited in accounting for the complex correlational structure between the covariates and the outcome due to the strong assumptions that limit the inference and prediction ability of the resulting models. Several studies exist on the deep learning approach to survival modeling; moreover, the application for the case of complex survival problems still needs to be improved. In addition, the existing models need to address the data structure's complexity fully and are subject to noise and redundant information. In this study, we design a deep learning technique (CmpXRnnSurv_AE) that obliterates the limitations imposed by traditional approaches and addresses the above issues to jointly predict the risk-specific probabilities and survival function for recurrent events with competing risks. We introduce the component termed Risks Information Weights (RIW) as an attention mechanism to compute the weighted cumulative incidence function (WCIF) and an external auto-encoder (ExternalAE) as a feature selector to extract complex characteristics among the set of covariates responsible for the cause-specific events. We train our model using synthetic and real data sets and employ the appropriate metrics for complex survival models for evaluation. As benchmarks, we selected both traditional and machine learning models and our model demonstrates better performance across all datasets.

Keywords: cumulative incidence function (CIF), risk information weight (RIW), autoencoders (AE), survival analysis, recurrent events with competing risks, recurrent neural networks (RNN), long short-term memory (LSTM), self-attention, multilayers perceptrons (MLPs)

Procedia PDF Downloads 90
8637 Machine Learning for Classifying Risks of Death and Length of Stay of Patients in Intensive Unit Care Beds

Authors: Itamir de Morais Barroca Filho, Cephas A. S. Barreto, Ramon Malaquias, Cezar Miranda Paula de Souza, Arthur Costa Gorgônio, João C. Xavier-Júnior, Mateus Firmino, Fellipe Matheus Costa Barbosa

Abstract:

Information and Communication Technologies (ICT) in healthcare are crucial for efficiently delivering medical healthcare services to patients. These ICTs are also known as e-health and comprise technologies such as electronic record systems, telemedicine systems, and personalized devices for diagnosis. The focus of e-health is to improve the quality of health information, strengthen national health systems, and ensure accessible, high-quality health care for all. All the data gathered by these technologies make it possible to help clinical staff with automated decisions using machine learning. In this context, we collected patient data, such as heart rate, oxygen saturation (SpO2), blood pressure, respiration, and others. With this data, we were able to develop machine learning models for patients’ risk of death and estimate the length of stay in ICU beds. Thus, this paper presents the methodology for applying machine learning techniques to develop these models. As a result, although we implemented these models on an IoT healthcare platform, helping clinical staff in healthcare in an ICU, it is essential to create a robust clinical validation process and monitoring of the proposed models.

Keywords: ICT, e-health, machine learning, ICU, healthcare

Procedia PDF Downloads 110
8636 Daily Probability Model of Storm Events in Peninsular Malaysia

Authors: Mohd Aftar Abu Bakar, Noratiqah Mohd Ariff, Abdul Aziz Jemain

Abstract:

Storm Event Analysis (SEA) provides a method to define rainfalls events as storms where each storm has its own amount and duration. By modelling daily probability of different types of storms, the onset, offset and cycle of rainfall seasons can be determined and investigated. Furthermore, researchers from the field of meteorology will be able to study the dynamical characteristics of rainfalls and make predictions for future reference. In this study, four categories of storms; short, intermediate, long and very long storms; are introduced based on the length of storm duration. Daily probability models of storms are built for these four categories of storms in Peninsular Malaysia. The models are constructed by using Bernoulli distribution and by applying linear regression on the first Fourier harmonic equation. From the models obtained, it is found that daily probability of storms at the Eastern part of Peninsular Malaysia shows a unimodal pattern with high probability of rain beginning at the end of the year and lasting until early the next year. This is very likely due to the Northeast monsoon season which occurs from November to March every year. Meanwhile, short and intermediate storms at other regions of Peninsular Malaysia experience a bimodal cycle due to the two inter-monsoon seasons. Overall, these models indicate that Peninsular Malaysia can be divided into four distinct regions based on the daily pattern for the probability of various storm events.

Keywords: daily probability model, monsoon seasons, regions, storm events

Procedia PDF Downloads 343
8635 Optimizing Production Yield Through Process Parameter Tuning Using Deep Learning Models: A Case Study in Precision Manufacturing

Authors: Tolulope Aremu

Abstract:

This paper is based on the idea of using deep learning methodology for optimizing production yield by tuning a few key process parameters in a manufacturing environment. The study was explicitly on how to maximize production yield and minimize operational costs by utilizing advanced neural network models, specifically Long Short-Term Memory and Convolutional Neural Networks. These models were implemented using Python-based frameworks—TensorFlow and Keras. The targets of the research are the precision molding processes in which temperature ranges between 150°C and 220°C, the pressure ranges between 5 and 15 bar, and the material flow rate ranges between 10 and 50 kg/h, which are critical parameters that have a great effect on yield. A dataset of 1 million production cycles has been considered for five continuous years, where detailed logs are present showing the exact setting of parameters and yield output. The LSTM model would model time-dependent trends in production data, while CNN analyzed the spatial correlations between parameters. Models are designed in a supervised learning manner. For the model's loss, an MSE loss function is used, optimized through the Adam optimizer. After running a total of 100 training epochs, 95% accuracy was achieved by the models recommending optimal parameter configurations. Results indicated that with the use of RSM and DOE traditional methods, there was an increase in production yield of 12%. Besides, the error margin was reduced by 8%, hence consistent quality products from the deep learning models. The monetary value was annually around $2.5 million, the cost saved from material waste, energy consumption, and equipment wear resulting from the implementation of optimized process parameters. This system was deployed in an industrial production environment with the help of a hybrid cloud system: Microsoft Azure, for data storage, and the training and deployment of their models were performed on Google Cloud AI. The functionality of real-time monitoring of the process and automatic tuning of parameters depends on cloud infrastructure. To put it into perspective, deep learning models, especially those employing LSTM and CNN, optimize the production yield by fine-tuning process parameters. Future research will consider reinforcement learning with a view to achieving further enhancement of system autonomy and scalability across various manufacturing sectors.

Keywords: production yield optimization, deep learning, tuning of process parameters, LSTM, CNN, precision manufacturing, TensorFlow, Keras, cloud infrastructure, cost saving

Procedia PDF Downloads 32
8634 The Effectiveness of Rebranding as a Comparative Study of Ghanaian Business Using the Principles of Corporate Rebranding

Authors: Kennedy Gbenu, Richmond Kweku Frempong

Abstract:

Rebranding has become a very important strategic tool for companies wanting to succeed in the ever competitive business world using the principles of rebranding Moisescu. Two businesses in Ghana (Ghana Commercial Bank and Vodafone Ghana) have been used to ascertain how rebranding of these organizations was done using the principles in their effort to rebrand themselves and to stay relevant. A secondary research mainly on literature surrounding rebranding, official websites of the organizations under study have also been used extensively. After a basic comparative study undertaken two firms (GCB and VODAFONE) seems to be using the first three principles and reaping from it as provided by Moisescu. This goes to show that rebranding should not be done in vacuum but should be guided by such principles so as to achieve the full potential of any kind of investments made.

Keywords: brands, corporate branding, innovation, case studies

Procedia PDF Downloads 396
8633 Facilitating Written Biology Assessment in Large-Enrollment Courses Using Machine Learning

Authors: Luanna B. Prevost, Kelli Carter, Margaurete Romero, Kirsti Martinez

Abstract:

Writing is an essential scientific practice, yet, in several countries, the increasing university science class-size limits the use of written assessments. Written assessments allow students to demonstrate their learning in their own words and permit the faculty to evaluate students’ understanding. However, the time and resources required to grade written assessments prohibit their use in large-enrollment science courses. This study examined the use of machine learning algorithms to automatically analyze student writing and provide timely feedback to the faculty about students' writing in biology. Written responses to questions about matter and energy transformation were collected from large-enrollment undergraduate introductory biology classrooms. Responses were analyzed using the LightSide text mining and classification software. Cohen’s Kappa was used to measure agreement between the LightSide models and human raters. Predictive models achieved agreement with human coding of 0.7 Cohen’s Kappa or greater. Models captured that when writing about matter-energy transformation at the ecosystem level, students focused on primarily on the concepts of heat loss, recycling of matter, and conservation of matter and energy. Models were also produced to capture writing about processes such as decomposition and biochemical cycling. The models created in this study can be used to provide automatic feedback about students understanding of these concepts to biology faculty who desire to use formative written assessments in larger enrollment biology classes, but do not have the time or personnel for manual grading.

Keywords: machine learning, written assessment, biology education, text mining

Procedia PDF Downloads 281
8632 The Role of Parents in Special Education in the Maldives: Teachers' Voice

Authors: Fathimath Warda, Mariyam Nihaadh

Abstract:

Students with Special Education Needs (SEN) are increasing in the Maldives, like anywhere else in the world, due to the changes in lifestyle of the people and ease of being diagnosed with advancements in medical health. With the growth in the population of these students, the demand for professionals in various fields is unmet. Thus, with the introduction of the Inclusive Education Policy in 2013, all students are educated in the same classroom by the regular teacher. This poses problems as the teachers are not well trained and qualified to meet the varying needs of the students, given the limited time and the large number of students in the classroom. This is a major concern for all stakeholders in the education sector and research has been conducted by various local scholars in this area. However, studies on the role of parents of such students is an area that remains yet to be explored in the Maldives, which makes a study of this nature crucial. The main aim of this study is to determine the ways in which the education provided to Special Needs Students can be maximized for a better outcome. Therefore, the study intends to understand the involvement of parents in providing education to special needs students from the teachers' perspectives. The basis for this study is the Parent Development Theory developed by Mowder, which was initially known as Parent Role Development Theory. A qualitative research has thus been utilised for the purpose of the study as it requires to find the beliefs and attitudes of teachers, along with relevant justifications regarding the role of parents in educating students with special needs. Data was gathered using one-to-one interviews, as it is one of the most reliable ways of getting meaningful and in-depth data. The study employs a total of 8 participants who are teachers teaching in inclusive classes where students with special needs are included. Emphasis was paid to select teachers who have the experience of teaching students with different disorders commonly found in the Maldives, namely in the four areas, Autism Spectrum Disorder, Down Syndrome, Attention Deficit Hyperactive Disorder and speech impairment. Hence, purposive sampling will be used to select the participants. Data analysis has been done using thematic coding. The findings revealed that teachers highlighted that parents' involvement was a key factor in ensuring success of education in children with special needs. Thus, the study concludes that the role of parents as a necessary input for the proper development of children and in educating children with special needs, suggesting that extra measures have to be taken develop a positive relationship between teachers and parents in order to strengthen this aspect.

Keywords: involvement, parents' role, special education needs, teachers' voice

Procedia PDF Downloads 137
8631 Analysis of Particle Reinforced Metal Matrix Composite Crankshaft

Authors: R. S. Vikaash, S. Vinodh, T. S. Sai Prashanth

Abstract:

Six sigma is a defect reduction strategy enabling modern organizations to achieve business prosperity. The practitioners are in need to select best six sigma project among the available alternatives to achieve customer satisfaction. In this circumstance, this article presents a study in which six sigma project selection is formulated as Multi-Criteria Decision-Making(MCDM) problem and the best project has been found using AHP. Five main governing criteria and 14 sub criteria are being formulated. The decision maker’s inputs were gathered and computations were performed. The project with the high values from the set of projects is selected as the best project. Based on calculations, Project “P1”is found to be the best and further deployment actions have been undertaken in the organization.

Keywords: six Sigma, project selection, MCDM, analytic hierarchy process, business prosperity

Procedia PDF Downloads 342
8630 Enhancing Academic and Social Skills of Elementary School Students with Autism Spectrum Disorder by an Intensive and Comprehensive Teaching Program

Authors: Piyawan Srisuruk, Janya Boonmeeprasert, Romwarin Gamlunglert, Benjamaporn Choikhruea, Ornjira Jaraepram, Jarin Boonsuchat, Sakdadech Singkibud, Kusalaporn Chaiudomsom, Chanatiporn Chonprai, Pornchanaka Tana, Suchat Paholpak

Abstract:

Objective: To develop an Intensive and comprehensive program (ICP) for the Inclusive Class Teacher (ICPICT) to teach elementary students (ES) with ASD in order to enhance the students’ academic and social skills (ASS) and to study the effect of the teaching program. Methods: The purposive sample included 15 Khon Kaen inclusive class teachers and their 15 elementary students. All the students were diagnosed by a child and adolescent psychiatrist to have DSM-5 level 1 ASD. The study tools included 1) an ICP to teach teachers about ASD, a teaching method to enhance academic and social skills for ES with ASD, and an assessment tool to assess the teacher’s knowledge before and after the ICP. 2) an ICPICT to teach ES with ASD to enhance their ASS. The project taught 10 sessions, 3 hours each. The ICPICT had its teaching structure. Teaching media included: pictures, storytelling, songs, and plays. The authors taught and demonstrated to the participant teachers how to teach with the ICPICT until the participants could display the correct teaching method. Then the teachers taught ICPICT at school by themselves 3) an assessment tool to assess the students’ ASS before and after the completion of the study. The ICP to teach the teachers, the ICPICT, and the relevant assessment tools were developed by the authors and were adjusted until consensus agreed as appropriate for researching by 3 curriculum of teaching children with ASD experts. The data were analyzed by descriptive and analytic statistics via SPSS version 26. Results: After the briefing, the teachers increased the mean score, though not with statistical significance, of knowledge of ASD and how to teach ES with ASD on ASS (p = 0.13). Teaching ES with ASD with the ICPICT could increase the mean scores of the students’ skills in learning and expressing social emotions, relationships with a friend, transitioning, and skills in academic function 3.33, 2.27, 2.94, and 3.00 scores (full scores were 18, 12, 15 and 12, Paired T-Test p = 0.007, 0.013, 0.028 and 0.003 respectively). Conclusion: The program to teach academic and social skills simultaneously in an intensive and comprehensive structure could enhance both the academic and social skills of elementary students with ASD. Keywords: Elementary students, autism spectrum, academic skill, social skills, intensive program, comprehensive program, integration.

Keywords: academica and social skills, students with autism, intensive and comprehensive, teaching program

Procedia PDF Downloads 64
8629 Developing Women Entrepreneurial Leadership: 'From Vision to Practice

Authors: Saira Maqbool, Qaisara Parveen, Muhammad Arshad Dahar

Abstract:

Improving females' involvement in management and enterprises in Pakistan requires the development of female entrepreneurs as leaders. Entrepreneurial education aims for providing students the knowledge, aptitudes and motivation to energize innovative accomplishment in various settings. Assortments of venture instruction are advertised at all stages of mentoring, from fundamental or discretionary institutes through graduate institutional platforms. The business enterprise will be considered the procedure by which a looming business visionary or business person pursues after openings without respect to the resources they directly regulate. This entails the ability of the business visionary to join every single other generation. This study explores the relationship between developing Women's Leadership skills and Entrepreneurship Education The essential reason for this consider was to analyze the role of Entrepreneurship Edification (EE) towards women's Leadership and develop entrepreneurial intentions among students. The major goal of this study was to foster entrepreneurial attitudes among PMAS Arid Agriculture University undergraduate students concerning their choice to work for themselves. This study focuses on the motivation and interest of female students in the social sciences to build entrepreneurial leadership skills. The quantitative analysis used a true-experimental, pretest-posttest control group research design. Female undergraduate students from PMAS Arid Agriculture University made up the study population. For entrepreneurial activity, a training module has been created. The students underwent a three-week training program at PMAS Arid Agriculture University, where they learned about entrepreneurial leadership abilities. The quantitative data were analyzed using descriptive statistics and T-tests. The findings indicated that students acquired entrepreneurial leadership skills and intentions after training. They have decided to launch their businesses as leaders. It is advised that other PMAS Arid Agriculture University departments use the training module and course outline because the research's usage of them has important results.

Keywords: business, entrepreneurial, intentions, leadership, women

Procedia PDF Downloads 67
8628 Harnessing the Power of Large Language Models in Orthodontics: AI-Generated Insights on Class II and Class III Orthopedic Appliances: A Cross-Sectional Study

Authors: Laiba Amin, Rashna H. Sukhia, Mubassar Fida

Abstract:

Introduction: This study evaluates the accuracy of responses from ChatGPT, Google Bard, and Microsoft Copilot regarding dentofacial orthopedic appliances. As artificial intelligence (AI) increasingly enhances various fields, including healthcare, understanding its reliability in specialized domains like orthodontics becomes crucial. By comparing the accuracy of different AI models, this study aims to shed light on their effectiveness and potential limitations in providing technical insights. Materials and Methods: A total of 110 questions focused on dentofacial orthopedic appliances were posed to each AI model. The responses were then evaluated by five experienced orthodontists using a modified 5-point Likert scale to ensure a thorough assessment of accuracy. This structured approach allowed for consistent and objective rating, facilitating a meaningful comparison between the AI systems. Results: The results revealed that Google Bard demonstrated the highest accuracy at 74%, followed by Microsoft Copilot, with an accuracy of 72.2%. In contrast, ChatGPT was found to be the least accurate, achieving only 52.2%. These results highlight significant differences in the performance of the AI models when addressing orthodontic queries. Conclusions: Our study highlights the need for caution in relying on AI for orthodontic insights. The overall accuracy of the three chatbots was 66%, with Google Bard performing best for removable Class II appliances. Microsoft Copilot was more accurate than ChatGPT, which, despite its popularity, was the least accurate. This variability emphasizes the importance of human expertise in interpreting AI-generated information. Further research is necessary to improve the reliability of AI models in specialized healthcare settings.

Keywords: artificial intelligence, large language models, orthodontics, dentofacial orthopaedic appliances, accuracy assessment.

Procedia PDF Downloads 8
8627 Optimal Decisions for Personalized Products with Demand Information Updating and Limited Capacity

Authors: Meimei Zheng

Abstract:

Product personalization could not only bring new profits to companies but also provide the direction of long-term development for companies. However, the characteristics of personalized product cause some new problems. This paper investigates how companies make decisions on the supply of personalized products when facing different customer attitudes to personalized product and service, constraints due to limited capacity and updates of personalized demand information. This study will provide optimal decisions for companies to develop personalized markets, resulting in promoting business transformation and improving business competitiveness.

Keywords: demand forecast updating, limited capacity, personalized products, optimization

Procedia PDF Downloads 262
8626 Dynamic Modeling of the Exchange Rate in Tunisia: Theoretical and Empirical Study

Authors: Chokri Slim

Abstract:

The relative failure of simultaneous equation models in the seventies has led researchers to turn to other approaches that take into account the dynamics of economic and financial systems. In this paper, we use an approach based on vector autoregressive model that is widely used in recent years. Their popularity is due to their flexible nature and ease of use to produce models with useful descriptive characteristics. It is also easy to use them to test economic hypotheses. The standard econometric techniques assume that the series studied are stable over time (stationary hypothesis). Most economic series do not verify this hypothesis, which assumes, when one wishes to study the relationships that bind them to implement specific techniques. This is cointegration which characterizes non-stationary series (integrated) with a linear combination is stationary, will also be presented in this paper. Since the work of Johansen, this approach is generally presented as part of a multivariate analysis and to specify long-term stable relationships while at the same time analyzing the short-term dynamics of the variables considered. In the empirical part, we have applied these concepts to study the dynamics of of the exchange rate in Tunisia, which is one of the most important economic policy of a country open to the outside. According to the results of the empirical study by the cointegration method, there is a cointegration relationship between the exchange rate and its determinants. This relationship shows that the variables have a significant influence in determining the exchange rate in Tunisia.

Keywords: stationarity, cointegration, dynamic models, causality, VECM models

Procedia PDF Downloads 364
8625 Structural Performance of a Bridge Pier on Dubious Deep Foundation

Authors: Víctor Cecilio, Roberto Gómez, J. Alberto Escobar, Héctor Guerrero

Abstract:

The study of the structural behavior of a support/pier of an elevated viaduct in Mexico City is presented. Detection of foundation piles with uncertain integrity prompted the review of possible situations that could jeopardy the structural safety of the pier. The objective of this paper is to evaluate the structural conditions of the support, taking into account the type of anomaly reported and the depth at which it is located, the position of the pile with uncertain integrity in the foundation system, the stratigraphy of the surrounding soil and the geometry and structural characteristics of the pier. To carry out the above, dynamic analysis, spectral modal, and step-by-step, with elastic and inelastic material models, were performed. Results were evaluated in accordance with the standards used for the design of the original structural project and with the Construction Regulations for Mexico’s Federal District (RCDF-2017, 2017). Comments on the response of the analyzed models are issued, and the conclusions are presented from a structural point of view.

Keywords: dynamic analysis, inelastic models, dubious foundation, bridge pier

Procedia PDF Downloads 137
8624 An Intellectual Capital as a Driver for Branding

Authors: Shyam Shukla

Abstract:

A brand is the identity of a specific product, service or business. A brand can take many forms, including a name, sign, symbol, color, combination or slogan. The word brand began simply as a way to tell one person's identity from another by means of a hot iron stamp. A legally protected brand name is called a trademark. The word brand has continued to evolve to encompass identity - it affects the personality of a product, company or service. A concept brand is a brand that is associated with an abstract concept, like AIDS awareness or environmentalism, rather than a specific product, service, or business. A commodity brand is a brand associated with a commodity1. In this paper, it is tried to explore the significance of an intellectual capital for the branding of an Institution.

Keywords: brand, commodity, consumer, cultural values, intellectual capital, zonal cluster

Procedia PDF Downloads 467
8623 Mainland China and Taiwan’s Strategies for Overcoming the Middle/High Income Trap: Domestic Consensus-Building and the Foundations of Cross-Strait Interactions

Authors: Mingke Ma

Abstract:

The recent discovery of the High-Income Trap phenomena and the established Middle-Income Trap literature have identified the similarity of the structural challenges that both Mainland China and Taiwan have been facing since the simultaneous growth slowdown from the 2000s. Mainland China and Taiwan’s ineffectiveness in productivity growth weakened their overall competitiveness in Global Value Chains. With the subsequent decline of industrial profitability, social compression from late development persists and jeopardises the social cohesion. From Ma Ying-jeou’s ‘633’ promise and Tsai Ing-wen’s ‘5+2’ industrial framework to Mainland China’s 11th to 14th Five-Year Plans, leaderships across the Strait have been striving to constitute new models for inclusive and sustainable development through policy responses. This study argues that social consensuses that have been constructed by the domestic political processes define the feasibility of the reform strategies, which further construct the conditions for Cross-Strait interactions. Based on the existing literature of New Institutional Economics, Middle/High Income Trap, and Compressed Development, this study adopts a Historical Institutionalist analytical framework to identify how the historical path-dependency contributes to the contemporary growth constraints in both economies and the political difficulty on navigating the institutional and Organisational change. It continues by tracing the political process of economic reform to examine the sustainability and resilience of the manifested social consensus that had empowered the proposed policy frameworks. Afterwards, it examines how the political outcomes in such a simultaneous process shared by both Mainland China and Taiwan construct the social, economic, institutional, and political foundations of contemporary Cross-Strait engagement.

Keywords: historical institutionalism, political economy, cross-strait relations, high/middle income trap

Procedia PDF Downloads 195