Search results for: concentrated solar thermal system
19806 Thermal Perception by Older People in Open Spaces in Madrid: Relationships between Weather Parameters and Personal Characteristics
Authors: María Teresa Baquero, Ester Higueras
Abstract:
One of the challenges facing 21st century cities, is their adaptation to the phenomenon of an ageing population. International policies have been developed, such as the "Global Network for Age-friendly Cities and Communities". These cities must recognize the diversity of the elderly population, and facilitate an active, healthy, satisfied aging and promote inclusion. In order to promote active and healthy aging, older people should be encouraged to engage in physical activity, sunbathe, socialize and enjoy the public open spaces in the city. Some studies recognize thermal comfort as one of the factors that most influence the use of public open spaces. However, although some studies have shown vulnerability to thermal extremes and environmental conditions in older people, there is little research on thermal comfort for older adults, because it is usually analyzed based on the characteristics of the ¨average young person¨ without considering the physiological, physical and psychological differences that characterize the elderly. This study analyzes the relationship between the microclimate parameters as air temperature, relative humidity, wind speed and sky view factor (SVF) with the personal thermal perception of older adults in three public spaces in Madrid, through a mixed methodology that combines weather measurements with interviews, made during the year 2018. Statistical test like Chi-square, Spearman, and analysis of variance were used to analyze the relationship between preference votes and thermal sensation votes with environmental and personal parameters. The results show that there is a significant correlation between thermal sensation and thermal preference with the measured air temperature, age, level of clothing, the color of clothing, season, time of the day and kind of space while no influence of gender or other environmental variables was detected. These data would contribute to the design of comfortable public spaces that improve the welfare of the elderly contributing to "active and healthy aging" as one of the 21st century challenges cities face.Keywords: healthy ageing, older adults, outdoor public space, thermal perception
Procedia PDF Downloads 13419805 Binder-Free Porous Photocathode Based on Cuprous Oxide for High-Performing P-Type Dye-Sensitized Solar Cells
Authors: Marinela Miclau, Melinda Vajda, Nicolae Miclau, Daniel Ursu
Abstract:
Characterized by a simple structure, easy and low cost fabrication, the dye-sensitized solar cell (DSSC) attracted the interest of the scientific community as an attractive alternative of conventional Si-based solar cells and thin-film solar cells. Over the past 20 years, the main efforts have attempted to enhance the efficiency of n-type DSSCs, the highest efficiency record of 14.30% was achieved using the co-sensitization of two metal-free organic dyes and Co (II/III) tris(phenanthroline)-based redox electrolyte. In the last years, the development of the efficient p-type DSSC has become a research focus owing to the fact that the concept of tandem solar cell was proposed as the solution to increase the power conversion efficiency. A promising alternative for the photocathodes of p-type DSSC, cuprous (Cu2O) and cupric (CuO) oxides have been investigated because of its nontoxic nature, low cost, high natural abundance, a good absorption coefficient for visible light and a higher dielectric constant than NiO. In case of p-type DSSC based on copper oxides with I3-/I- as redox mediator, the highest conversion efficiency of 0.42% (Cu2O) and 0.03% (CuO) has achieved. Towards the increase in the performance, we have fabricated and analyzed the performance of p-type DSSC prepared with the binder-free porous Cu2O photocathodes. Porous thin film could be an attractive alternative for DSSC because of their large surface areas which enable the efficient absorption of the dyes and light. We propose a simple and one-step hydrothermal method for the preparation of porous Cu2O thin film using copper substrate, cupric acetate and ethyl cellulose. The cubic structure of Cu2O has been determined by X-ray diffraction (XRD) and porous morphology of thin film was emphasized by Scanning Electron Microscope Inspect S (SEM). Optical and Mott-Schottky measurements attest of the high quality of the Cu2O thin film. The binder-free porous Cu2O photocathode has confirmed the excellent photovoltaic properties, the best value reported for p-type DSSC (1%) in similar conditions being reached.Keywords: cuprous oxide, dye-sensitized solar cell, hydrothermal method, porous photocathode
Procedia PDF Downloads 16619804 The Rayleigh Quotient for Structural Element Vibration Analysis with Finite Element Method
Authors: Falek Kamel
Abstract:
Various approaches are usually used in the dynamic analysis of beams vibrating transversally. For this, numerical methods allowing the solving of the general eigenvalue problem are utilized. The equilibrium equations describe the movement resulting from the solution of a fourth-order differential equation. Our investigation is based on the finite element method. The findings of these investigations are the vibration frequencies obtained by the Jacobi method. Two types of the elementary mass matrix are considered, representing a uniform distribution of the mass along with the element and concentrated ones located at fixed points whose number is increased progressively separated by equal distances at each evaluation stage. The studied beams have different boundary constraints representing several classical situations. Comparisons are made for beams where the distributed mass is replaced by n concentrated masses. As expected, the first calculus stage is to obtain the lowest number of beam parts that gives a frequency comparable to that issued from the Rayleigh formula. The obtained values are then compared to theoretical results based on the assumptions of the Bernoulli-Euler theory. These steps are used for the second type of mass representation in the same manner.Keywords: structural elements, beams vibrating, dynamic analysis, finite element method, Jacobi method
Procedia PDF Downloads 16219803 Modeling and Simulation Analysis and Design of Components of the Microgrid Prototype System
Authors: Draou Azeddine, Mazin Alahmadi, Abdulrahmane Alkassem, Alamri Abdullah
Abstract:
The demand for electric power in Saudi Arabia is steadily increasing with economic growth. More power plants should be installed to increase generation capacity and meet demand. Electricity in Saudi Arabia is mainly dependent on fossil fuels, which are a major problem as they deplete natural resources and increase CO₂ emissions. In this research work, performance and techno-economic analyzes are conducted to evaluate a microgrid system based on hybrid PV/wind diesel power sources as a stand-alone system for rural electrification in Saudi Arabia. The total power flow, maximum power point tracking (MPPT) efficiency, effectiveness of the proposed control strategy, and total harmonic distortion (THD) are analyzed in MATLAB/Simulink environment. Various simulation studies have been carried out under different irradiation conditions. The sizing, optimization, and economic feasibility analysis were performed using Homer energy software.Keywords: WIND, solar, microgrid, energy
Procedia PDF Downloads 10719802 Optimization of Alkali Silicate Glass Heat Treatment for the Improvement of Thermal Expansion and Flexural Strength
Authors: Stephanie Guerra-Arias, Stephani Nevarez, Calvin Stewart, Rachel Grodsky, Denis Eichorst
Abstract:
The objective of this study is to describe the framework for optimizing the heat treatment of alkali silicate glasses, to enhance the performance of hermetic seals in extreme environments. When connectors are exposed to elevated temperatures, residual stresses develop due to the mismatch of thermal expansions between the glass, metal pin, and metal shell. Excessive thermal expansion mismatch compromises the reliability of hermetic seals. In this study, a series of heat treatment schedules will be performed on two commercial sealing glasses (one conventional sealing glass and one crystallizable sealing glass) using a design of experiments (DOE) approach. The coefficient of thermal expansion (CTE) will be measured pre- and post-heat treatment using thermomechanical analysis (TMA). Afterwards, the flexural strength of the specimen will be measured using a four-point bend fixture mounted in a static universal testing machine. The measured material properties will be statistically analyzed using MiniTab software to determine which factors of the heat treatment process have a strong correlation to the coefficient of thermal expansion and/or flexural strength. Finally, a heat-treatment will be designed and tested to ensure the optimal performance of the hermetic seals in connectors.Keywords: glass-ceramics, design of experiment, hermetic connectors, material characterization
Procedia PDF Downloads 14819801 Effect of Methoxy and Polyene Additional Functionalized Group on the Photocatalytic Properties of Polyene-Diphenylaniline Organic Chromophores for Solar Energy Applications
Authors: Ife Elegbeleye, Nnditshedzeni Eric, Regina Maphanga, Femi Elegbeleye, Femi Agunbiade
Abstract:
The global potential of other renewable energy sources such as wind, hydroelectric, bio-mass, and geothermal is estimated to be approximately 13 %, with hydroelectricity constituting a larger percentage. Sunlight provides by far the largest of all carbon-neutral energy sources. More energy from the sunlight strikes the Earth in one hour (4.3 × 1020 J) than all the energy consumed on the planet in a year (4.1 × 1020 J), hence, solar energy remains the most abundant clean, renewable energy resources for mankind. Photovoltaic (PV) devices such as silicon solar cells, dye sensitized solar cells are utilized for harnessing solar energy. Polyene-diphenylaniline organic molecules are important sets of molecules that has stirred many research interest as photosensitizers in TiO₂ semiconductor-based dye sensitized solar cells (DSSCs). The advantages of organic dye molecule over metal-based complexes are higher extinction coefficient, moderate cost, good environmental compatibility, and electrochemical properties. The polyene-diphenylaniline organic dyes with basic configuration of donor-π-acceptor are affordable, easy to synthesize and possess chemical structures that can easily be modified to optimize their photocatalytic and spectral properties. The enormous interest in polyene-diphenylaniline dyes as photosensitizers is due to their fascinating spectral properties which include visible light to near infra-red-light absorption. In this work, density functional theory approach via GPAW software, Avogadro and ASE were employed to study the effect of methoxy functionalized group on the spectral properties of polyene-diphenylaniline dyes and their photons absorbing characteristics in the visible region to near infrared region of the solar spectrum. Our results showed that the two-phenyl based complexes D5 and D7 exhibits maximum absorption peaks at 750 nm and 850 nm, while D9 and D11 with methoxy group shows maximum absorption peak at 800 nm and 900 nm respectively. The highest absorption wavelength is notable for D9 and D11 containing additional polyene and methoxy groups. Also, D9 and D11 chromophores with the methoxy group shows lower energy gap of 0.98 and 0.85 respectively than the corresponding D5 and D7 dyes complexes with energy gap of 1.32 and 1.08. The analysis of their electron injection kinetics ∆Ginject into the band gap of TiO₂ shows that D9 and D11 with the methoxy group has higher electron injection kinetics of -2.070 and -2.030 than the corresponding polyene-diphenylaniline complexes without the addition of polyene group with ∆Ginject values of -2.820 and -2.130 respectively. Our findings suggest that the addition of functionalized group as an extension of the organic complexes results in higher light harvesting efficiencies and bathochromic shift of the absorption spectra to higher wavelength which suggest higher current densities and open circuit voltage in DSSCs. The study suggests that the photocatalytic properties of organic chromophores/complexes with donor-π-acceptor configuration can be enhanced by the addition of functionalized groups.Keywords: renewable energy resource, solar energy, dye sensitized solar cells, polyene-diphenylaniline organic chromophores
Procedia PDF Downloads 11019800 Effect of Internal Heat Generation on Free Convective Power Law Variable Temperature Past Vertical Plate Considering Exponential Variable Viscosity and Thermal Diffusivity
Authors: Tania Sharmin Khaleque, Mohammad Ferdows
Abstract:
The flow and heat transfer characteristics of a convection with temperature-dependent viscosity and thermal diffusivity along a vertical plate with internal heat generation effect have been studied. The plate temperature is assumed to follow a power law of the distance from the leading edge. The resulting governing two-dimensional equations are transformed using suitable transformations and then solved numerically by using fifth order Runge-Kutta-Fehlberg scheme with a modified version of the Newton-Raphson shooting method. The effects of the various parameters such as variable viscosity parameter β_1, the thermal diffusivity parameter β_2, heat generation parameter c and the Prandtl number Pr on the velocity and temperature profiles, as well as the local skin- friction coefficient and the local Nusselt number are presented in tabular form. Our results suggested that the presence of internal heat generation leads to increase flow than that of without exponentially decaying heat generation term.Keywords: free convection, heat generation, thermal diffusivity, variable viscosity
Procedia PDF Downloads 35119799 Electronic, Magnetic and Optic Properties in Halide Perovskites CsPbX3 (X= F, Cl, I)
Authors: B. Bouadjemi, S. Bentata, T. Lantri, Souidi Amel, W.Bensaali, A. Zitouni, Z. Aziz
Abstract:
We performed first-principle calculations, the full-potential linearized augmented plane wave (FP-LAPW) method is used to calculate structural, optoelectronic and magnetic properties of cubic halide perovskites CsPbX3 (X= F,I). We employed for this study the GGA approach and for exchange is modeled using the modified Becke-Johnson (mBJ) potential to predicting the accurate band gap of these materials. The optical properties (namely: the real and imaginary parts of dielectric functions, optical conductivities and absorption coefficient absorption make this halide perovskites promising materials for solar cells applications.Keywords: halide perovskites, mBJ, solar cells, FP-LAPW, optoelectronic properties, absorption coefficient
Procedia PDF Downloads 32119798 Quantifying the Impact of Climate Change on Agritourism: The Transformative Role of Solar Energy in Enhancing Growth and Resilience in Eritrea
Authors: Beyene Daniel, Herbert Ntuli
Abstract:
Agritourism in Eritrea is increasingly threatened by climate change, manifesting through rising temperatures, shifting rainfall patterns, and resource scarcity. This study employs quantitative methods to assess the economic and environmental impacts of climate change on agritourism, utilizing metrics such as annual income fluctuations, changes in visitor numbers, and energy consumption patterns. The methodology relies on secondary data sourced from the World Bank, government reports, and academic publications to analyze the economic viability of integrating solar energy into agritourism operations. Key variables include the Benefits from Renewable Energy (BRE), encompassing cost savings from reduced energy expenses and the monetized value of avoided greenhouse gas emissions. Using a net present value (NPV) framework, the research compares the impact of solar energy against traditional fossil fuel sources by evaluating the Value of Reduced Greenhouse Gas Emissions (CO2) and the Value of Health-Related Costs (VHRC) due to air pollution. The preliminary findings of this research are of utmost importance. They indicate that the adoption of solar energy can enhance energy independence by up to 40%, reduce operational costs by 25%, and stabilize agritourism activities in climate-sensitive regions. This research aims to provide actionable insights for policymakers and stakeholders, supporting the sustainable development of agritourism in Eritrea and contributing to broader climate adaptation strategies. By employing a comprehensive cost-benefit analysis, the study highlights the economic advantages and environmental benefits of transitioning to renewable energy in the face of climate change.Keywords: climate change, renewable energy, resilience, cost-benefit analysis
Procedia PDF Downloads 1219797 Thermal Efficiency Analysis and Optimal of Feed Water Heater for Mae Moh Thermal Power Plant
Authors: Khomkrit Mongkhuntod, Chatchawal Chaichana, Atipoang Nuntaphan
Abstract:
Feed Water Heater is the important equipment for thermal power plant. The heating temperature from feed heating process is an impact to power plant efficiency or heat rate. Normally, the degradation of feed water heater that operated for a long time is effect to decrease plant efficiency or increase plant heat rate. For Mae Moh power plant, each unit operated more than 20 years. The degradation of the main equipment is effect of planting efficiency or heat rate. From the efficiency and heat rate analysis, Mae Moh power plant operated in high heat rate more than the commissioning period. Some of the equipment were replaced for improving plant efficiency and plant heat rates such as HP turbine and LP turbine that the result is increased plant efficiency by 5% and decrease plant heat rate by 1%. For the target of power generation plan that Mae Moh power plant must be operated more than 10 years. These work is focus on thermal efficiency analysis of feed water heater to compare with the commissioning data for find the way to improve the feed water heater efficiency that may effect to increase plant efficiency or decrease plant heat rate by use heat balance model simulation and economic value add (EVA) method to study the investment for replacing the new feed water heater and analyze how this project can stay above the break-even point to make the project decision.Keywords: feed water heater, power plant efficiency, plant heat rate, thermal efficiency analysis
Procedia PDF Downloads 36319796 Investigating the Thermal Comfort Properties of Mohair Fabrics
Authors: Adine Gericke, Jiri Militky, Mohanapriya Venkataraman
Abstract:
Mohair, obtained from the Angora goat, is a luxury fiber and recognized as one of the best quality natural fibers. Expansion of the use of mohair into technical and functional textile products necessitates the need for a better understanding of how the use of mohair in fabrics will impact on its thermo-physiological comfort related properties. Despite its popularity, very little information is available on the quantification of the thermal and moisture management properties of mohair fabrics. This study investigated the effect of fibrous matter composition and fabric structural parameters on conductive and convective heat transfers to attain more information on the thermal comfort properties of mohair fabrics. Dry heat transfer through textiles may involve conduction through the fibrous phase, radiation through fabric interstices and convection of air within the structure. Factors that play a major role in heat transfer by conduction are fabric areal density (g/m2) and derived quantities such as cover factor and porosity. Convective heat transfer through fabrics is found in environmental conditions where there is wind-flow or the object is moving (e.g. running or walking). The thermal comfort properties of mohair fibers were objectively evaluated firstly in comparison with other textile fibers and secondly in a variety of fabric structures. Two sample sets were developed for this purpose, with fibre content, yarn structure and fabric design as main variables. SEM and microscopic images were obtained to closely examine the physical structures of the fibers and fabrics. Thermal comfort properties such as thermal resistance and thermal conductivity, as well as fabric thickness, were measured on the well-known Alambeta test instrument. Clothing insulation (clo) was calculated from the above. The thermal properties of fabrics under heat convection was evaluated using a laboratory model device developed at the Technical University of Liberec (referred to as the TP2-instrument). The effects of the different variables on fabric thermal comfort properties were analyzed statistically using TIBCO Statistica Software. The results showed that fabric structural properties, specifically sample thickness, played a significant role in determining the thermal comfort properties of the fabrics tested. It was found that regarding thermal resistance related to conductive heat flow, the effect of fiber type was not always statistically significant, probably as a result of the amount of trapped air within the fabric structure. The very low thermal conductivity of air, compared to that of the fibers, had a significant influence on the total conductivity and thermal resistance of the samples. This was confirmed by the high correlation of these factors with sample thickness. Regarding convective heat flow, the most important factor influencing the ability of the fabric to allow dry heat to move through the structure, was again fabric thickness. However, it would be wrong to totally disregard the effect of fiber composition on the thermal resistance of textile fabrics. In this study, the samples containing mohair or mohair/wool were consistently thicker than the others even though weaving parameters were kept constant. This can be ascribed to the physical properties of the mohair fibers that renders it exceptionally well towards trapping air among fibers (in a yarn) as well as among yarns (inside a fabric structure). The thicker structures trap more air to provide higher thermal insulation, but also prevent the free flow of air that allow thermal convection.Keywords: mohair fabrics, convective heat transfer, thermal comfort properties, thermal resistance
Procedia PDF Downloads 13919795 Material Properties Evolution Affecting Demisability for Space Debris Mitigation
Authors: Chetan Mahawar, Sarath Chandran, Sridhar Panigrahi, V. P. Shaji
Abstract:
The ever-growing advancement in space exploration has led to an alarming concern for space debris removal as it restricts further launch operations and adventurous space missions; hence numerous studies have come up with technologies for re-entry predictions and material selection processes for mitigating space debris. The selection of material and operating conditions is determined with the objective of lightweight structure and ability to demise faster subject to spacecraft survivability during its mission. Since the demisability of spacecraft depends on evolving thermal material properties such as emissivity, specific heat capacity, thermal conductivity, radiation intensity, etc. Therefore, this paper presents the analysis of evolving thermal material properties of spacecraft, which affect the demisability process and thus estimate demise time using the demisability model by incorporating evolving thermal properties for sensible heating followed by the complete or partial break-up of spacecraft. The demisability analysis thus concludes the best suitable spacecraft material is based on the least estimated demise time, which fulfills the criteria of design-for-survivability and as well as of design-for-demisability.Keywords: demisability, emissivity, lightweight, re-entry, survivability
Procedia PDF Downloads 11319794 A Study on Thermodynamic Prototype for Vernacular Dwellings in Perspective of Bioclimatic Architecture
Authors: Zhenzhen Zhang
Abstract:
As major human activity places, buildings consume a large amount of energy, and residential buildings are very important part of it. An extensive research work had been conducted to research how to achieve low energy goals, vernacular dwellings and contemporary technologies are two prime parameters among them. On one hand, some researchers concentrated on vernacular dwellings which were climate-response design and could offer a better living condition without mechanic application. On the other hand, a series concepts appeared based on modern technologies, surplus energy house, bioclimatic architecture, etc. especially thermodynamic architecture which integrates the micro-climate, human activity, thermal comfort, and energy efficiency into design. How to blend the two parameters is the key research topic now, which would act as the key to how to integrate the ancient design wise and contemporary new technologies. By several cases study, this paper will represent the evolution of thermodynamic architecture and then try to develop one methodology about how to produce a typical thermodynamic prototype for one area by blending the ancient building wise and contemporary concepts to achieve both low energy consumption and surplus energy.Keywords: vernacular dwelling, thermodynamic architecture, bioclimatic architecture, thermodynamic prototype, surplus energy
Procedia PDF Downloads 28819793 Effects of the Mass and Damping Matrix Model in the Non-Linear Seismic Response of Steel Frames
Authors: Alfredo Reyes-Salazar, Mario D. Llanes-Tizoc, Eden Bojorquez, Federico Valenzuela-Beltran, Juan Bojorquez, Jose R. Gaxiola-Camacho, Achintya Haldar
Abstract:
Seismic analysis of steel buildings is usually based on the use of the concentrated mass (ML) matrix and the Rayleigh damping matrix (C). Similarly, the initial stiffness matrix (KO) and the first two modes associated with lateral vibrations are commonly used to develop matrix C. The evaluation of the accuracy of these practices for the particular case of steel buildings with moment-resisting steel frames constitutes the main objective of this research. For this, the non-linear seismic responses of three models of steel frames, representing low-, medium- and high-rise steel buildings, are considered. Results indicate that if the ML matrix is used, shears and bending moments in columns are underestimated by up to 30% and 65%, respectively when compared to the corresponding results obtained with the consistent mass matrix (MC). It is also shown that if KO is used in C instead of the tangent stiffness matrix (Kt), axial loads in columns are underestimated by up to 80%. It is concluded that the consistent mass matrix should be used in the structural modelling of moment-resisting steel frames and that the tangent stiffness matrix should be used to develop the Rayleigh damping matrix.Keywords: moment-resisting steel frames, consistent and concentrated mass matrices, non-linear seismic response, Rayleigh damping
Procedia PDF Downloads 14719792 The Influence of Chevron Angle on Plate Heat Exchanger Thermal Performance with Considering Maldistribution
Authors: Hossein Shokouhmand, Majid Hasanpour
Abstract:
A new modification to the Strelow method of chevron-type plate heat exchangers (PHX) modeling is proposed. The effects of maldistribution are accounted in the resulting equation. The results of calculations are validated by reported experiences. The good accuracy of heat transfer performance prediction is shown. The results indicate that considering flow maldistribution improve the accuracy of predicting the flow and thermal behavior of the plate exchanger. Additionally, a wide range of the parametric study has been presented which brings out the effects of chevron angle of PHE on its thermal efficiency with considering maldistribution effect. In addition, the thermally optimal corrugation discussed for the chevron-type PHEs.Keywords: chevron angle, plate heat exchangers, maldistribution, strelow method
Procedia PDF Downloads 18919791 Individual Physiological and Psycho-Physical Response on Predicting Thermal Comfort in Transient Environments: A Literature Review
Authors: Fatemeh Deldarabdolmaleki, Nur Dalilah Dahlan, Farzad Hejazi
Abstract:
Human individual physiological and psycho-physical responses widely affect thermal comfort and preferences. They should be carefully researched to help improve the design and comfort of indoor environments. This paper aims to explore and test the degree and importance of individual physiological and psycho-physical differences, reviewing the most preferred, neutral, and comfortable temperature in previous studies conducted across the world. Basic individual physiological differences like gender, age, BMI and etc., have been the focus of this research. There is no unique consensus in the literature to date in regard to providing a universal thermal comfort formula that meets all individual physiological and psycho-physical needs. In order to achieve a balanced, thermally comfortable indoor environment, studying and evaluating individual needs in different parts of the world could be helpful. Even though personalized comfort systems in indoor environments sound promising, they might not be easily achieved in bigger office interiors, considering the cost and current open-plan office trends.Keywords: thermal comfort, indoor environments, occupants' physiological response, occupants psycho-physical response
Procedia PDF Downloads 7119790 Adopting Precast Insulated Concrete Panels for Building Envelope in Hot Climate Zones
Authors: Mohammed Sherzad
Abstract:
The absorbedness of solar radiation within the concrete building is higher than other buildings type, especially in hot climate zones. However, one of the primary issues of architects and the owners in hot climate zones is the building’s exterior plastered and painted finishing which is commonly used are fading and peeling adding a high cost on maintenance. Case studies of different exterior finishing’ treatments used in vernacular and contemporary dwellings in the United Arab Emirates were surveyed. The traditional plastered façade treatment was more sustainable than new buildings. In addition, using precast concrete insulated sandwich panels with the exposed colored aggregate surface in contemporary designed dwellings sustained the extensive heat reducing the overall cost of maintenance and contributed aesthetically to the buildings’ envelope in addition to its thermal insulation property.Keywords: precast concrete panels, façade treatment, hot climate
Procedia PDF Downloads 13119789 Tectono-Thermal Evolution of Ningwu-Jingle Basin in North China Craton: Constraints from Apatite (U–Th-Sm)/He and Fission Track Thermochronology
Authors: Zhibin Lei, Minghui Yang
Abstract:
Ningwu-Jingle basin is a structural syncline which has undergone a complex tectono-thermal history since Cretaceous. It stretches along the strike of the northern Lvliang Mountains which are the most important mountains in the middle and west of North China Craton. The Mesozoic units make up of the core of Ningwu-Jingle Basin, with pre-Mesozoic units making up of its flanks. The available low-temperature thermochronology implies that Ningwu-Jingle Basin has experienced two stages of uplifting: 94±7Ma to 111±8Ma (Albian to Cenomanian) and 62±4 to 75±5Ma (Danian to Maastrichtian). In order to constrain its tectono-thermal history in the Cenozoic, both apatite (U-Th-Sm)/He and fission track dating analysis are applied on 3 Middle Jurassic and 3 Upper Triassic sandstone samples. The central fission track ages range from 74.4±8.8Ma to 66.0±8.0Ma (Campanian to Maastrichtian) which matches well with previous data. The central He ages range from 20.1±1.2Ma to 49.1±3.0Ma (Ypresian to Burdigalian). Inverse thermal modeling is established based on both apatite fission track data and (U-Th-Sm)/He data. The thermal history obtained reveals that all 6 sandstone samples cross the high-temperature limit of fission track partial annealing zone by the uppermost Cretaceous and that of He partial retention zone by the uppermost Eocene to the early Oligocene. The result indicates that the middle and west of North China Craton is not stable in the Cenozoic.Keywords: apatite fission track thermochronology, apatite (u–th)/he thermochronology, Ningwu-Jingle basin, North China craton, tectono-thermal history
Procedia PDF Downloads 25619788 Intrinsically Dual-Doped Conductive Polymer System for Electromagnetic Shielding Applications
Authors: S. Koul, Joshua Adedamola
Abstract:
Currently, the global concerning fact about electromagnetic pollution (EMP) is that it not only adversely affects human health but rather projects the malfunctioning of sensitive equipment both locally and at a global level. The market offers many incumbent technologies to solve the issues, but still, a processable sustainable material solution with acceptable limits for GHG emission is still at an exploratory stage. The present work offers a sustainable material solution with a wide range of processability in terms of a polymeric resin matrix and shielding operational efficiency across the electromagnetic spectrum, covering both ionizing and non-ionizing electromagnetic radiations. The present work offers an in-situ synthesized conducting polyaniline (PANI) in the presence of the hybrid dual dopant system with tuned conductivity and high shielding efficiency between 89 to 92 decibels, depending upon the EMI frequency range. The conductive polymer synthesized in the presence of a hybrid dual dopant system via the in-situ emulsion polymerization method offers a higher surface resistance of 1.0 ohms/cm with thermal stability up to 2450C in their powder form. This conductive polymer with a hybrid dual dopant system was used as a filler material with different polymeric thermoplastic resin systems for the preparation of conductive composites. Intrinsically Conductive polymeric (ICP) composites based on hybrid dual dopant systems were prepared using melt blending, extrusion, and finally by, compression molding processing techniques. ICP composites with hybrid dual dopant systems offered good mechanical, thermal, structural, weathering, and stable surface resistivity properties over a period of time. The preliminary shielding behavior for ICP composites between frequency levels of 10 GHz to 24GHZ offered a shielding efficiency of more than 90 dB.Keywords: ICP, dopant, EMI, shielding
Procedia PDF Downloads 7919787 Investigation of Gas Tungsten Arc Welding Parameters on Residual Stress of Heat Affected Zone in Inconel X750 Super Alloy Welding Using Finite Element Method
Authors: Kimia Khoshdel Vajari, Saber Saffar
Abstract:
Reducing the residual stresses caused by welding is desirable for the industry. The effect of welding sequence, as well as the effect of yield stress on the number of residual stresses generated in Inconel X750 superalloy sheets and beams, have been investigated. The finite element model used in this research is a three-dimensional thermal and mechanical model, and the type of analysis is indirect coupling. This analysis is done in two stages. First, thermal analysis is performed, and then the thermal changes of the first analysis are used as the applied load in the second analysis. ABAQUS has been used for modeling, and the Dflux subroutine has been used in the Fortran programming environment to move the arc and the molten pool. The results of this study show that the amount of tensile residual stress in symmetric, discontinuous, and symmetric-discontinuous welds is reduced to a maximum of 27%, 54%, and 37% compared to direct welding, respectively. The results also show that the amount of residual stresses created by welding increases linearly with increasing yield stress with a slope of 40%.Keywords: residual stress, X750 superalloy, finite element, welding, thermal analysis
Procedia PDF Downloads 11519786 Design of Semi-Autonomous Street Cleaning Vehicle
Authors: Khouloud Safa Azoud, Süleyman Baştürk
Abstract:
In the pursuit of cleaner and more sustainable urban environments, advanced technologies play a critical role in evolving sanitation systems. This paper presents two distinct advancements in automated cleaning machines designed to improve urban sanitation. The first advancement is a semi-automatic road surface cleaning machine that integrates human labor with solar energy to enhance environmental sustainability and adaptability, especially in regions with limited access to electricity. By reducing carbon emissions and increasing operational efficiency, this approach offers significant potential for urban sanitation enhancement. The second advancement is a multifunctional semi-automatic street cleaning machine equipped with a camera, Arduino programming, and GPS for an autonomous operation aimed at addressing cost barriers in developing countries. Prioritizing low energy consumption and cost-effectiveness, this machine provides versatile cleaning solutions adaptable to various environmental conditions. By integrating solar energy with autonomous operating systems and careful design, these developments represent substantial progress in sustainable urban sanitation, particularly in developing regions.Keywords: automated cleaning machines, solar energy integration, operational efficiency, urban sanitation systems
Procedia PDF Downloads 3119785 Feasibility Study for Removing Atherosclerotic Plaque Using the Thermal Effects of a Planar Rectangular High Intensity Ultrasound Transducer
Authors: Christakis Damianou, Christos Christofi, Nicos Mylonas
Abstract:
The aim of this paper was to conduct a feasibility study using a flat rectangular (3x10 mm2) MRI compatible transducer operating at 5 MHz for destroying atherosclerotic plaque using the thermal effects of ultrasound in in vitro models. A parametric study was performed where the time needed to ablate the plaque was studied as a function of Spatial Average Temporal Average (SATA) intensity, and pulse duration. The time needed to ablate plaque is directly related to intensity, and pulse duration. The temperature measured close to the artery is above safe limits and therefore thermal ultrasound does not have a place in removing plaques in arteries.Keywords: ultrasound, atherosclerotic, plaque, pulse
Procedia PDF Downloads 29119784 Thermodynamic Modeling and Exergoeconomic Analysis of an Isobaric Adiabatic Compressed Air Energy Storage System
Authors: Youssef Mazloum, Haytham Sayah, Maroun Nemer
Abstract:
The penetration of renewable energy sources into the electric grid is significantly increasing. However, the intermittence of these sources breaks the balance between supply and demand for electricity. Hence, the importance of the energy storage technologies, they permit restoring the balance and reducing the drawbacks of intermittence of the renewable energies. This paper discusses the modeling and the cost-effectiveness of an isobaric adiabatic compressed air energy storage (IA-CAES) system. The proposed system is a combination among a compressed air energy storage (CAES) system with pumped hydro storage system and thermal energy storage system. The aim of this combination is to overcome the disadvantages of the conventional CAES system such as the losses due to the storage pressure variation, the loss of the compression heat and the use of fossil fuel sources. A steady state model is developed to perform an energy and exergy analyses of the IA-CAES system and calculate the distribution of the exergy losses in the latter system. A sensitivity analysis is also carried out to estimate the effects of some key parameters on the system’s efficiency, such as the pinch of the heat exchangers, the isentropic efficiency of the rotating machinery and the pressure losses. The conducted sensitivity analysis is a local analysis since the sensibility of each parameter changes with the variation of the other parameters. Therefore, an exergoeconomic study is achieved as well as a cost optimization in order to reduce the electricity cost produced during the production phase. The optimizer used is OmOptim which is a genetic algorithms based optimizer.Keywords: cost-effectiveness, Exergoeconomic analysis, isobaric adiabatic compressed air energy storage (IA-CAES) system, thermodynamic modeling
Procedia PDF Downloads 24519783 Numerical Investigation of 3D Printed Pin Fin Heat Sinks for Automotive Inverter Cooling Application
Authors: Alexander Kospach, Fabian Benezeder, Jürgen Abraham
Abstract:
E-mobility poses new challenges for inverters (e.g., higher switching frequencies) in terms of thermal behavior and thermal management. Due to even higher switching frequencies, thermal losses become greater, and the cooling of critical components (like insulated gate bipolar transistor and diodes) comes into focus. New manufacturing methods, such as 3D printing, enable completely new pin-fin structures that can handle higher waste heat to meet the new thermal requirements. Based on the geometrical specifications of the industrial partner regarding the manufacturing possibilities for 3D printing, different and completely new pin-fin structures were numerically investigated for their hydraulic and thermal behavior in fundamental studies assuming an indirect liquid cooling. For the 3D computational fluid dynamics (CFD) thermal simulations OpenFOAM was used, which has as numerical method the finite volume method for solving the conjugate heat transfer problem. A steady-state solver for turbulent fluid flow and solid heat conduction with conjugate heat transfer between solid and fluid regions was used for the simulations. In total, up to fifty pinfin structures and arrangements, some of them completely new, were numerically investigated. On the basis of the results of the principal investigations, the best two pin-fin structures and arrangements for the complete module cooling of an automotive inverter were numerically investigated and compared. There are clear differences in the maximum temperatures for the critical components, such as IGTBs and diodes. In summary, it was shown that 3D pin fin structures can significantly contribute to the improvement of heat transfer and cooling of an automotive inverter. This enables in the future smaller cooling designs and a better lifetime of automotive inverter modules. The new pin fin structures and arrangements can also be applied to other cooling applications where 3D printing can be used.Keywords: pin fin heat sink optimization, 3D printed pin fins, CFD simulation, power electronic cooling, thermal management
Procedia PDF Downloads 10019782 Effect of Key Parameters on Performances of an Adsorption Solar Cooling Machine
Authors: Allouache Nadia
Abstract:
Solid adsorption cooling machines have been extensively studied recently. They constitute very attractive solutions recover important amount of industrial waste heat medium temperature and to use renewable energy sources such as solar energy. The development of the technology of these machines can be carried out by experimental studies and by mathematical modelisation. This last method allows saving time and money because it is suppler to use to simulate the variation of different parameters. The adsorption cooling machines consist essentially of an evaporator, a condenser and a reactor (object of this work) containing a porous medium, which is in our case the activated carbon reacting by adsorption with ammoniac. The principle can be described as follows: When the adsorbent (at temperature T) is in exclusive contact with vapour of adsorbate (at pressure P), an amount of adsorbate is trapped inside the micro-pores in an almost liquid state. This adsorbed mass m, is a function of T and P according to a divariant equilibrium m=f (T,P). Moreover, at constant pressure, m decreases as T increases, and at constant adsorbed mass P increases with T. This makes it possible to imagine an ideal refrigerating cycle consisting of a period of heating/desorption/condensation followed by a period of cooling/adsorption/evaporation. Effect of key parameters on the machine performances are analysed and discussed.Keywords: activated carbon-ammoniac pair, effect of key parameters, numerical modeling, solar cooling machine
Procedia PDF Downloads 25319781 Balancing Electricity Demand and Supply to Protect a Company from Load Shedding: A Review
Authors: G. W. Greubel, A. Kalam
Abstract:
This paper provides a review of the technical problems facing the South African electricity system and discusses a hypothetical ‘virtual grid’ concept that may assist in solving the problems. The proposed solution has potential application across emerging markets with constrained power infrastructure or for companies who wish to be entirely powered by renewable energy. South Africa finds itself at a confluence of forces where the national electricity supply system is constrained with under-supply primarily from old and failing coal-fired power stations and congested and inadequate transmission and distribution systems. Simultaneously, the country attempts to meet carbon reduction targets driven by both an alignment with international goals and a consumer-driven requirement. The constrained electricity system is an aspect of an economy characterized by very low economic growth, high unemployment, and frequent and significant load shedding. The fiscus does not have the funding to build new generation capacity or strengthen the grid. The under-supply is increasingly alleviated by the penetration of wind and solar generation capacity and embedded roof-top solar. However, this increased penetration results in less inertia, less synchronous generation, and less capability for fast frequency response, with resultant instability. The renewable energy facilities assist in solving the under-supply issues but merely ‘kick the can down the road’ by not contributing to grid stability or by substituting the lost inertia, thus creating an expanding issue for the grid to manage. By technically balancing its electricity demand and supply a company with facilities located across the country can be protected from the effects of load shedding, and thus ensure financial and production performance, protect jobs, and contribute meaningfully to the economy. By treating the company’s load (across the country) and its various distributed generation facilities as a ‘virtual grid’, which by design will provide ancillary services to the grid one is able to create a win-win situation for both the company and the grid.Keywords: load shedding, renewable energy integration, smart grid, virtual grid, virtual power plant
Procedia PDF Downloads 5619780 Reducing Change-Related Costs in Assembly of Lithium-Ion Batteries for Electric Cars by Mechanical Decoupling
Authors: Achim Kampker, Heiner Hans Heimes, Mathias Ordung, Nemanja Sarovic
Abstract:
A key component of the drive train of electric vehicles is the lithium-ion battery system. Among various other components, such as the battery management system or the thermal management system, the battery system mostly consists of several cells which are integrated mechanically as well as electrically. Due to different vehicle concepts with regards to space, energy and power specifications, there is a variety of different battery systems. The corresponding assembly lines are specially designed for each battery concept. Minor changes to certain characteristics of the battery have a disproportionally high effect on the set-up effort in the form of high change-related costs. This paper will focus on battery systems which are made out of battery cells with a prismatic format. The product architecture and the assembly process will be analyzed in detail based on battery concepts of existing electric cars and key variety-causing drivers will be identified. On this basis, several measures will be presented and discussed on how to change the product architecture and the assembly process in order to reduce change-related costs.Keywords: assembly, automotive industry, battery system, battery concept
Procedia PDF Downloads 30119779 Mitigating Food Insecurity and Malnutrition by Promoting Carbon Farming via a Solar-Powered Enzymatic Composting Bioreactor with Arduino-Based Sensors
Authors: Molin A., De Ramos J. M., Cadion L. G., Pico R. L.
Abstract:
Malnutrition and food insecurity represent significant global challenges affecting millions of individuals, particularly in low-income and developing regions. The researchers created a solar-powered enzymatic composting bioreactor with an Arduino-based monitoring system for pH, humidity, and temperature. It manages mixed municipal solid wastes incorporating industrial enzymes and whey additives for accelerated composting and minimized carbon footprint. Within 15 days, the bioreactor yielded 54.54% compost compared to 44.85% from traditional methods, increasing yield by nearly 10%. Tests showed that the bioreactor compost had 4.84% NPK, passing metal analysis standards, while the traditional pit compost had 3.86% NPK; both are suitable for agriculture. Statistical analyses, including ANOVA and Tukey's HSD test, revealed significant differences in agricultural yield across different compost types based on leaf length, width, and number of leaves. The study compared the effects of different composts on Brassica rapa subsp. Chinesis (Petchay) and Brassica juncea (Mustasa) plant growth. For Pechay, significant effects of compost type on plant leaf length (F(5,84) = 62.33, η² = 0.79) and leaf width (F(5,84) = 12.35, η² = 0.42) were found. For Mustasa, significant effects of compost type on leaf length (F(4,70) = 20.61, η² = 0.54), leaf width (F(4,70) = 19.24, η² = 0.52), and number of leaves (F(4,70) = 13.17, η² = 0.43) were observed. This study explores the effectiveness of the enzymatic composting bioreactor and its viability in promoting carbon farming as a solution to food insecurity and malnutrition.Keywords: malnutrition, food insecurity, enzymatic composting bioreactor, arduino-based monitoring system, enzymes, carbon farming, whey additive, NPK level
Procedia PDF Downloads 5619778 Development of an Automatic Sequential Extraction Device for Pu and Am Isotopes in Radioactive Waste Samples
Authors: Myung Ho Lee, Hee Seung Lim, Young Jae Maeng, Chang Hoon Lee
Abstract:
This study presents an automatic sequential extraction device for Pu and Am isotopes in radioactive waste samples from the nuclear power plant with anion exchange resin and TRU resin. After radionuclides were leached from the radioactive waste samples with concentrated HCl and HNO₃, the sample was allowed to evaporate to dryness after filtering the leaching solution with 0.45 micron filter. The Pu isotopes were separated in HNO₃ medium with anion exchange resin. For leaching solution passed through the anion exchange column, the Am isotopes were sequentially separated with TRU resin. Automatic sequential extraction device built-in software information of separation for Pu and Am isotopes was developed. The purified Pu and Am isotopes were measured by alpha spectrometer, respectively, after the micro-precipitation of neodymium. The data of Pu and Am isotopes in radioactive waste with an automatic sequential extraction device developed in this study were validated with the ICP-MS system.Keywords: automatic sequential extraction device, Pu isotopes, Am isotopes, alpha spectrometer, radioactive waste samples, ICP-MS system
Procedia PDF Downloads 7319777 Scanning Transmission Electron Microscopic Analysis of Gamma Ray Exposed Perovskite Solar Cells
Authors: Aleksandra Boldyreva, Alexander Golubnichiy, Artem Abakumov
Abstract:
Various perovskite materials have surprisingly high resistance towards high-energy electrons, protons, and hard ionization, such as X-rays and gamma-rays. Superior radiation hardness makes a family of perovskite semiconductors an attractive candidate for single- and multijunction solar cells for the space environment and as X-ray and gamma-ray detectors. One of the methods to study the radiation hardness of different materials is by exposing them to gamma photons with high energies (above 500 keV) Herein, we have explored the recombination dynamics and defect concentration of a mixed cation mixed halide perovskite Cs0.17FA0.83PbI1.8Br1.2 with 1.74 eV bandgap after exposure to a gamma-ray source (2.5 Gy/min). We performed an advanced STEM EDX analysis to reveal different types of defects formed during gamma exposure. It was found that 10 kGy dose results in significant improvement of perovskite crystallinity and homogeneous distribution of I ions. While the absorber layer withstood gamma exposure, the hole transport layer (PTAA) as well as indium tin oxide (ITO) were significantly damaged, which increased the interface recombination rate and reduction of fill factor in solar cells. Thus, STEM analysis is a powerful technique that can reveal defects formed by gamma exposure in perovskite solar cells. Methods: Data will be collected from perovskite solar cells (PSCs) and thin films exposed to gamma ionisator. For thin films 50 μL of the Cs0.17FA0.83PbI1.8Br1.2 solution in DMF was deposited (dynamically) at 3000 rpm followed by quenching with 100 μL of ethyl acetate (dropped 10 sec after perovskite precursor) applied at the same spin-coating frequency. The deposited Cs0.17FA0.83PbI1.8Br1.2 films were annealed for 10 min at 100 °C, which led to the development of a dark brown color. For the solar cells, 10% suspension of SnO2 nanoparticles (Alfa Aesar) was deposited at 4000 rpm, followed by annealing on air at 170 ˚C for 20 min. Next, samples were introduced into a nitrogen glovebox for the deposition of all remaining layers. Perovskite film was applied in the same way as in thin films described earlier. Solution of poly-triaryl amine PTAA (Sigma Aldrich) (4 mg in chlorobenzene) was applied at 1000 rpm atop of perovskite layer. Next, 30 nm of VOx was deposited atop the PTAA layer on the whole sample surface using the physical vapor deposition (PVD) technique. Silver electrodes (100 nm) were evaporated in a high vacuum (10-6 mbar) through a shadow mask, defining the active area of each device as ~0.16 cm2. The prepared samples (thin films and solar cells) were packed in Al lamination foil inside the argon glove box. The set of samples consisted of 6 thin films and 6 solar cells, which were exposed to 6, 10, and 21 kGy (2 samples per dose) with 137Cs gamma-ray source (E = 662 keV) with a dose rate of 2.5 Gy/min. The exposed samples will be studied on a focused ion beam (FIB) on a dual-beam scanning electron microscope from ThermoFisher, the Helios G4 Plasma FIB Uxe, operating with a xenon plasma.Keywords: perovskite solar cells, transmission electron microscopy, radiation hardness, gamma irradiation
Procedia PDF Downloads 21