Search results for: water absorption index
12588 Modeling and Performance Analysis of an Air-Cooled Absorption Chiller
Abstract:
Due to the high cost and the environmental problems caused by the conventional air-conditioning systems, various researches are being increasingly focused on thermal comfort in the building sector integrating renewable energy sources, particularly solar energy. For that purpose, this study aims to present a modeling and performance analysis of a direct air-cooled Water/LiBr absorption chiller. The chiller is considered to be coupled to a small residential building at an arid zone situated in south Algeria. The system is modeled with TRNSYS simulation program. The main objective is to study the feasibility of the chosen system in arid zones and to apply a simplified method to predict the performance of the system by mean of the characteristic equation approach tacking in account the influence of the climatic conditions of the considered site, the collector area and storage volume of the hot water tank on the performance of the installation. First, the results of the system modeling are compared with an experimental data from the open literature and the developed model is then validated. In another hand, a parametric study is performed to analyze the performance of the direct air-cooled absorption chiller at the operating conditions of interest for the present study. Thus, the obtained results has shown that the studied system can present a good alternative for cooling systems in arid zones since the cooling load is roughly in phase with solar availability.Keywords: absorption chiller, air-cooled, arid zone, thermal comfort
Procedia PDF Downloads 23012587 Effect of Waste Foundry Slag and Alccofine on Durability Properties of High Strength Concrete
Authors: Devinder Sharma, Sanjay Sharma, Ajay Goyal, Ashish Kapoor
Abstract:
The present research paper discussed the durability properties of high strength concrete (HSC) using Foundry Slag(FD) as partial substitute for fine aggregates (FA) and Alccofine (AF) in addition to portland pozzolana (PPC) cement. Specimens of Concrete M100 grade with water/binder ratio 0.239, with Foundry Slag (FD) varying from 0 to 50% and with optimum quantity of AF(15%) were casted and tested for durability properties such as Water absorption, water permeability, resistance to sulphate attack, alkali attack and nitrate attack of HSC at the age of 7, 14, 28, 56 and 90 days. Substitution of fine aggregates (FA) with up to 45% of foundry slag(FD) content and cement with 15% substitution and addition of alccofine showed an excellent resistance against durability properties at all ages but showed a decrease in these properties with 50% of FD contents. Loss of weight in concrete samples due to sulphate attack, alkali attack and nitrate attack of HSC at the age of 365 days was compared with loss in compressive strength. Correlation between loss in weight and loss in compressive strength in all the tests was found to be excellent.Keywords: alccofine, alkali attack, foundry slag, high strength concrete, nitrate attack, water absorption, water permeability
Procedia PDF Downloads 33112586 Study of Frequency and Distribution of Skin Ionocytes in Caspian Sea Zander Larvae during Acclimation to Different Salinity
Authors: Mohaddeseh Ahmadnezhad, Shahrbano Oryan, Mahmoud Bahmani, Mohammadd Sayad Bourani
Abstract:
Changes in abundance and size of skin ionocytes were investigated in two larval stage of Caspian sea zander, Sander lucioperca, before and after yolk sac absorption, at 96h after transfer from fresh water (FW; <0.5‰) to 7‰ (estuary) and 12‰ (Caspian sea water=CW) salinity. Survival rate in the stage of after yolk sac absorption were more than larval pre-absorbed yolk sac in condition of salinity (p<0.05). Ionocyte abundance increased significantly in 7 and 12‰ salinity (p<0.05), but not about ionocyte size. The results of this study suggest that development of skin Ionocyte osmoregulatory function and osmoregulation capability of Caspian Sea zander larvae increased with growth of the larvae.Keywords: Caspian Sea, larvae, Sander lucioperca, salinity, skin ionocyte
Procedia PDF Downloads 29612585 Effects of Titanium Dioxide Coatings on Building Composites for Sustainable Construction Applications
Authors: Ifeyinwa Ijeoma Obianyo, Luqman Adedeji Taiwo, Olugbenga O. Amu, Azikiwe Peter Onwualu
Abstract:
Improving the durability of building materials saves maintenance costs, construction time, and energy. In this study, titanium dioxide coated conventional and non-conventional composites were produced, and the effects of titanium dioxide coatings were investigated. Conventional composites were produced using river sand and Portland cement, whereas non-conventional composites were produced by partially replacing river sand and Portland cement with quarry dust and rice husk ash. Water absorption and thickness swelling tests were conducted on the produced coated and non-coated block samples. A reduction in water absorption was observed in the coated composite samples when compared to the non-coated composite samples, and this is an indication of the improved durability of the samples coated with titanium dioxide. However, there was an increase in the thickness swelling of coatings on the coated block samples, but this increase has a slight influence on the compressive strength of the coated samples. The outcome of this study indicates that coating composite building blocks with titanium dioxide will improve theirdurability. Also, the site exposure experiments revealed the self-cleansing properties of TiO2-coated composite block samples, while the Rhodamine B discolouration test confirmed the photocatalytic features of TiO2-coated composite block samples.Keywords: titanium dioxide, water absorption, durability, mechanical properties, building composite
Procedia PDF Downloads 11312584 Hydrothermal Aging Behavior of Continuous Carbon Fiber Reinforced Polyamide 6 Composites
Authors: Jifeng Zhang , Yongpeng Lei
Abstract:
Continuous carbon fiber reinforced polyamide 6 (CF/PA6) composites are potential for application in the automotive industry due to their high specific strength and stiffness. However, PA6 resin is sensitive to the moisture in the hydrothermal environment and CF/PA6 composites might undergo several physical and chemical changes, such as plasticization, swelling, and hydrolysis, which induces a reduction of mechanical properties. So far, little research has been reported on the assessment of the effects of hydrothermal aging on the mechanical properties of continuous CF/PA6 composite. This study deals with the effects of hydrothermal aging on moisture absorption and mechanical properties of polyamide 6 (PA6) and polyamide 6 reinforced with continuous carbon fibers composites (CF/PA6) by immersion in distilled water at 30 ℃, 50 ℃, 70 ℃, and 90 ℃. Degradation of mechanical performance has been monitored, depending on the water absorption content and the aging temperature. The experimental results reveal that under the same aging condition, the PA6 resin absorbs more water than the CF/PA6 composite, while the water diffusion coefficient of CF/PA6 composite is higher than that of PA6 resin because of interfacial diffusion channel. In mechanical properties degradation process, an exponential reduction in tensile strength and elastic modulus are observed in PA6 resin as aging temperature and water absorption content increases. The degradation trend of flexural properties of CF/PA6 is the same as that of tensile properties of PA6 resin. Moreover, the water content plays a decisive role in mechanical degradation compared with aging temperature. In contrast, hydrothermal environment has mild effect on the tensile properties of CF/PA6 composites. The elongation at breakage of PA6 resin and CF/PA6 reaches the highest value when their water content reaches 6% and 4%, respectively. Dynamic mechanical analysis (DMA) and scanning electron microscope (SEM) were also used to explain the mechanism of mechanical properties alteration. After exposed to the hydrothermal environment, the Tg (glass transition temperature) of samples decreases dramatically with water content increase. This reduction can be ascribed to the plasticization effect of water. For the unaged specimens, the fibers surface is coated with resin and the main fracture mode is fiber breakage, indicating that a good adhesion between fiber and matrix. However, with absorbed water content increasing, the fracture mode transforms to fiber pullout. Finally, based on Arrhenius methodology, a predictive model with relate to the temperature and water content has been presented to estimate the retention of mechanical properties for PA6 and CF/PA6.Keywords: continuous carbon fiber reinforced polyamide 6 composite, hydrothermal aging, Arrhenius methodology, interface
Procedia PDF Downloads 12112583 Policy Monitoring and Water Stakeholders Network Analysis in Shemiranat
Authors: Fariba Ebrahimi, Mehdi Ghorbani
Abstract:
Achieving to integrated Water management fundamentally needs to effective relation, coordination, collaboration and synergy among various actors who have common but different responsibilities. In this sense, the foundation of comprehensive and integrated management is not compatible with centralization and top-down strategies. The aim of this paper is analysis institutional network of water relevant stakeholders and water policy monitoring in Shemiranat. In this study collaboration networks between informal and formal institutions co-management process have been investigated. Stakeholder network analysis as a quantitative method has been implicated in this research. The results of this study indicate that institutional cohesion is medium; sustainability of institutional network is about 40 percent (medium). Additionally the core-periphery index has measured in this study according to reciprocity index. Institutional capacities for integrated natural resource management in regional level are measured in this study. Furthermore, the necessity of centrality reduction and promote stakeholders relations and cohesion are emphasized to establish a collaborative natural resource governance.Keywords: policy monitoring, water management, social network, stakeholder, shemiranat
Procedia PDF Downloads 27412582 Working Fluids in Absorption Chillers: Investigation of the Use of Deep Eutectic Solvents
Authors: L. Cesari, D. Alonso, F. Mutelet
Abstract:
The interest in cold production has been on the increase in absorption chillers for many years. In fact, the absorption cycles replace the compressor and thus reduce electrical consumption. The devices also allow waste heat generated through industrial activities to be recovered and cooled to a moderate temperature in accordance with regulatory guidelines. Many working fluids were investigated but could not compete with the commonly used {H2O + LiBr} and {H2O + NH3} to author’s best knowledge. Yet, the corrosion, toxicity and crystallization phenomena of these mixtures prevent the development of the absorption technology. This work investigates the possible use of a glyceline deep eutectic solvent (DES) and CO2 as working fluid in an absorption chiller. To do so, good knowledge of the mixtures is required. Experimental measurements (vapor-liquid equilibria, density, and heat capacity) were performed to complete the data lacking in the literature. The performance of the mixtures was quantified by the calculation of the coefficient of performance (COP). The results show that working fluids containing DES + CO2 are an interesting alternative and lead to different trails of working mixtures for absorption and chiller.Keywords: absorption devices, deep eutectic solvent, energy valorization, experimental data, simulation
Procedia PDF Downloads 11012581 Design of an Acoustic System for Small-Scale Power Plants
Authors: Mohammadreza Judaki, Hosein Mohammadnezhad Shourkaei
Abstract:
Usually, noise generated by industrial units, is a pollution and disturbs people and causes problems for human health and sometimes these units will be closed because they cannot eliminate this pollution. Small-scale power plants usually are built close to residential areas, and noise generated by these power plants is an important factor in choosing their location and their design. Materials used to reduce noise are studied by measuring their absorption and reflection index numerically and experimentally. We can use MIKI model (Yasushi Miki, 1990) to simulate absorption index by using software like Ansys or Soundflow and compare calculation results with experimental simulation data. We consider high frequency sounds of power plant engines octave band diagram because dB value of high frequency noise is more noticeable for human ears. To prove this, in this study we first will study calculating octave band of engines exhausts and then we will study acoustic behavior of materials that we will use in high frequencies and this will give us our optimum noise reduction plan.Keywords: acoustic materials, eliminating engine noise, octave level diagram, power plant noise
Procedia PDF Downloads 14412580 Experimental Study of Energy Absorption Efficiency (EAE) of Warp-Knitted Spacer Fabric Reinforced Foam (WKSFRF) Under Low-Velocity Impact
Authors: Amirhossein Dodankeh, Hadi Dabiryan, Saeed Hamze
Abstract:
Using fabrics to reinforce composites considerably leads to improved mechanical properties, including resistance to the impact load and the energy absorption of composites. Warp-knitted spacer fabrics (WKSF) are fabrics consisting of two layers of warp-knitted fabric connected by pile yarns. These connections create a space between the layers filled by pile yarns and give the fabric a three-dimensional shape. Today because of the unique properties of spacer fabrics, they are widely used in the transportation, construction, and sports industries. Polyurethane (PU) foams are commonly used as energy absorbers, but WKSF has much better properties in moisture transfer, compressive properties, and lower heat resistance than PU foam. It seems that the use of warp-knitted spacer fabric reinforced PU foam (WKSFRF) can lead to the production and use of composite, which has better properties in terms of energy absorption from the foam, its mold formation is enhanced, and its mechanical properties have been improved. In this paper, the energy absorption efficiency (EAE) of WKSFRF under low-velocity impact is investigated experimentally. The contribution of the effect of each of the structural parameters of the WKSF on the absorption of impact energy has also been investigated. For this purpose, WKSF with different structures such as two different thicknesses, small and large mesh sizes, and position of the meshes facing each other and not facing each other were produced. Then 6 types of composite samples with different structural parameters were fabricated. The physical properties of samples like weight per unit area and fiber volume fraction of composite were measured for 3 samples of any type of composites. Low-velocity impact with an initial energy of 5 J was carried out on 3 samples of any type of composite. The output of the low-velocity impact test is acceleration-time (A-T) graph with a lot deviation point, in order to achieve the appropriate results, these points were removed using the FILTFILT function of MATLAB R2018a. Using Newtonian laws of physics force-displacement (F-D) graph was drawn from an A-T graph. We know that the amount of energy absorbed is equal to the area under the F-D curve. Determination shows the maximum energy absorption is 2.858 J which is related to the samples reinforced with fabric with large mesh, high thickness, and not facing of the meshes relative to each other. An index called energy absorption efficiency was defined, which means absorption energy of any kind of our composite divided by its fiber volume fraction. With using this index, the best EAE between the samples is 21.6 that occurs in the sample with large mesh, high thickness, and meshes facing each other. Also, the EAE of this sample is 15.6% better than the average EAE of other composite samples. Generally, the energy absorption on average has been increased 21.2% by increasing the thickness, 9.5% by increasing the size of the meshes from small to big, and 47.3% by changing the position of the meshes from facing to non-facing.Keywords: composites, energy absorption efficiency, foam, geometrical parameters, low-velocity impact, warp-knitted spacer fabric
Procedia PDF Downloads 16912579 Multi-Temporal Urban Land Cover Mapping Using Spectral Indices
Authors: Mst Ilme Faridatul, Bo Wu
Abstract:
Multi-temporal urban land cover mapping is of paramount importance for monitoring urban sprawl and managing the ecological environment. For diversified urban activities, it is challenging to map land covers in a complex urban environment. Spectral indices have proved to be effective for mapping urban land covers. To improve multi-temporal urban land cover classification and mapping, we evaluate the performance of three spectral indices, e.g. modified normalized difference bare-land index (MNDBI), tasseled cap water and vegetation index (TCWVI) and shadow index (ShDI). The MNDBI is developed to evaluate its performance of enhancing urban impervious areas by separating bare lands. A tasseled cap index, TCWVI is developed to evaluate its competence to detect vegetation and water simultaneously. The ShDI is developed to maximize the spectral difference between shadows of skyscrapers and water and enhance water detection. First, this paper presents a comparative analysis of three spectral indices using Landsat Enhanced Thematic Mapper (ETM), Thematic Mapper (TM) and Operational Land Imager (OLI) data. Second, optimized thresholds of the spectral indices are imputed to classify land covers, and finally, their performance of enhancing multi-temporal urban land cover mapping is assessed. The results indicate that the spectral indices are competent to enhance multi-temporal urban land cover mapping and achieves an overall classification accuracy of 93-96%.Keywords: land cover, mapping, multi-temporal, spectral indices
Procedia PDF Downloads 15312578 Red-Tide Detection and Prediction Using MODIS Data in the Arabian Gulf of Qatar
Authors: Yasir E. Mohieldeen
Abstract:
Qatar is one of the most water scarce countries in the World. In 2014, the average per capita rainfall was less than 29 m3/y/ca, while the global average is 6,000 m3/y/ca. However, the per capita water consumption in Qatar is among the highest in the World: more than 500 liters per person per day, whereas the global average is 160 liters per person per day. Since the early 2000s, Qatar has been relying heavily on desalinated water from the Arabian Gulf as the main source of fresh water. In 2009, about 99.9% of the total potable water produced was desalinated. Reliance on desalinated water makes Qatar very vulnerable to water related natural disasters, such as the red-tide phenomenon. Qatar’s strategic water reserve lasts for only 7 days. In case of red-tide outbreak, the country would not be able to desalinate water for days, let alone the months that this disaster would bring about (as it clogs the desalination equipment). The 2008-09 red-tide outbreak, for instance, lasted for more than eight months and forced the closure of desalination plants in the region for weeks. This study aims at identifying favorite conditions for red-tide outbreaks, using satellite data along with in-situ measurements. This identification would allow the prediction of these outbreaks and their hotspots. Prediction and monitoring of outbreaks are crucial to water security in the country, as different measures could be put in place in advance to prevent an outbreak and mitigate its impact if it happened. Red-tide outbreaks are detected using different algorithms for chlorophyll concentration in the Gulf waters. Vegetation indices, such as Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) were used along with Surface Algae Bloom Index (SABI) to detect known outbreaks. MODIS (or Moderate Resolution Imaging Spectroradiometer) bands are used to calculate these indices. A red-tide outbreaks atlas in the Arabian Gulf is being produced. Prediction of red-tide outbreaks ahead of their occurrences would give critical information on possible water-shortage in the country. Detecting known outbreaks in the past few decades and related parameters (e.g. water salinity, water surface temperature, nutrition, sandstorms, … etc) enables the identification of favorite conditions of red-tide outbreak that are key to the prediction of these outbreaks.Keywords: Arabian Gulf, MODIS, red-tide detection, strategic water reserve, water desalination
Procedia PDF Downloads 10712577 Enhancement in the Absorption Efficiency of Gaas/Inas Nanowire Solar Cells through a Decrease in Light Reflection
Authors: Latef M. Ali, Farah A. Abed
Abstract:
In this paper, the effect of the Barium fluoride (BaF2) layer on the absorption efficiency of GaAs/InAs nanowire solar cells was investigated using the finite difference time domain (FDTD) method. By inserting the BaF2 as antireflection with the dominant size of 10 nm to fill the space between the shells of wires on the Si (111) substrate. The absorption is significantly improved due to the strong reabsorption of light reflected at the shells and compared with the reference cells. The present simulation leads to a higher absorption efficiency (Qabs) and reaches a value of 97%, and the external quantum efficiencies (EQEs) above 92% are observed. The current density (Jsc) increases by 0.22 mA/cm2 and the open-circuit voltage (Voc) is enhanced by 0.11 mV.Keywords: nanowire solar cells, absorption efficiency, photovoltaic, band structures, fdtd simulation
Procedia PDF Downloads 7212576 Soil-Cement Floor Produced with Alum Water Treatment Residues
Authors: Flavio Araujo, Paulo Scalize, Julio Lima, Natalia Vieira, Antonio Albuquerque, Isabela Santos
Abstract:
From a concern regarding the environmental impacts caused by the disposal of residues generated in Water Treatment Plants (WTP's), alternatives ways have been studied to use these residues as raw material for manufacture of building materials, avoiding their discharge on water streams, disposal on sanitary landfills or incineration. This paper aims to present the results of a research work, which is using WTR for replacing the soil content in the manufacturing of soil-cement floor with proportions of 0, 5, 10 and 15%. The samples tests showed a reduction mechanical strength in so far as has increased the amount of waste. The water absorption was below the maximum of 6% required by the standard. The application of WTR contributes to the reduction of the environmental damage in the water treatment industry.Keywords: residue, soil-cement floor, sustainable, WTP
Procedia PDF Downloads 57012575 Mixed Tetravalent Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) Based Vacancy-Ordered Halide Double Perovskites for Enhanced Solar Water Oxidation
Authors: Jigar Shaileshumar Halpati, Aravind Kumar Chandiran
Abstract:
Vacancy ordered double perovskites (VOPs) have been significantly attracting researchers due to their chemical structure diversity and interesting optoelectronic properties. Some VOPs have been recently reported to be suitable photoelectrodes for photoelectrochemical water-splitting reactions due to their high stability and panchromatic absorption. In this work, we systematically synthesized mixed tetravalent VOPs based on Cs₂RuₘPt₁-ₘX₆ (X = Cl-, Br-) and reported their structural, optical, electrochemical and photoelectrochemical properties. The structural characterization confirms that the mixed tetravalent site intermediates formed their own phases. The parent materials, as well as their intermediates, were found to be stable in ambient conditions for over 1 year and also showed incredible stability in harsh pH media ranging from pH 1 to pH 11. Moreover, these materials showed panchromatic absorption with onset up to 1000 nm depending upon the mixture stoichiometry. The extraordinary stability and excellent absorption properties make them suitable materials for photoelectrochemical water-splitting applications. PEC studies of these series of materials showed a high water oxidation photocurrent of 0.56 mA cm-² for Cs₂Ru₀.₅Pt₀.₅Cl₆. Fundamental investigation from photoelectrochemical reactions revealed that the intrinsic ruthenium-based VOP showed enhanced hole transfer to the electrolyte, while the intrinsic platinum-based VOP showed higher photovoltage. The mix of these end members at the tetravalent site showed a synergic effect of reduced charge transfer resistance from the material to the electrolyte and increased photovoltage, which led to increased PEC performance of the intermediate materials.Keywords: solar water splitting, photo electrochemistry, photo absorbers, material characterization, device characterization, green hydrogen
Procedia PDF Downloads 7512574 The Design Optimization for Sound Absorption Material of Multi-Layer Structure
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorbing material is used as automotive interior material. Sound absorption coefficient should be predicted to design it. But it is difficult to predict sound absorbing coefficient because it is comprised of several material layers. So, its targets are achieved through many experimental tunings. It causes a lot of cost and time. In this paper, we propose the process to estimate the sound absorption coefficient with multi-layer structure. In order to estimate the coefficient, physical properties of each material are used. These properties also use predicted values by Foam-X software using the sound absorption coefficient data measured by impedance tube. Since there are many physical properties and the measurement equipment is expensive, the values predicted by software are used. Through the measurement of the sound absorption coefficient of each material, its physical properties are calculated inversely. The properties of each material are used to calculate the sound absorption coefficient of the multi-layer material. Since the absorption coefficient of multi-layer can be calculated, optimization design is possible through simulation. Then, we will compare and analyze the calculated sound absorption coefficient with the data measured by scaled reverberation chamber and impedance tubes for a prototype. If this method is used when developing automotive interior materials with multi-layer structure, the development effort can be reduced because it can be optimized by simulation. So, cost and time can be saved.Keywords: sound absorption material, sound impedance tube, sound absorption coefficient, optimization design
Procedia PDF Downloads 28812573 Effect of Water Absorption on the Fatigue Behavior of Glass/Polyester Composite
Authors: Djamel Djeghader, Bachir Redjel
Abstract:
The composite materials of glass fibers can be used as a repair material for damage elements under repeated stresses, and in various environments. A cyclic bending characterization of a glass/polyester composite material was carried out with consideration of the period of immersion in water. These tests describe the behavior of materials and identify the mechanical fatigue characteristics using the Wohler Curve for different immersion time: 0, 90, 180 and 270 days in water. These curves are characterized by a dispersion in the lifetimes were modeled by straight whose intercepts are very similar and comparable to the static strength. This material deteriorates fatigue at a constant rate, which increases with increasing immersion time in water at a constant speed. The endurance limit seems to be independent of the immersion time in the water.Keywords: fatigue, composite, glass, polyester, immersion, wohler
Procedia PDF Downloads 31412572 Evaluating Surface Water Quality Using WQI, Trend Analysis, and Cluster Classification in Kebir Rhumel Basin, Algeria
Authors: Lazhar Belkhiri, Ammar Tiri, Lotfi Mouni, Fatma Elhadj Lakouas
Abstract:
This study evaluates the surface water quality in the Kebir Rhumel Basin by analyzing hydrochemical parameters. To assess spatial and temporal variations in water quality, we applied the Water Quality Index (WQI), Mann-Kendall (MK) trend analysis, and hierarchical cluster analysis (HCA). Monthly measurements of eleven hydrochemical parameters were collected across eight stations from January 2016 to December 2020. Calcium and sulfate emerged as the dominant cation and anion, respectively. WQI analysis indicated a high incidence of poor water quality at stations Ain Smara (AS), Beni Haroune (BH), Grarem (GR), and Sidi Khalifa (SK), where 89.5%, 90.6%, 78.2%, and 62.7% of samples, respectively, fell into this category. The MK trend analysis revealed a significant upward trend in WQI at Oued Boumerzoug (ON) and SK stations, signaling temporal deterioration in these areas. HCA grouped the dataset into three clusters, covering approximately 22%, 30%, and 48% of the months, respectively. Within these clusters, specific stations exhibited elevated WQI values: GR and ON in the first cluster, OB and SK in the second, and AS, BH, El Milia (EM), and Hammam Grouz (HG) in the third. Furthermore, approximately 38%, 41%, and 38% of samples in clusters one, two, and three, respectively, were classified as having poor water quality. These findings provide essential insights for policymakers in formulating strategies to restore and manage surface water quality in the region.Keywords: surface water quality, water quality index (WQI), Mann-Kendall Trend Analysis, hierarchical cluster analysis (HCA), spatial-temporal distribution, Kebir Rhumel Basin
Procedia PDF Downloads 1612571 Use of Waste Road-Asphalt as Aggregate in Pavement Block Production
Authors: Babagana Mohammed, Abdulmuminu Mustapha Ali, Solomon Ibrahim, Buba Ahmad Umdagas
Abstract:
This research investigated the possibility of replacing coarse and fine aggregates with waste road-asphalt (RWA), when sieved appropriately, in concrete production. Interlock pavement block is used widely in many parts of the world as modern day solution to outdoor flooring applications. The weight-percentage replacements of both coarse and fine aggregates with RWA at 0%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80% and 90% respectively using a concrete mix ratio of 1:2:4 and water-to-cement ratio of 0.45 were carried out. The interlock block samples produced were then cured for 28days. Unconfined compressive strength (UCS) and the water absorption properties of the samples were then tested. Comparison of the results of the RWA-containing samples to those of the respective control samples shows significant benefits of using RWA in interlock block production. UCS results of RWA-containing samples compared well with those of the control samples and the RWA content also influenced the lowering of the water absorption of the samples. Overall, the research shows that it is possible to replace both coarse and fine aggregates with RWA materials when sieved appropriately, hence indicating that RWA could be recycled beneficially.Keywords: aggregate, block-production, pavement, road-asphalt, use, waste
Procedia PDF Downloads 19512570 Sound Performance of a Composite Acoustic Coating With Embedded Parallel Plates Under Hydrostatic Pressure
Authors: Bo Hu, Shibo Wang, Haoyang Zhang, Jie Shi
Abstract:
With the development of sonar detection technology, the acoustic stealth technology of underwater vehicles is facing severe challenges. The underwater acoustic coating is developing towards the direction of low-frequency absorption capability and broad absorption frequency bandwidth. In this paper, an acoustic model of underwater acoustic coating of composite material embedded with periodical steel structure is presented. The model has multiple high absorption peaks in the frequency range of 1kHz-8kHz, where achieves high sound absorption and broad bandwidth performance. It is found that the frequencies of the absorption peaks are related to the classic half-wavelength transmission principle. The sound absorption performance of the acoustic model is investigated by the finite element method using COMSOL software. The sound absorption mechanism of the proposed model is explained by the distributions of the displacement vector field. The influence of geometric parameters of periodical steel structure, including thickness and distance, on the sound absorption ability of the proposed model are further discussed. The acoustic model proposed in this study provides an idea for the design of underwater low-frequency broadband acoustic coating, and the results shows the possibility and feasibility for practical underwater application.Keywords: acoustic coating, composite material, broad frequency bandwidth, sound absorption performance
Procedia PDF Downloads 17412569 Consumer Health Risk Assessment from Some Heavy Metal Bioaccumulation in Common Carp (Cyprinus Carpio) from Lake Koka, Ethiopia
Authors: Mathewos Temesgen, Lemi Geleta
Abstract:
Lake Koka is one of the Ethiopian Central Rift Valleys lakes, where the absorbance of domestic, agricultural, and industrial waste from the nearby industrial and agro-industrial activities is very common. The aim of this research was to assess the heavy metal bioaccumulation in edible parts of common carp (Cyprinus carpio) in Lake Koka and the health risks associated with the dietary intake of the fish. Three sampling sites were selected randomly for primary data collection. Physicochemical parameters (pH, Total Dissolved Solids, Dissolved Oxygen and Electrical Conductivity) were measured in-situ. Four heavy metals (Cd, Cr, Pb, and Zn) in water and bio-accumulation in the edible parts of the fish were analyzed with flame atomic absorption spectrometry. The mean values of TDS, EC, DO and pH of the lake water were 458.1 mg/L, 905.7 µ s/cm, 7.36 mg/L, and 7.9, respectively. The mean concentrations of Zn, Cr, and Cd in the edible part of fish were also 0.18 mg/kg, ND-0.24 mg/kg, and ND-0.03 mg/kg, respectively. Pb was, however, not identified. The amount of Cr in the examined fish muscle was above the level set by FAO, and the accumulation of the metals showed marked differences between sampling sites (p<0.05). The concentrations of Cd, Pb and were below the maximum permissible limit. The results also indicated that Cr has a high transfer factor value and Zn has the lowest. The carcinogenic hazard ratio values were below the threshold value (<1) for the edible parts of fish. The estimated weekly intake of heavy metals from fish muscles ranked as Cr>Zn>Cd, but the values were lower than the Reference Dose limit for metals. The carcinogenic risk values indicated a low health risk due to the intake of individual metals from fish. Furthermore, the hazard index of the edible part of fish was less than unity. Generally, the water quality is not a risk for the survival and reproduction of fish, and the heavy metal contents in the edible parts of fish exhibited low carcinogenic risk through the food chain.Keywords: bio-accumulation, cyprinus carpio, hazard index, heavy metals, Lake Koka
Procedia PDF Downloads 11412568 Assessment of Heavy Metal Bioaccumulation by Tissues of Ipomoea Batatas and Manihot Esculenta Irrigated with Water from Muhammad Ayuba Dam, Kazaure, Jigawa State, Nigeria
Authors: Sa’idu A. Abdullah, Jafar Lawan, A. U. Adamu, Fowotade, S. A., Hamisu Abdu
Abstract:
Scarcity of quality water in many communities compels inhabitants to use any available water resources for domestic, recreational, industrial and agricultural purposes. Global concern on the potential health hazards of anthropogenic inputs into our ecosystems imposes the need for constant monitoring of levels of pollutants in order to ensure compliance with internationally acceptable criteria. In this research, assessment of bioaccumulation of Cd, Co, Cu, Pb and Zn was carried out using tissues of Ipomoea batatas (sweet potato) and Manihot esculenta (cassava) irrigated with water from Muhammad Ayuba Dam in Kazaure, Jigawa State. The metal concentrations were determined using Flame Atomic Absorption Spectrophotometer (FAAS). The result of the analysis revealed the presence of the metals in varying concentrations. Cd and Co showed higher concentrations in the tubers of Manihot esculenta but all the other investigated metals were more concentrated in the leaves of the plant. Cd and Cu on the other hand showed higher concentration in the root of Ipomoea batatas while the remaining investigated metals were concentrated more in the leaves of the plant. The result of analysis of water samples from five sampling stations in the Dam showed the presence of the metals as follows: Cd, (0.063±0.02 mg/L), Co (0.086±0.03 mg/L), Cu (0.167±0.08 mg/L), Pb (0.22±0.01 mg/L) and Zn (0.047±0.01 mg/L) respectively. The results of bioaccumulation studies using the Bioaccumulation Factors (BAF) index indicated Ipomoea batatas to have higher bioaccumulation potential for Cd, Co and Cu while Pb and Zn were more accumulated in Manihot esculenta. The levels of the metals in both the water samples and plant tissues were all below the WHO permissible limit. This is indicative that the inhabitants of the community under investigation are not at any health risk.Keywords: agriculture, bioaccumulation, heavy metal, plant tissues
Procedia PDF Downloads 38512567 A Comparative Study of Multi-SOM Algorithms for Determining the Optimal Number of Clusters
Authors: Imèn Khanchouch, Malika Charrad, Mohamed Limam
Abstract:
The interpretation of the quality of clusters and the determination of the optimal number of clusters is still a crucial problem in clustering. We focus in this paper on multi-SOM clustering method which overcomes the problem of extracting the number of clusters from the SOM map through the use of a clustering validity index. We then tested multi-SOM using real and artificial data sets with different evaluation criteria not used previously such as Davies Bouldin index, Dunn index and silhouette index. The developed multi-SOM algorithm is compared to k-means and Birch methods. Results show that it is more efficient than classical clustering methods.Keywords: clustering, SOM, multi-SOM, DB index, Dunn index, silhouette index
Procedia PDF Downloads 59912566 Acid Attack on Cement Mortars Modified with Rubber Aggregates and EVA Polymer Binder
Authors: Konstantinos Sotiriadis, Michael Tupý, Nikol Žižková, Vít Petránek
Abstract:
The acid attack on cement mortars modified with rubber aggregates and EVA polymer binder was studied. Mortar specimens were prepared using a type CEM I 42.5 Portland cement and siliceous sand, as well as by substituting 25% of sand with shredded used automobile tires, and by adding EVA polymer in two percentages (5% and 10% of cement mass). Some specimens were only air cured, at laboratory conditions, and their compressive strength and water absorption were determined. The rest specimens were stored in acid solutions (HCl, H2SO4, HNO3) after 28 days of initial curing, and stored at laboratory temperature. Compressive strength tests, mass measurements and visual inspection took place for 28 days. Compressive strength and water absorption of the air-cured specimens were significantly decreased when rubber aggregates are used. The addition of EVA polymer further reduced water absorption, while had no important impact on strength. Compressive strength values were affected in a greater extent by hydrochloric acid solution, followed by sulfate and nitric acid solutions. The addition of EVA polymer decreased compressive strength loss for the specimens with rubber aggregates stored in hydrochloric and nitric acid solutions. The specimens without polymer binder showed similar mass loss, which was higher in sulfate acid solution followed by hydrochloric and nitric acid solutions. The use of EVA polymer delayed mass loss, while its content did not affect it significantly.Keywords: acid attack, mortar, EVA polymer, rubber aggregates
Procedia PDF Downloads 28712565 Sources of Water Supply and Water Quality for Local Consumption: The Case Study of Eco-Tourism Village, Suan Luang Sub- District Municipality, Ampawa District, Samut Songkram Province, Thailand
Authors: Paiboon Jeamponk, Tasanee Ponglaa, Patchapon Srisanguan
Abstract:
The aim of this research paper was based on an examination of sources of water supply and water quality for local consumption, conducted at eco-tourism villages of Suan Luang Sub- District Municipality of Amphawa District, Samut Songkram Province. The study incorporated both questionnaire and field work of water testing as the research tool and method. The sample size of 288 households was based on the population of the district, whereas the selected sample water sources were from 60 households: 30 samples were ground water and another 30 were surface water. Degree of heavy metal contamination in the water including copper, iron, manganese, zinc, cadmium and lead was investigated utilizing the Atomic Absorption- Direct Aspiration method. The findings unveiled that 96.0 percent of household water consumption was based on water supply, while the rest on canal, river and rain water. The household behaviour of consumption revealed that 47.2 percent of people routinely consumed water without boiling or filtering prior to consumption. The investigation of water supply quality found that the degree of heavy metal contamination including metal, lead, iron, copper, manganese and cadmium met the standards of the Department of Health.Keywords: sources of water supply, water quality, water supply, Thailand
Procedia PDF Downloads 29512564 Effect of Rice Husk Ash on Strength and Durability of High Strength High Performance Concrete
Authors: H. B. Mahmud, Syamsul Bahri, Y. W. Yee, Y. T. Yeap
Abstract:
This paper reports the strength and durability properties of high strength high performance concrete incorporating rice husk ash (RHA) having high silica, low carbon content and appropriate fineness. In this study concrete containing 10%, 15% and 20% RHA as cement replacement and water to binder ratio of 0.25 were investigated. The results show that increasing amount of RHA increases the dosage of superplasticizer to maintain similar workability. Partial replacement of cement with RHA did not increase the early age compressive strength of concrete. However, concrete containing RHA showed higher compressive strength at later ages. The results showed that compressive strength of concrete in the 90-115 MPa range can be obtained at 28 curing days and the durability properties of RHA concrete performed better than that of control concrete. The water absorption of concrete incorporating 15% RHA exhibited the lowest value. The porosity of concrete is consistent with water absorption whereby higher replacement of RHA decreased the porosity of concrete. There is a positive correlation between reducing porosity and increasing compressive strength of high strength high performance concrete. The results also indicate that up to 20% of RHA incorporation could be advantageously blended with cement without adversely affecting the strength and durability properties of concrete.Keywords: compressive strength, durability, high performance concrete, rice husk ash
Procedia PDF Downloads 34512563 A Spatio-Temporal Analysis and Change Detection of Wetlands in Diamond Harbour, West Bengal, India Using Normalized Difference Water Index
Authors: Lopita Pal, Suresh V. Madha
Abstract:
Wetlands are areas of marsh, fen, peat land or water, whether natural or artificial, permanent or temporary, with water that is static or flowing, fresh, brackish or salt, including areas of marine water the depth of which at low tide does not exceed six metres. The rapidly expanding human population, large scale changes in land use/land cover, burgeoning development projects and improper use of watersheds all has caused a substantial decline of wetland resources in the world. Major degradations have been impacted from agricultural, industrial and urban developments leading to various types of pollutions and hydrological perturbations. Regular fishing activities and unsustainable grazing of animals are degrading the wetlands in a slow pace. The paper focuses on the spatio-temporal change detection of the area of the water body and the main cause of this depletion. The total area under study (22°19’87’’ N, 88°20’23’’ E) is a wetland region in West Bengal of 213 sq.km. The procedure used is the Normalized Difference Water Index (NDWI) from multi-spectral imagery and Landsat to detect the presence of surface water, and the datasets have been compared of the years 2016, 2006 and 1996. The result shows a sharp decline in the area of water body due to a rapid increase in the agricultural practices and the growing urbanization.Keywords: spatio-temporal change, NDWI, urbanization, wetland
Procedia PDF Downloads 28312562 Prediction of Physical Properties and Sound Absorption Performance of Automotive Interior Materials
Authors: Un-Hwan Park, Jun-Hyeok Heo, In-Sung Lee, Seong-Jin Cho, Tae-Hyeon Oh, Dae-Kyu Park
Abstract:
Sound absorption coefficient is considered important when designing because noise affects emotion quality of car. It is designed with lots of experiment tunings in the field because it is unreliable to predict it for multi-layer material. In this paper, we present the design of sound absorption for automotive interior material with multiple layers using estimation software of sound absorption coefficient for reverberation chamber. Additionally, we introduce the method for estimation of physical properties required to predict sound absorption coefficient of car interior materials with multiple layers too. It is calculated by inverse algorithm. It is very economical to get information about physical properties without expensive equipment. Correlation test is carried out to ensure reliability for accuracy. The data to be used for the correlation is sound absorption coefficient measured in the reverberation chamber. In this way, it is considered economical and efficient to design automotive interior materials. And design optimization for sound absorption coefficient is also easy to implement when it is designed.Keywords: sound absorption coefficient, optimization design, inverse algorithm, automotive interior material, multiple layers nonwoven, scaled reverberation chamber, sound impedance tubes
Procedia PDF Downloads 30812561 Effect of Carbon Black Nanoparticles Additive on the Qualities of Fly Ash Based Geopolymer
Authors: Maryam Kiani
Abstract:
The aim of this study was to investigate the influence of carbon black additive on the properties of fly ash-based geopolymer. The geopolymer samples were prepared using fly ash as the primary source material, along with an alkali activator solution and different concentrations of carbon black additive. The effects of carbon black on the geopolymer binder were evaluated by analyzing the compressive strength, flexural strength, water absorption, and microstructural properties of the cured samples. The results revealed that the inclusion of carbon black additive significantly enhanced the mechanical properties of the geopolymer binder. The compressive and flexural strengths were found to increase with the addition of carbon black, showing improvements of up to 25% and 15%, respectively. Moreover, the water absorption of the geopolymer samples reduced due to the presence of carbon black, indicating improved resistance against water permeability. Microstructural analysis using scanning electron microscopy (SEM) revealed a more compact and homogenous structure in the geopolymer samples with carbon black. The dispersion of carbon black particles within the geopolymer matrix was observed, suggesting improved interparticle bonding and increased densification. Overall, this study demonstrates the positive impact of carbon black additive on the qualities of fly ash-based geopolymer, emphasizing its potential as an effective enhancer for geopolymer binder applications.Keywords: fly-ash, carbon black, nanotechnology, geopolymer
Procedia PDF Downloads 11312560 Estimation of Carbon Uptake of Seoul City Street Trees in Seoul and Plans for Increase Carbon Uptake by Improving Species
Authors: Min Woo Park, Jin Do Chung, Kyu Yeol Kim, Byoung Uk Im, Jang Woo Kim, Hae Yeul Ryu
Abstract:
Nine representative species of trees among all the street trees were selected to estimate the absorption amount of carbon dioxide emitted from street trees in Seoul calculating the biomass, amount of carbon saved, and annual absorption amount of carbon dioxide in each of the species. Planting distance of street trees in Seoul was 1,851,180 m, the number of planting lines was 1,287, the number of planted trees was 284,498 and 46 species of trees were planted as of 2013. According to the result of plugging the quantity of species of street trees in Seoul on the absorption amount of each of the species, 120,097 ton of biomass, 60,049.8 ton of amount of carbon saved, and 11,294 t CO2/year of annual absorption amount of carbon dioxide were calculated. Street ratio mentioned on the road statistics in Seoul in 2022 is 23.13%. If the street trees are assumed to be increased in the same rate, the number of street trees in Seoul was calculated to be 294,823. The planting distance was estimated to be 1,918,360 m, and the annual absorption amount of carbon dioxide was measured to be 11,704 t CO2/year. Plans for improving the annual absorption amount of carbon dioxide from street trees were established based on the expected amount of absorption. First of all, it is to improve the annual absorption amount of carbon dioxide by increasing the number of planted street trees after adjusting the planting distance of street trees. If adjusting the current planting distance to 6 m, it was turned out that 12,692.7 t CO2/year was absorbed on an annual basis. Secondly, it is to change the species of trees to tulip trees that represent high absorption rate. If increasing the proportion of tulip trees to 30% up to 2022, the annual absorption rate of carbon dioxide was calculated to be 17804.4 t CO2/year.Keywords: absorption of carbon dioxide, source of absorbing carbon dioxide, trees in city, improving species
Procedia PDF Downloads 36212559 Parametric Study of a Solar-Heating-And-Cooling System with Hybrid Photovoltaic/Thermal Collectors in North China
Authors: Ruobing Liang, Jili Zhang, Chao Zhou
Abstract:
A solar-heating-and-cooling (SHC) system, consisting of a hybrid photovoltaic/ thermal collector array, a hot water storage tank, and an absorption chiller unit is designed and modeled to satisfy thermal loads (space heating, domestic hot water, and space cooling). The system is applied for Dalian, China, a location with cold climate conditions, where cooling demand is moderate, while space heating demand is slightly high. The study investigates the potential of a solar system installed and operated onsite in a detached single-family household to satisfy all necessary thermal loads. The hot water storage tank is also connected to an auxiliary heater (electric boiler) to supplement solar heating, when needed. The main purpose of the study is to model the overall system and contact a parametric study that will determine the optimum economic system performance in terms of design parameters. The system is compared, through a cost analysis, to an electric heat pump (EHP) system. This paper will give the optimum system combination of solar collector area and volumetric capacity of the hot water storage tank, respectively.Keywords: absorption chiller, solar PVT collector, solar heating and cooling, solar air-conditioning, parametric study, cost analysis
Procedia PDF Downloads 422