Search results for: Malaysian market error
4050 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes
Authors: Angela U. Makolo
Abstract:
Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation
Procedia PDF Downloads 684049 Designing a Motivated Tangible Multimedia System for Preschoolers
Authors: Kien Tsong Chau, Zarina Samsudin, Wan Ahmad Jaafar Wan Yahaya
Abstract:
The paper examined the capability of a prototype of a tangible multimedia system that was augmented with tangible objects in motivating young preschoolers in learning. Preschoolers’ learning behaviour is highly captivated and motivated by external physical stimuli. Hence, conventional multimedia which solely dependent on digital visual and auditory formats for knowledge delivery could potentially place them in inappropriate state of circumstances that are frustrating, boring, or worse, impede overall learning motivations. This paper begins by discussion with the objectives of the research, followed by research questions, hypotheses, ARCS model of motivation adopted in the process of macro-design, and the research instrumentation, Persuasive Multimedia Motivational Scale was deployed for measuring the level of motivation of subjects towards the experimental tangible multimedia. At the close, a succinct description of the findings of a relevant research is provided. In the research, a total of 248 preschoolers recruited from seven Malaysian kindergartens were examined. Analyses revealed that the tangible multimedia system improved preschoolers’ learning motivation significantly more than conventional multimedia. Overall, the findings led to the conclusion that the tangible multimedia system is a motivation conducive multimedia for preschoolers.Keywords: tangible multimedia, preschoolers, multimedia, tangible objects
Procedia PDF Downloads 6094048 Finite Element Modeling of Mass Transfer Phenomenon and Optimization of Process Parameters for Drying of Paddy in a Hybrid Solar Dryer
Authors: Aprajeeta Jha, Punyadarshini P. Tripathy
Abstract:
Drying technologies for various food processing operations shares an inevitable linkage with energy, cost and environmental sustainability. Hence, solar drying of food grains has become imperative choice to combat duo challenges of meeting high energy demand for drying and to address climate change scenario. But performance and reliability of solar dryers depend hugely on sunshine period, climatic conditions, therefore, offer a limited control over drying conditions and have lower efficiencies. Solar drying technology, supported by Photovoltaic (PV) power plant and hybrid type solar air collector can potentially overpower the disadvantages of solar dryers. For development of such robust hybrid dryers; to ensure quality and shelf-life of paddy grains the optimization of process parameter becomes extremely critical. Investigation of the moisture distribution profile within the grains becomes necessary in order to avoid over drying or under drying of food grains in hybrid solar dryer. Computational simulations based on finite element modeling can serve as potential tool in providing a better insight of moisture migration during drying process. Hence, present work aims at optimizing the process parameters and to develop a 3-dimensional (3D) finite element model (FEM) for predicting moisture profile in paddy during solar drying. COMSOL Multiphysics was employed to develop a 3D finite element model for predicting moisture profile. Furthermore, optimization of process parameters (power level, air velocity and moisture content) was done using response surface methodology in design expert software. 3D finite element model (FEM) for predicting moisture migration in single kernel for every time step has been developed and validated with experimental data. The mean absolute error (MAE), mean relative error (MRE) and standard error (SE) were found to be 0.003, 0.0531 and 0.0007, respectively, indicating close agreement of model with experimental results. Furthermore, optimized process parameters for drying paddy were found to be 700 W, 2.75 m/s at 13% (wb) with optimum temperature, milling yield and drying time of 42˚C, 62%, 86 min respectively, having desirability of 0.905. Above optimized conditions can be successfully used to dry paddy in PV integrated solar dryer in order to attain maximum uniformity, quality and yield of product. PV-integrated hybrid solar dryers can be employed as potential and cutting edge drying technology alternative for sustainable energy and food security.Keywords: finite element modeling, moisture migration, paddy grain, process optimization, PV integrated hybrid solar dryer
Procedia PDF Downloads 1504047 Ethnographic Exploration of Elderly Residents' Perceptions and Utilization of Health Care to Improve Their Quality of Life
Authors: Seyed Ziya Tabatabaei, Azimi Bin Hj Hamzah, Fatemeh Ebrahimi
Abstract:
The increase in proportion of older people in Malaysia has led to a significant growth of health care demands. The aim of this study is to explore how perceived health care needs influence on quality of life among elderly Malay residents who reside in a Malaysian residential home. This study employed a method known as ethnographic research from May 2011 to January 2012. Four data collection strategies were selected as the main data-collecting tools including participant observation, field notes, in-depth interviews, and review of related documents. The nine knowledgeable participants for the present study were selected using the purposive sampling method. Two themes were identified: (1) Medical concerns: Feeling secure, lack of information, inadequate medical staff; and (2) Health promotion: Body condition, health education, physiotherapy and rehabilitation. These results could evoke the attention of policy-makers and care providers to better meet elderly residents’ health care needs.Keywords: ethnographic study, health care needs, Malay elderly people, Malaysia, Quality of life, Residential home
Procedia PDF Downloads 2974046 Evaluating Thailand’s Cosmetic Surgery Tourism by Taiwanese Female Tourists
Authors: Wen-Yu Chen, Chia-Yuan Hsu, Sasinee Vongsrikul
Abstract:
The present study is to explore the perception of Taiwanese females towards medical tourism in Thailand for the development of applicable marketing strategy, integrating travel motivation and cosmetic surgery trend to attract potential medical tourists from Taiwan. Since previous studies relevant to this research issue are limited, qualitative study is firstly employed by using one focus group interview and in-depth interviews with Taiwanese females. Moreover, the present research collected questionnaires from 290 Taiwanese females to provide greater understanding of research results. The top three factors that affect Taiwanese females’ decision for not going to Thailand for medical tourism are “physicians and nurses cannot speak Chinese”, “low quality of the cosmetic surgery product that I want to do”, and “the county does not have laws to protect medical tourists’ right”. The finding of the empirical part would suggest the area in medical tourism industry which Thailand should promote and emphasizes in order to increase its presence as a hub for cosmetic surgery and attract Taiwanese female market. Therefore, the study contributes to the potential development of marketing strategy for medical tourism, specifically in the area of cosmetic surgery in Thailand while targeting Taiwan market.Keywords: Thailand, Taiwanese female tourists, medical tourism, cosmetic surgery
Procedia PDF Downloads 4244045 Restricted Boltzmann Machines and Deep Belief Nets for Market Basket Analysis: Statistical Performance and Managerial Implications
Authors: H. Hruschka
Abstract:
This paper presents the first comparison of the performance of the restricted Boltzmann machine and the deep belief net on binary market basket data relative to binary factor analysis and the two best-known topic models, namely Dirichlet allocation and the correlated topic model. This comparison shows that the restricted Boltzmann machine and the deep belief net are superior to both binary factor analysis and topic models. Managerial implications that differ between the investigated models are treated as well. The restricted Boltzmann machine is defined as joint Boltzmann distribution of hidden variables and observed variables (purchases). It comprises one layer of observed variables and one layer of hidden variables. Note that variables of the same layer are not connected. The comparison also includes deep belief nets with three layers. The first layer is a restricted Boltzmann machine based on category purchases. Hidden variables of the first layer are used as input variables by the second-layer restricted Boltzmann machine which then generates second-layer hidden variables. Finally, in the third layer hidden variables are related to purchases. A public data set is analyzed which contains one month of real-world point-of-sale transactions in a typical local grocery outlet. It consists of 9,835 market baskets referring to 169 product categories. This data set is randomly split into two halves. One half is used for estimation, the other serves as holdout data. Each model is evaluated by the log likelihood for the holdout data. Performance of the topic models is disappointing as the holdout log likelihood of the correlated topic model – which is better than Dirichlet allocation - is lower by more than 25,000 compared to the best binary factor analysis model. On the other hand, binary factor analysis on its own is clearly surpassed by both the restricted Boltzmann machine and the deep belief net whose holdout log likelihoods are higher by more than 23,000. Overall, the deep belief net performs best. We also interpret hidden variables discovered by binary factor analysis, the restricted Boltzmann machine and the deep belief net. Hidden variables characterized by the product categories to which they are related differ strongly between these three models. To derive managerial implications we assess the effect of promoting each category on total basket size, i.e., the number of purchased product categories, due to each category's interdependence with all the other categories. The investigated models lead to very different implications as they disagree about which categories are associated with higher basket size increases due to a promotion. Of course, recommendations based on better performing models should be preferred. The impressive performance advantages of the restricted Boltzmann machine and the deep belief net suggest continuing research by appropriate extensions. To include predictors, especially marketing variables such as price, seems to be an obvious next step. It might also be feasible to take a more detailed perspective by considering purchases of brands instead of purchases of product categories.Keywords: binary factor analysis, deep belief net, market basket analysis, restricted Boltzmann machine, topic models
Procedia PDF Downloads 1994044 Physicochemical and Sensory Properties of Gluten-Free Semolina Produced from Blends of Cassava, Maize and Rice
Authors: Babatunde Stephen Oladeji, Gloria Asuquo Edet
Abstract:
The proximate, functional, pasting, and sensory properties of semolina from blends of cassava, maize, and rice were investigated. Cassava, maize, and rice were milled and sieved to pass through a 1000 µm sieve, then blended in the following ratios to produce five samples; FS₁ (40:30:30), FS₂ (20:50:30), FS₃ (25:25:50), FS₄ (34:33:33) and FS₅ (60:20:20) for cassava, maize, and rice, respectively. A market sample of wheat semolina labeled as FSc served as the control. The proximate composition, functional properties, pasting profile, and sensory characteristics of the blends were determined using standard analytical methods. The protein content of the samples ranged from 5.66% to 6.15%, with sample FS₂ having the highest value and being significantly different (p ≤ 0.05). The bulk density of the formulated samples ranged from 0.60 and 0.62 g/ml. The control (FSc) had a higher bulk density of 0.71 g/ml. The water absorption capacity of both the formulated and control samples ranged from 0.67% to 2.02%, with FS₃ having the highest value and FSc having the lowest value (0.67%). The peak viscosity of the samples ranged from 60.83-169.42 RVU, and the final viscosity of semolina samples ranged from 131.17 to 235.42 RVU. FS₅ had the highest overall acceptability score (7.46), but there was no significant difference (p ≤ 0.05) from other samples except for FS₂ (6.54) and FS₃ (6.29). This study establishes that high-quality and consumer-acceptable semolina that is comparable to the market sample could be produced from blends of cassava, maize, and rice.Keywords: semolina, gluten, celiac disease, wheat allergies
Procedia PDF Downloads 1044043 The Dynamics of Algeria’s Natural Gas Exports to Europe: Evidence from ARDL Bounds Testing Approach with Breakpoints
Authors: Hicham Benamirouche, Oum Elkheir Moussi
Abstract:
The purpose of the study is to examine the dynamics of Algeria’s natural gas exports through the Autoregressive Distributed Lag (ARDL) bounds testing approach with break points. The analysis was carried out for the period from 1967 to 2015. Based on imperfect substitution specification, the ARDL approach reveals a long-run equilibrium relationship between Algeria’s Natural gas exports and their determinant factors (Algeria’s gas reserves, Domestic gas consumption, Europe’s GDP per capita, relative prices, the European gas production and the market share of competitors). All the long-run elasticities estimated are statistically significant with a large impact of domestic factors, which constitute the supply constraints. In short term, the elasticities are statistically significant, and almost comparable to those of the long term. Furthermore, the speed of adjustment towards long-run equilibrium is less than one year because of the little flexibility of the long term export contracts. Two break points have been estimated when we employ the domestic gas consumption as a break variable; 1984 and 2010, which reflect the arbitration policy between the domestic gas market and gas exports.Keywords: natural gas exports, elasticity, ARDL bounds testing, break points, Algeria
Procedia PDF Downloads 2004042 Strengthening Islamic Banking Customer Behavioral Intention through Value and Commitment
Authors: Mornay Roberts-Lombard
Abstract:
Consumers’ perceptions of value are crucial to ensuring their future commitment and behavioral intentions. As a result, service providers, such as Islamic banks, must provide their customers with products and services that are regarded as valuable, stimulating, collaborative, and competent. Therefore, the value provided to customers must meet or surpass their expectations, which can drive customers’ commitment (affective and calculative) and eventually favorably impact their future behavioral intentions. Consequently, Islamic banks in South Africa, as a growing African market, need to obtain a better understanding of the variables that impact Islamic banking customers’ value perceptions and how these impact their future behavioral intentions. Furthermore, it is necessary to investigate how customers’ perceived value perceptions impact their affective and calculative commitment and how the latter impact their future behavioral intentions. The purpose of this study is to bridge these gaps in knowledge, as the competitiveness of the Islamic banking industry in South Africa requires a deeper understanding of the aforementioned relationships. The study was exploratory and quantitative in nature, and data was collected from 250 Islamic banking customers using self-administered questionnaires. These banking customers resided in the Gauteng province of South Africa. Exploratory factor analysis, Pearson’s coefficient analysis, and multiple regression analysis were applied to measure the proposed hypotheses developed for the study. This research will aid Islamic banks in the country in potentially strengthening customers’ future commitment (affective and calculative) and positively impact their future behavioral intentions. The findings of the study established that service quality has a significant and positive impact on perceived value. Moreover, it was determined that perceived value has a favorable and considerable impact on affective and calculative commitment, while calculative commitment has a beneficial impact on behavioral intention. The research informs Islamic banks of the importance of service engagement in driving customer perceived value, which stimulates the future affective and calculative commitment of Islamic bank customers in an emerging market context. Finally, the study proposes guidelines for Islamic banks to develop an enhanced understanding of the factors that impact the perceived value-commitment-behavioral intention link in a competitive Islamic banking market in South Africa.Keywords: perceived value, affective commitment, calculative commitment, behavioural intention
Procedia PDF Downloads 804041 Stage-Gate Based Integrated Project Management Methodology for New Product Development
Authors: Mert Kıranç, Ekrem Duman, Murat Özbilen
Abstract:
In order to achieve new product development (NPD) activities on time and within budgetary constraints, the NPD managers need a well-designed methodology. This study intends to create an integrated project management methodology for the ones who focus on new product development projects. In the scope of the study, four different management systems are combined. These systems are called as 'Schedule-oriented Stage-Gate Method, Risk Management, Change Management and Earned Value Management'. New product development term is quite common in many different industries such as defense industry, construction, health care/dental, higher education, fast moving consumer goods, white goods, electronic devices, marketing and advertising and software development. All product manufacturers run against each other’s for introducing a new product to the market. In order to achieve to produce a more competitive product in the market, an optimum project management methodology is chosen, and this methodology is adapted to company culture. The right methodology helps the company to present perfect product to the customers at the right time. The benefits of proposed methodology are discussed as an application by a company. As a result, how the integrated methodology improves the efficiency and how it achieves the success of the project are unfolded.Keywords: project, project management, management methodology, new product development, risk management, change management, earned value, stage-gate
Procedia PDF Downloads 3124040 Implicit Transaction Costs and the Fundamental Theorems of Asset Pricing
Authors: Erindi Allaj
Abstract:
This paper studies arbitrage pricing theory in financial markets with transaction costs. We extend the existing theory to include the more realistic possibility that the price at which the investors trade is dependent on the traded volume. The investors in the market always buy at the ask and sell at the bid price. Transaction costs are composed of two terms, one is able to capture the implicit transaction costs and the other the price impact. Moreover, a new definition of a self-financing portfolio is obtained. The self-financing condition suggests that continuous trading is possible, but is restricted to predictable trading strategies which have left and right limit and finite quadratic variation. That is, predictable trading strategies of infinite variation and of finite quadratic variation are allowed in our setting. Within this framework, the existence of an equivalent probability measure is equivalent to the absence of arbitrage opportunities, so that the first fundamental theorem of asset pricing (FFTAP) holds. It is also proved that, when this probability measure is unique, any contingent claim in the market is hedgeable in an L2-sense. The price of any contingent claim is equal to the risk-neutral price. To better understand how to apply the theory proposed we provide an example with linear transaction costs.Keywords: arbitrage pricing theory, transaction costs, fundamental theorems of arbitrage, financial markets
Procedia PDF Downloads 3614039 Theory of the Optimum Signal Approximation Clarifying the Importance in the Recognition of Parallel World and Application to Secure Signal Communication with Feedback
Authors: Takuro Kida, Yuichi Kida
Abstract:
In this paper, it is shown a base of the new trend of algorithm mathematically that treats a historical reason of continuous discrimination in the world as well as its solution by introducing new concepts of parallel world that includes an invisible set of errors as its companion. With respect to a matrix operator-filter bank that the matrix operator-analysis-filter bank H and the matrix operator-sampling-filter bank S are given, firstly, we introduce the detail algorithm to derive the optimum matrix operator-synthesis-filter bank Z that minimizes all the worst-case measures of the matrix operator-error-signals E(ω) = F(ω) − Y(ω) between the matrix operator-input-signals F(ω) and the matrix operator-output-signals Y(ω) of the matrix operator-filter bank at the same time. Further, feedback is introduced to the above approximation theory, and it is indicated that introducing conversations with feedback do not superior automatically to the accumulation of existing knowledge of signal prediction. Secondly, the concept of category in the field of mathematics is applied to the above optimum signal approximation and is indicated that the category-based approximation theory is applied to the set-theoretic consideration of the recognition of humans. Based on this discussion, it is shown naturally why the narrow perception that tends to create isolation shows an apparent advantage in the short term and, often, why such narrow thinking becomes intimate with discriminatory action in a human group. Throughout these considerations, it is presented that, in order to abolish easy and intimate discriminatory behavior, it is important to create a parallel world of conception where we share the set of invisible error signals, including the words and the consciousness of both worlds.Keywords: matrix filterbank, optimum signal approximation, category theory, simultaneous minimization
Procedia PDF Downloads 1444038 The Reduction of CO2 Emissions Level in Malaysian Transportation Sector: An Optimization Approach
Authors: Siti Indati Mustapa, Hussain Ali Bekhet
Abstract:
Transportation sector represents more than 40% of total energy consumption in Malaysia. This sector is a major user of fossils based fuels, and it is increasingly being highlighted as the sector which contributes least to CO2 emission reduction targets. Considering this fact, this paper attempts to investigate the problem of reducing CO2 emission using linear programming approach. An optimization model which is used to investigate the optimal level of CO2 emission reduction in the road transport sector is presented. In this paper, scenarios have been used to demonstrate the emission reduction model: (1) utilising alternative fuel scenario, (2) improving fuel efficiency scenario, (3) removing fuel subsidy scenario, (4) reducing demand travel, (5) optimal scenario. This study finds that fuel balancing can contribute to the reduction of the amount of CO2 emission by up to 3%. Beyond 3% emission reductions, more stringent measures that include fuel switching, fuel efficiency improvement, demand travel reduction and combination of mitigation measures have to be employed. The model revealed that the CO2 emission reduction in the road transportation can be reduced by 38.3% in the optimal scenario.Keywords: CO2 emission, fuel consumption, optimization, linear programming, transportation sector, Malaysia
Procedia PDF Downloads 4244037 Application of Particle Swarm Optimization to Thermal Sensor Placement for Smart Grid
Authors: Hung-Shuo Wu, Huan-Chieh Chiu, Xiang-Yao Zheng, Yu-Cheng Yang, Chien-Hao Wang, Jen-Cheng Wang, Chwan-Lu Tseng, Joe-Air Jiang
Abstract:
Dynamic Thermal Rating (DTR) provides crucial information by estimating the ampacity of transmission lines to improve power dispatching efficiency. To perform the DTR, it is necessary to install on-line thermal sensors to monitor conductor temperature and weather variables. A simple and intuitive strategy is to allocate a thermal sensor to every span of transmission lines, but the cost of sensors might be too high to bear. To deal with the cost issue, a thermal sensor placement problem must be solved. This research proposes and implements a hybrid algorithm which combines proper orthogonal decomposition (POD) with particle swarm optimization (PSO) methods. The proposed hybrid algorithm solves a multi-objective optimization problem that concludes the minimum number of sensors and the minimum error on conductor temperature, and the optimal sensor placement is determined simultaneously. The data of 345 kV transmission lines and the hourly weather data from the Taiwan Power Company and Central Weather Bureau (CWB), respectively, are used by the proposed method. The simulated results indicate that the number of sensors could be reduced using the optimal placement method proposed by the study and an acceptable error on conductor temperature could be achieved. This study provides power companies with a reliable reference for efficiently monitoring and managing their power grids.Keywords: dynamic thermal rating, proper orthogonal decomposition, particle swarm optimization, sensor placement, smart grid
Procedia PDF Downloads 4324036 Scientific and Regulatory Challenges of Advanced Therapy Medicinal Products
Authors: Alaa Abdellatif, Gabrièle Breda
Abstract:
Background. Advanced therapy medicinal products (ATMPs) are innovative therapies that mainly target orphan diseases and high unmet medical needs. ATMP includes gene therapy medicinal products (GTMP), somatic cell therapy medicinal products (CTMP), and tissue-engineered therapies (TEP). Since legislation opened the way in 2007, 25 ATMPs have been approved in the EU, which is about the same amount as the U.S. Food and Drug Administration. However, not all of the ATMPs that have been approved have successfully reached the market and retained their approval. Objectives. We aim to understand all the factors limiting the market access to very promising therapies in a systemic approach, to be able to overcome these problems, in the future, with scientific, regulatory and commercial innovations. Further to recent reviews that focus either on specific countries, products, or dimensions, we will address all the challenges faced by ATMP development today. Methodology. We used mixed methods and a multi-level approach for data collection. First, we performed an updated academic literature review on ATMP development and their scientific and market access challenges (papers published between 2018 and April 2023). Second, we analyzed industry feedback from cell and gene therapy webinars and white papers published by providers and pharmaceutical industries. Finally, we established a comparative analysis of the regulatory guidelines published by EMA and the FDA for ATMP approval. Results: The main challenges in bringing these therapies to market are the high development costs. Developing ATMPs is expensive due to the need for specialized manufacturing processes. Furthermore, the regulatory pathways for ATMPs are often complex and can vary between countries, making it challenging to obtain approval and ensure compliance with different regulations. As a result of the high costs associated with ATMPs, challenges in obtaining reimbursement from healthcare payers lead to limited patient access to these treatments. ATMPs are often developed for orphan diseases, which means that the patient population is limited for clinical trials which can make it challenging to demonstrate their safety and efficacy. In addition, the complex manufacturing processes required for ATMPs can make it challenging to scale up production to meet demand, which can limit their availability and increase costs. Finally, ATMPs face safety and efficacy challenges: dangerous adverse events of these therapies like toxicity related to the use of viral vectors or cell therapy, starting material and donor-related aspects. Conclusion. As a result of our mixed method analysis, we found that ATMPs face a number of challenges in their development, regulatory approval, and commercialization and that addressing these challenges requires collaboration between industry, regulators, healthcare providers, and patient groups. This first analysis will help us to address, for each challenge, proper and innovative solution(s) in order to increase the number of ATMPs approved and reach the patientsKeywords: advanced therapy medicinal products (ATMPs), product development, market access, innovation
Procedia PDF Downloads 764035 An Adaptive Oversampling Technique for Imbalanced Datasets
Authors: Shaukat Ali Shahee, Usha Ananthakumar
Abstract:
A data set exhibits class imbalance problem when one class has very few examples compared to the other class, and this is also referred to as between class imbalance. The traditional classifiers fail to classify the minority class examples correctly due to its bias towards the majority class. Apart from between-class imbalance, imbalance within classes where classes are composed of a different number of sub-clusters with these sub-clusters containing different number of examples also deteriorates the performance of the classifier. Previously, many methods have been proposed for handling imbalanced dataset problem. These methods can be classified into four categories: data preprocessing, algorithmic based, cost-based methods and ensemble of classifier. Data preprocessing techniques have shown great potential as they attempt to improve data distribution rather than the classifier. Data preprocessing technique handles class imbalance either by increasing the minority class examples or by decreasing the majority class examples. Decreasing the majority class examples lead to loss of information and also when minority class has an absolute rarity, removing the majority class examples is generally not recommended. Existing methods available for handling class imbalance do not address both between-class imbalance and within-class imbalance simultaneously. In this paper, we propose a method that handles between class imbalance and within class imbalance simultaneously for binary classification problem. Removing between class imbalance and within class imbalance simultaneously eliminates the biases of the classifier towards bigger sub-clusters by minimizing the error domination of bigger sub-clusters in total error. The proposed method uses model-based clustering to find the presence of sub-clusters or sub-concepts in the dataset. The number of examples oversampled among the sub-clusters is determined based on the complexity of sub-clusters. The method also takes into consideration the scatter of the data in the feature space and also adaptively copes up with unseen test data using Lowner-John ellipsoid for increasing the accuracy of the classifier. In this study, neural network is being used as this is one such classifier where the total error is minimized and removing the between-class imbalance and within class imbalance simultaneously help the classifier in giving equal weight to all the sub-clusters irrespective of the classes. The proposed method is validated on 9 publicly available data sets and compared with three existing oversampling techniques that rely on the spatial location of minority class examples in the euclidean feature space. The experimental results show the proposed method to be statistically significantly superior to other methods in terms of various accuracy measures. Thus the proposed method can serve as a good alternative to handle various problem domains like credit scoring, customer churn prediction, financial distress, etc., that typically involve imbalanced data sets.Keywords: classification, imbalanced dataset, Lowner-John ellipsoid, model based clustering, oversampling
Procedia PDF Downloads 4184034 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture
Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko
Abstract:
Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.Keywords: classification, feature selection, texture analysis, tree algorithms
Procedia PDF Downloads 1784033 Nonstationary Increments and Casualty in the Aluminum Market
Authors: Andrew Clark
Abstract:
McCauley, Bassler, and Gunaratne show that integration I(d) processes as used in economics and finance do not necessarily produce stationary increments, which are required to determine causality in both the short term and the long term. This paper follows their lead and shows I(d) aluminum cash and futures log prices at daily and weekly intervals do not have stationary increments, which means prior causality studies using I(d) processes need to be re-examined. Wavelets based on undifferenced cash and futures log prices do have stationary increments and are used along with transfer entropy (versus cointegration) to measure causality. Wavelets exhibit causality at most daily time scales out to 1 year, and weekly time scales out to 1 year and more. To determine stationarity, localized stationary wavelets are used. LSWs have the benefit, versus other means of testing for stationarity, of using multiple hypothesis tests to determine stationarity. As informational flows exist between cash and futures at daily and weekly intervals, the aluminum market is efficient. Therefore, hedges used by producers and consumers of aluminum need not have a big concern in terms of the underestimation of hedge ratios. Questions about arbitrage given efficiency are addressed in the paper.Keywords: transfer entropy, nonstationary increments, wavelets, localized stationary wavelets, localized stationary wavelets
Procedia PDF Downloads 2034032 On the Question of Ideology: Criticism of the Enlightenment Approach and Theory of Ideology as Objective Force in Gramsci and Althusser
Authors: Edoardo Schinco
Abstract:
Studying the Marxist intellectual tradition, it is possible to verify that there were numerous cases of philosophical regression, in which the important achievements of detailed studies have been replaced by naïve ideas and previous misunderstandings: one of most important example of this tendency is related to the question of ideology. According to a common Enlightenment approach, the ideology is essentially not a reality, i.e., a factor capable of having an effect on the reality itself; in other words, the ideology is a mere error without specific historical meaning, which is only due to ignorance or inability of subjects to understand the truth. From this point of view, the consequent and immediate practice against every form of ideology are the rational dialogue, the reasoning based on common sense, in order to dispel the obscurity of ignorance through the light of pure reason. The limits of this philosophical orientation are however both theoretical and practical: on the one hand, the Enlightenment criticism of ideology is not an historicistic thought, since it cannot grasp the inner connection that ties an historical context and its peculiar ideology together; moreover, on the other hand, when the Enlightenment approach fails to release people from their illusions (e.g., when the ideology persists, despite the explanation of its illusoriness), it usually becomes a racist or elitarian thought. Unlike this first conception of ideology, Gramsci attempts to recover Marx’s original thought and to valorize its dialectical methodology with respect to the reality of ideology. As Marx suggests, the ideology – in negative meaning – is surely an error, a misleading knowledge, which aims to defense the current state of things and to conceal social, political or moral contradictions; but, that is precisely why the ideological error is not casual: every ideology mediately roots in a particular material context, from which it takes its reason being. Gramsci avoids, however, any mechanistic interpretation of Marx and, for this reason; he underlines the dialectic relation that exists between material base and ideological superstructure; in this way, a specific ideology is not only a passive product of base but also an active factor that reacts on the base itself and modifies it. Therefore, there is a considerable revaluation of ideology’s role in maintenance of status quo and the consequent thematization of both ideology as objective force, active in history, and ideology as cultural hegemony of ruling class on subordinate groups. Among the Marxists, the French philosopher Louis Althusser also gives his contribution to this crucial question; as follower of Gramsci’s thought, he develops the idea of ideology as an objective force through the notions of Repressive State Apparatus (RSA) and Ideological State Apparatuses (ISA). In addition to this, his philosophy is characterized by the presence of structuralist elements, which must be studied, since they deeply change the theoretical foundation of his Marxist thought.Keywords: Althusser, enlightenment, Gramsci, ideology
Procedia PDF Downloads 2014031 High-Pressure Steam Turbine for Medium-Scale Concentrated Solar Power Plants
Authors: Ambra Giovannelli, Coriolano Salvini
Abstract:
Many efforts have been spent in the design and development of Concentrated Solar Power (CPS) Plants worldwide. Most of them are for on-grid electricity generation and they are large plants which can benefit from the economies of scale. Nevertheless, several potential applications for Small and Medium-Scale CSP plants can be relevant in the industrial sector as well as for off-grid purposes (i.e. in rural contexts). In a wide range of industrial processes, CSP technologies can be used for heat generation replacing conventional primary sources. For such market, proven technologies (usually hybrid solutions) already exist: more than 100 installations, especially in developing countries, are in operation and performance can be verified. On the other hand, concerning off-grid applications, solar technologies are not so mature. Even if the market offers a potential deployment of such systems, especially in countries where the access to grid is strongly limited, optimized solutions have not been developed yet. In this context, steam power plants can be taken into consideration for medium scale installations, due to the recent results achieved with direct steam generation systems based on paraboloidal dish or Fresnel lens solar concentrators. Steam at 4.0-4.5 MPa and 500°C can be produced directly by means of innovative solar receivers (some prototypes already exist). Although it could seem a promising technology, presently, steam turbines commercially available do not cover the required cycle specifications. In particular, while low-pressure turbines already exist on the market, high-pressure groups, necessary for the abovementioned applications, are not available. The present paper deals with the preliminary design of a high-pressure steam turbine group for a medium-scale CSP plant (200-1000 kWe). Such a group is arranged in a single geared package composed of four radial expander wheels. Such wheels have been chosen on the basis of automotive turbocharging technology and then modified to take the new requirements into account. Results related to the preliminary geometry selection and to the analysis of the high-pressure turbine group performance are reported and widely discussed.Keywords: concentrated solar power (CSP) plants, steam turbine, radial turbine, medium-scale power plants
Procedia PDF Downloads 2174030 Price Prediction Line, Investment Signals and Limit Conditions Applied for the German Financial Market
Authors: Cristian Păuna
Abstract:
In the first decades of the 21st century, in the electronic trading environment, algorithmic capital investments became the primary tool to make a profit by speculations in financial markets. A significant number of traders, private or institutional investors are participating in the capital markets every day using automated algorithms. The autonomous trading software is today a considerable part in the business intelligence system of any modern financial activity. The trading decisions and orders are made automatically by computers using different mathematical models. This paper will present one of these models called Price Prediction Line. A mathematical algorithm will be revealed to build a reliable trend line, which is the base for limit conditions and automated investment signals, the core for a computerized investment system. The paper will guide how to apply these tools to generate entry and exit investment signals, limit conditions to build a mathematical filter for the investment opportunities, and the methodology to integrate all of these in automated investment software. The paper will also present trading results obtained for the leading German financial market index with the presented methods to analyze and to compare different automated investment algorithms. It was found that a specific mathematical algorithm can be optimized and integrated into an automated trading system with good and sustained results for the leading German Market. Investment results will be compared in order to qualify the presented model. In conclusion, a 1:6.12 risk was obtained to reward ratio applying the trigonometric method to the DAX Deutscher Aktienindex on 24 months investment. These results are superior to those obtained with other similar models as this paper reveal. The general idea sustained by this paper is that the Price Prediction Line model presented is a reliable capital investment methodology that can be successfully applied to build an automated investment system with excellent results.Keywords: algorithmic trading, automated trading systems, high-frequency trading, DAX Deutscher Aktienindex
Procedia PDF Downloads 1304029 The Development of Portable Application Software for Cardiovascular Fitness Norms of NDUM Cadet Students
Authors: Mohar Kassim, Hardy Azmir, Rahmat Sholihin Mokhtar
Abstract:
The purpose of this study is to build portable application software to determine the level of cardiovascular fitness for cadet students of the National Defence University of Malaysia (NDUM). Fitness in the context of this study refers to physical fitness, specifically the cardiovascular endurance level test battery in the form of a 2.4 km run test for UPNM cadet students. This run test will be conducted to measure, test, and evaluate the performance of UPNM cadet students. All the run test results can be recorded electronically inside the portable software and will later be able to show the level of cardiovascular fitness of every cadet student according to age and gender. This software can also calculate the body mass index (BMI). Normative survey method will be used in this study through the analysis of the 2.4 km run test results. The run test scores will be classified in interval and ratio scales. Based on the findings of this study, portable application software will produced. The software will be able to directly assist the Military Training Academy (ALK), Malaysian Armed Forces (ATM), and other relevant agencies in determining the level of cardiovascular fitness among their staff. The test can be done electronically and on portable mode. The next step to be taken is to have this application patented.Keywords: development, software, application, portable, fitness norms, cardiovascular endurance
Procedia PDF Downloads 5494028 The Valuation of Employees Provident Fund on Long Term Care Cost among Elderly in Malaysia
Authors: Mazlynda Md Yusuf, Wafa' Mahadzir, Mohamad Yazis Ali Basah
Abstract:
Nowadays, financing long-term care for elderly people is a crucial issue, either towards the family members or the care institution. Corresponding with the growing number of ageing population in Malaysia, there’s a need of concern on the uncertaintiness of future family care and the need for long-term care services. Moreover, with the increasing cost of living, children feels the urge of needing to work and receive a fixed monthly income that results to sending their elderly parents to care institutions. Currently, in Malaysia, the rates for private nursing homes can amount up to RM 4,000 per month excluding medical treatments and other recurring expenses. These costs are expected to be paid using their Employees Provident Fund (EPF) savings that they accumulate during their working years, especially for those working under private sectors. Hence, this study identifies the adequacy of EPF in funding the cost of long-term care service during old age. This study used a hypothetical simulation model to simulate different scenarios. The findings of this study could be used for individuals to prepare on the importance of planning for retirement, especially with the increasing cost of long-term care services.Keywords: long-term care cost, employees provident fund Malaysia, ageing population, Malaysian elderly
Procedia PDF Downloads 3404027 Efficiency in Islamic Banks: Some Empirical Evidences in Indonesian Finance Market
Authors: Ahmed Sameer El Khatib
Abstract:
The aim of the present paper is to examine the revenue efficiency of the Indonesian Islamic banking sector. The study also seeks to investigate the potential internal (bank specific) and external (macroeconomic) determinants that influence the revenue efficiency of Indonesian domestic Islamic banks. We employ the whole gamut of domestic and foreign Islamic banks operating in the Indonesian Islamic banking sector during the period of 2009 to 2018. The level of revenue efficiency is computed by using the Data Envelopment Analysis (DEA) method. Furthermore, we employ a panel regression analysis framework based on the Ordinary Least Square (OLS) method to examine the potential determinants of revenue efficiency. The results indicate that the level of revenue efficiency of Indonesian domestic Islamic banks is lower compared to their foreign Islamic bank counterparts. We find that bank market power, liquidity, and management quality significantly influence the improvement in revenue efficiency of the Indonesian domestic Islamic banks during the period under study. By calculating these efficiency concepts, we can observe the efficiency levels of the domestic and foreign Islamic banks. In addition, by comparing both cost and profit efficiency, we can identify the influence of the revenue efficiency on the banks’ profitability.Keywords: Islamic Finance, Islamic Banks, Revenue Efficiency, Data Envelopment Analysis
Procedia PDF Downloads 2424026 Recent Legal Changes in Turkish Commercial Law to Be a Part of International Markets and Their Results
Authors: Ibrahim Arslan
Abstract:
Since 1984, Turkey has experienced a significant transformation in legal and economic matters. The most consequential examples of this transformation in recent years are the renewal of the Commercial Code and the Check Act. Nowadays, the commercial activity is not limited within the boundaries of the country; on the contrary, as required by the global economy, it has an international dimension. For this reason, unlike some other legal principles, the rules regulating the commercial life should be compatible with the international standards as much as possible. Otherwise the development possibility in the global markets will be limited. The Check Act has been adopted in 2009 and the Commercial Code has been adopted in 2011. The Commercial Code has been entered into force on 1 July 2012. The international dimension of check is in-disputable for it is based on the Geneva Convention. However, the Turkish business life has created a unique application of this legal tool. This application is called “post-date” checks. Indeed the majority of the checks being used in the market are post-dated checks. The holders of these checks have waited the date written on the check for presentation and collection. Thus, the actual situation has occurred. This actual situation has been legitimized via Check Act No. 5941 and post dated checks have gained a legal status. In the preparation of the new the Turkish Commercial Code one of the goals is "to ensure that the Turkish commercial law becomes a part of the international market". To achieve this goal, significant changes have been made especially concerning the independent external audition of the corporations, the board structure and public disclosure regulations. These changes aim to facilitate the internationalization of Turkish corporations as well as intensification of foreign direct investments through foreign capital. Although the target has been determined this way, after the adoption but five days before the entry into force of the Turkish Commercial Code No. 6102, a law made backward going alterations concerning independent external audition and public disclosure regulations. Turkish Commercial Code has been currently in force with its altered status. Both the regulations in the Check Act as well as the changes in the Commercial Code are not compatible with the goals introduced by rationale “to ensure Turkish commercial law to be a part of the international market” as such.Keywords: Turkish Commercial Code No. 6102, Turkish Check Act, “post-date” checks, legal changes
Procedia PDF Downloads 2944025 Using Equipment Telemetry Data for Condition-Based maintenance decisions
Authors: John Q. Todd
Abstract:
Given that modern equipment can provide comprehensive health, status, and error condition data via built-in sensors, maintenance organizations have a new and valuable source of insight to take advantage of. This presentation will expose what these data payloads might look like and how they can be filtered, visualized, calculated into metrics, used for machine learning, and generate alerts for further action.Keywords: condition based maintenance, equipment data, metrics, alerts
Procedia PDF Downloads 1884024 Idealization of Licca-Chan and Barbie: Comparison of Two Dolls across the Pacific
Authors: Miho Tsukamoto
Abstract:
Since the initial creation of the Barbie doll in 1959, it became a symbol of US society. Likewise, the Licca-chan, a Japanese doll created in 1967, also became a Japanese symbolic doll of Japanese society. Prior to the introduction of Licca-chan, Barbie was already marketed in Japan but their sales were dismal. Licca-chan (an actual name: Kayama Licca) is a plastic doll with a variety of sizes ranging from 21.0 cm to 29.0 cm which many Japanese girls dream of having. For over 35 years, the manufacturer, Takara Co., Ltd. has sold over 48 million dolls and has produced doll houses, accessories, clothes, and Licca-chan video games for the Nintendo DS. Many First-generation Licca-chan consumers still are enamored with Licca-chan, and go to Licca-chan House, in an amusement park with their daughters. These people are called Licca-chan maniacs, as they enjoy touring the Licca-chan’s factory in Tohoku or purchase various Licca-chan accessories. After the successful launch of Licca-chan into the Japanese market, a mixed-like doll from the US and Japan, a doll, JeNny, was later sold in the same Japanese market by Takara Co., Ltd. in 1982. Comparison of these cultural iconic dolls, Barbie and Licca-chan, are analyzed in this paper. In fact, these dolls have concepts of girls’ dreams. By using concepts of mythology of Jean Baudrillard, these dolls can be represented idealized images of figures in the products for consumers, but at the same time, consumers can see products with different perspectives, which can cause controversy.Keywords: Barbie, dolls, JeNny, idealization, Licca-chan
Procedia PDF Downloads 2714023 Homeless Population Modeling and Trend Prediction Through Identifying Key Factors and Machine Learning
Authors: Shayla He
Abstract:
Background and Purpose: According to Chamie (2017), it’s estimated that no less than 150 million people, or about 2 percent of the world’s population, are homeless. The homeless population in the United States has grown rapidly in the past four decades. In New York City, the sheltered homeless population has increased from 12,830 in 1983 to 62,679 in 2020. Knowing the trend on the homeless population is crucial at helping the states and the cities make affordable housing plans, and other community service plans ahead of time to better prepare for the situation. This study utilized the data from New York City, examined the key factors associated with the homelessness, and developed systematic modeling to predict homeless populations of the future. Using the best model developed, named HP-RNN, an analysis on the homeless population change during the months of 2020 and 2021, which were impacted by the COVID-19 pandemic, was conducted. Moreover, HP-RNN was tested on the data from Seattle. Methods: The methodology involves four phases in developing robust prediction methods. Phase 1 gathered and analyzed raw data of homeless population and demographic conditions from five urban centers. Phase 2 identified the key factors that contribute to the rate of homelessness. In Phase 3, three models were built using Linear Regression, Random Forest, and Recurrent Neural Network (RNN), respectively, to predict the future trend of society's homeless population. Each model was trained and tuned based on the dataset from New York City for its accuracy measured by Mean Squared Error (MSE). In Phase 4, the final phase, the best model from Phase 3 was evaluated using the data from Seattle that was not part of the model training and tuning process in Phase 3. Results: Compared to the Linear Regression based model used by HUD et al (2019), HP-RNN significantly improved the prediction metrics of Coefficient of Determination (R2) from -11.73 to 0.88 and MSE by 99%. HP-RNN was then validated on the data from Seattle, WA, which showed a peak %error of 14.5% between the actual and the predicted count. Finally, the modeling results were collected to predict the trend during the COVID-19 pandemic. It shows a good correlation between the actual and the predicted homeless population, with the peak %error less than 8.6%. Conclusions and Implications: This work is the first work to apply RNN to model the time series of the homeless related data. The Model shows a close correlation between the actual and the predicted homeless population. There are two major implications of this result. First, the model can be used to predict the homeless population for the next several years, and the prediction can help the states and the cities plan ahead on affordable housing allocation and other community service to better prepare for the future. Moreover, this prediction can serve as a reference to policy makers and legislators as they seek to make changes that may impact the factors closely associated with the future homeless population trend.Keywords: homeless, prediction, model, RNN
Procedia PDF Downloads 1214022 The Impact of Temporal Impairment on Quality of Experience (QoE) in Video Streaming: A No Reference (NR) Subjective and Objective Study
Authors: Muhammad Arslan Usman, Muhammad Rehan Usman, Soo Young Shin
Abstract:
Live video streaming is one of the most widely used service among end users, yet it is a big challenge for the network operators in terms of quality. The only way to provide excellent Quality of Experience (QoE) to the end users is continuous monitoring of live video streaming. For this purpose, there are several objective algorithms available that monitor the quality of the video in a live stream. Subjective tests play a very important role in fine tuning the results of objective algorithms. As human perception is considered to be the most reliable source for assessing the quality of a video stream, subjective tests are conducted in order to develop more reliable objective algorithms. Temporal impairments in a live video stream can have a negative impact on the end users. In this paper we have conducted subjective evaluation tests on a set of video sequences containing temporal impairment known as frame freezing. Frame Freezing is considered as a transmission error as well as a hardware error which can result in loss of video frames on the reception side of a transmission system. In our subjective tests, we have performed tests on videos that contain a single freezing event and also for videos that contain multiple freezing events. We have recorded our subjective test results for all the videos in order to give a comparison on the available No Reference (NR) objective algorithms. Finally, we have shown the performance of no reference algorithms used for objective evaluation of videos and suggested the algorithm that works better. The outcome of this study shows the importance of QoE and its effect on human perception. The results for the subjective evaluation can serve the purpose for validating objective algorithms.Keywords: objective evaluation, subjective evaluation, quality of experience (QoE), video quality assessment (VQA)
Procedia PDF Downloads 6024021 The Impact of the Interest Rates on Investments in the Context of Financial Crisis
Authors: Joanna Stawska
Abstract:
The main objective of this article is to examine the impact of interest rates on investments in Poland in the context of financial crisis. The paper also investigates the dependence of bank loans to enterprises on interbank market rates. The article studies the impact of interbank market rate on the level of investments in Poland. Besides, this article focuses on the research of the correlation between the level of corporate loans and the amount of investments in Poland in order to determine the indirect impact of central bank interest rates through the transmission mechanism of monetary policy on the real economy. To achieve the objective we have used econometric and statistical research methods like: econometric model and Pearson correlation coefficient. This analysis suggests that the central bank reference rate inversely proportionally affects the level of investments in Poland and this dependence is moderate. This is also important issue because it is related to preparing of Poland to accession to euro area. The research is important from both theoretical and empirical points of view. The formulated conclusions and recommendations determine the practical significance of the paper which may be used in the decision making process of monetary and economic authorities of the country.Keywords: central bank, financial crisis, interest rate, investments
Procedia PDF Downloads 442