Search results for: twitter accounts analysis
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 28233

Search results for: twitter accounts analysis

28113 Social Media Use and Social Connectedness

Authors: Jessica Torres, James W. Sturges

Abstract:

This correlational study explored the potential relationship between social media use and social connectedness. College students (n = 190) were surveyed using the revised Social Connectedness Scale (SCS-R) and were asked about the number of hours they used social media platforms such as Instagram, TikTok, Twitter, Snapchat, and Facebook. We also developed and administered a 14-item Social Media Use Scale (SMUS) to measure potentially maladaptive social media use, such as use that likely interfered with other activities. The SMUS was found to have good inter-item consistency (Cronbach’s alpha = .92) and was significantly correlated with hours of use, r(182) = .622, p < .001. As expected, we found that the SCS-R scores were inversely related to total hours of social media use, r(182) = -.188 (p < .005). This suggested that lots of time allocated to online interactions is negatively associated with social connectedness in general. Interestingly, however, higher social connectedness scores were associated specifically with Snapchat use, r(28) = .210, p = .004. This may have to do with the specific nature of the Snapchat experience and perhaps its original use for one-to-one communication. The use of other social media platforms (Tiktok, Instagram, Twitter) was not related to better social connectedness scores. Although we failed to find that scores on our measure of problem use (the SMUS) were correlated with social connectedness, we are hopeful that the SMUS will be of use in identifying patterns of maladaptive social media use that may have an impact on other important outcome measures of adaptive functioning and well-being.

Keywords: adaptive functioning, college students, social connectedness, social media use

Procedia PDF Downloads 94
28112 A Reflection: Looking the Pattern of Political Party (Gerindra Party) Campaign by Social Media in Indonesia General Election 2014

Authors: Clara Stella Anugerah

Abstract:

This study actually is a reflection of the general election in 2014. The researcher was interested in this case as the assessment of several phenomenons that happened recently. One of them is the use of social media for the campaign. By this modern era, social media becomes closer with society. It gains the communication process, and by the time being communicating others also becomes easier than before. Furthermore, social media can minimize the cost of communication with many people as a far distance that often comes to be an obstacle of communication does not become a big problem anymore. In Indonesia, the advantages of social media were used by a political party, Gerindra, to face the election that was held on 2014. Actually Gerindra is a newly formed political party that was established in 2008. In spite of Gerindra is the new comer in the election, according to the General Election Committee’s data in Indonesia, Gerindra has the biggest budget than others to cost campaign in social media. Because of that, this research wants to look “how is the pattern of Gerindra party’s campaign to face the general election in 2014? To ask that question, the theory used for this research is campaign method based on ICT (Information Communication Technology) by Rummele. According to the rummele, Gerindra was a party that used a product of social media massively, mainly facebook and twitter. According to that observation, this research focus on campaign that had been done by Gerindra in both of those social media by the time window given by KPU (General Election Committee) on Maret 16th until April 5th, 2014. The conclusion was derived by content analysis method that was used in the methodology. In this context, that method was used while interpreting the content uploaded by Gerindra to facebook or twitter, such as picture and writing. Finally, by that method and reflecting the rummele theory, this research inferred that the patern used for Gerindra’s campaign in social media tends to be top-down. It means: Gerindra showed uncommunicative tendency in social media and only want to catch much mass without mentioned a mission and vision clearly.

Keywords: Gerindra party, political party, social media, campaign, general election on 2014

Procedia PDF Downloads 484
28111 Analyzing the Effects of Supply and Demand Shocks in the Spanish Economy

Authors: José M Martín-Moreno, Rafaela Pérez, Jesús Ruiz

Abstract:

In this paper we use a small open economy Dynamic Stochastic General Equilibrium Model (DSGE) for the Spanish economy to search for a deeper characterization of the determinants of Spain’s macroeconomic fluctuations throughout the period 1970-2008. In order to do this, we distinguish between tradable and non-tradable goods to take into account the fact that the presence of non-tradable goods in this economy is one of the largest in the world. We estimate a DSGE model with supply and demand shocks (sectorial productivity, public spending, international real interest rate and preferences) using Kalman Filter techniques. We find the following results. First of all, our variance decomposition analysis suggests that 1) the preference shock basically accounts for private consumption volatility, 2) the idiosyncratic productivity shock accounts for non-tradable output volatility, and 3) the sectorial productivity shock along with the international interest rate both greatly account for tradable output. Secondly, the model closely replicates the time path observed in the data for the Spanish economy and finally, the model captures the main cyclical qualitative features of this economy reasonably well.

Keywords: business cycle, DSGE models, Kalman filter estimation, small open economy

Procedia PDF Downloads 415
28110 Navigating States of Emergency: A Preliminary Comparison of Online Public Reaction to COVID-19 and Monkeypox on Twitter

Authors: Antonia Egli, Theo Lynn, Pierangelo Rosati, Gary Sinclair

Abstract:

The World Health Organization (WHO) defines vaccine hesitancy as the postponement or complete denial of vaccines and estimates a direct linkage to approximately 1.5 million avoidable deaths annually. This figure is not immune to public health developments, as has become evident since the global spread of COVID-19 from Wuhan, China in early 2020. Since then, the proliferation of influential, but oftentimes inaccurate, outdated, incomplete, or false vaccine-related information on social media has impacted hesitancy levels to a degree described by the WHO as an infodemic. The COVID-19 pandemic and related vaccine hesitancy levels have in 2022 resulted in the largest drop in childhood vaccinations of the 21st century, while the prevalence of online stigma towards vaccine hesitant consumers continues to grow. Simultaneously, a second disease has risen to global importance: Monkeypox is an infection originating from west and central Africa and, due to racially motivated online hate, was in August 2022 set to be renamed by the WHO. To better understand public reactions towards two viral infections that became global threats to public health no two years apart, this research examines user replies to threads published by the WHO on Twitter. Replies to two Tweets from the @WHO account declaring COVID-19 and Monkeypox as ‘public health emergencies of international concern’ on January 30, 2020, and July 23, 2022, are gathered using the Twitter application programming interface and user mention timeline endpoint. Research methodology is unique in its analysis of stigmatizing, racist, and hateful content shared on social media within the vaccine discourse over the course of two disease outbreaks. Three distinct analyses are conducted to provide insight into (i) the most prevalent topics and sub-topics among user reactions, (ii) changes in sentiment towards the spread of the two diseases, and (iii) the presence of stigma, racism, and online hate. Findings indicate an increase in hesitancy to accept further vaccines and social distancing measures, the presence of stigmatizing content aimed primarily at anti-vaccine cohorts and racially motivated abusive messages, and a prevalent fatigue towards disease-related news overall. This research provides value to non-profit organizations or government agencies associated with vaccines and vaccination programs in emphasizing the need for public health communication fitted to consumers' vaccine sentiments, levels of health information literacy, and degrees of trust towards public health institutions. Considering the importance of addressing fears among the vaccine hesitant, findings also illustrate the risk of alienation through stigmatization, lead future research in probing the relatively underexamined field of online, vaccine-related stigma, and discuss the potential effects of stigma towards vaccine hesitant Twitter users in their decisions to vaccinate.

Keywords: social marketing, social media, public health communication, vaccines

Procedia PDF Downloads 98
28109 Traffic Congestions Modeling and Predictions by Social Networks

Authors: Bojan Najdenov, Danco Davcev

Abstract:

Reduction of traffic congestions and the effects of pollution and waste of resources that come with them has been a big challenge in the past decades. Having reliable systems to facilitate the process of modeling and prediction of traffic conditions would not only reduce the environmental pollution, but will also save people time and money. Social networks play big role of people’s lives nowadays providing them means of communicating and sharing thoughts and ideas, that way generating huge knowledge bases by crowdsourcing. In addition to that, crowdsourcing as a concept provides mechanisms for fast and relatively reliable data generation and also many services are being used on regular basis because they are mainly powered by the public as main content providers. In this paper we present the Social-NETS-Traffic-Control System (SNTCS) that should serve as a facilitator in the process of modeling and prediction of traffic congestions. The main contribution of our system is to integrate data from social networks as Twitter and also implements a custom created crowdsourcing subsystem with which users report traffic conditions using an android application. Our first experience of the usage of the system confirms that the integrated approach allows easy extension of the system with other social networks and represents a very useful tool for traffic control.

Keywords: traffic, congestion reduction, crowdsource, social networks, twitter, android

Procedia PDF Downloads 480
28108 Geovisualization of Human Mobility Patterns in Los Angeles Using Twitter Data

Authors: Linna Li

Abstract:

The capability to move around places is doubtless very important for individuals to maintain good health and social functions. People’s activities in space and time have long been a research topic in behavioral and socio-economic studies, particularly focusing on the highly dynamic urban environment. By analyzing groups of people who share similar activity patterns, many socio-economic and socio-demographic problems and their relationships with individual behavior preferences can be revealed. Los Angeles, known for its large population, ethnic diversity, cultural mixing, and entertainment industry, faces great transportation challenges such as traffic congestion, parking difficulties, and long commuting. Understanding people’s travel behavior and movement patterns in this metropolis sheds light on potential solutions to complex problems regarding urban mobility. This project visualizes people’s trajectories in Greater Los Angeles (L.A.) Area over a period of two months using Twitter data. A Python script was used to collect georeferenced tweets within the Greater L.A. Area including Ventura, San Bernardino, Riverside, Los Angeles, and Orange counties. Information associated with tweets includes text, time, location, and user ID. Information associated with users includes name, the number of followers, etc. Both aggregated and individual activity patterns are demonstrated using various geovisualization techniques. Locations of individual Twitter users were aggregated to create a surface of activity hot spots at different time instants using kernel density estimation, which shows the dynamic flow of people’s movement throughout the metropolis in a twenty-four-hour cycle. In the 3D geovisualization interface, the z-axis indicates time that covers 24 hours, and the x-y plane shows the geographic space of the city. Any two points on the z axis can be selected for displaying activity density surface within a particular time period. In addition, daily trajectories of Twitter users were created using space-time paths that show the continuous movement of individuals throughout the day. When a personal trajectory is overlaid on top of ancillary layers including land use and road networks in 3D visualization, the vivid representation of a realistic view of the urban environment boosts situational awareness of the map reader. A comparison of the same individual’s paths on different days shows some regular patterns on weekdays for some Twitter users, but for some other users, their daily trajectories are more irregular and sporadic. This research makes contributions in two major areas: geovisualization of spatial footprints to understand travel behavior using the big data approach and dynamic representation of activity space in the Greater Los Angeles Area. Unlike traditional travel surveys, social media (e.g., Twitter) provides an inexpensive way of data collection on spatio-temporal footprints. The visualization techniques used in this project are also valuable for analyzing other spatio-temporal data in the exploratory stage, thus leading to informed decisions about generating and testing hypotheses for further investigation. The next step of this research is to separate users into different groups based on gender/ethnic origin and compare their daily trajectory patterns.

Keywords: geovisualization, human mobility pattern, Los Angeles, social media

Procedia PDF Downloads 114
28107 Network and Sentiment Analysis of U.S. Congressional Tweets

Authors: Chaitanya Kanakamedala, Hansa Pradhan, Carter Gilbert

Abstract:

Social media platforms, such as Twitter, are excellent datasets for understanding human interactions and sentiments. This report explores social dynamics among US Congressional members through a network analysis applied to a dataset of tweets spanning 2008 to 2017 from the ’US Congressional Tweets Dataset’. In this report, we preform network analysis where connections between users (edges) are established based on a similarity threshold: two tweets are connected if the tweets they post are similar. By utilizing the Natural Language Toolkit (NLTK) and NetworkX, we quantified tweet similarity and constructed a graph comprising various interconnected components. Each component represents a cluster of users with closely aligned content. We then preform sentiment analysis on each cluster to explore the prevalent emotions and opinions within these groups. Our findings reveal that despite the initial expectation of distinct ideological divisions typically aligning with party lines, the analysis exposed a high degree of topical convergence across tweets from different political affiliations. The analysis preformed in this report not only highlights the potential of social media as a tool for political communication but also suggests a complex layer of interaction that transcends traditional partisan boundaries, reflecting a complicated landscape of politics in the digital age.

Keywords: natural language processing, sentiment analysis, centrality analysis, topic modeling

Procedia PDF Downloads 32
28106 Model Solutions for Performance-Based Seismic Analysis of an Anchored Sheet Pile Quay Wall

Authors: C. J. W. Habets, D. J. Peters, J. G. de Gijt, A. V. Metrikine, S. N. Jonkman

Abstract:

Conventional seismic designs of quay walls in ports are mostly based on pseudo-static analysis. A more advanced alternative is the Performance-Based Design (PBD) method, which evaluates permanent deformations and amounts of (repairable) damage under seismic loading. The aim of this study is to investigate the suitability of this method for anchored sheet pile quay walls that were not purposely designed for seismic loads. A research methodology is developed in which pseudo-static, permanent-displacement and finite element analysis are employed, calibrated with an experimental reference case that considers a typical anchored sheet pile wall. A reduction factor that accounts for deformation behaviour is determined for pseudo-static analysis. A model to apply traditional permanent displacement analysis on anchored sheet pile walls is proposed. Dynamic analysis is successfully carried out. From the research it is concluded that PBD evaluation can effectively be used for seismic analysis and design of this type of structure.

Keywords: anchored sheet pile quay wall, simplified dynamic analysis, performance-based design, pseudo-static analysis

Procedia PDF Downloads 378
28105 Teaching Science Content Area Literacy to 21st Century Learners

Authors: Melissa C. Ingram

Abstract:

The use of new literacies within science classrooms needs to be balanced by teachers to both teach different forms of communication while assessing content area proficiency. Using new literacies such as Twitter and Facebook needs to be incorporated into science content area literacy studies in addition to continuing to use generally-accepted forms of scientific content area presentation, which include scientific papers and textbooks. The research question this literature review seeks to answer is “What are some ways in which new forms of literacy are better suited to teach scientific content area literacy to 21st Century learners?” The research question is addressed through a literature review that highlights methods currently being used to educate the next wave of learners in the world of science content area literacy. Both temporal discourse analysis (TDA) and critical discourse analysis (CDA) were used to determine the need to use new literacies to teach science content area literacy. Increased use of digital technologies and a change in science content area pedagogy were explored.

Keywords: science content area literacy, new literacies, critical discourse analysis, temporal discourse analysis

Procedia PDF Downloads 220
28104 Energy Efficiency Analysis of Crossover Technologies in Industrial Applications

Authors: W. Schellong

Abstract:

Industry accounts for one-third of global final energy demand. Crossover technologies (e.g. motors, pumps, process heat, and air conditioning) play an important role in improving energy efficiency. These technologies are used in many applications independent of the production branch. Especially electrical power is used by drives, pumps, compressors, and lightning. The paper demonstrates the algorithm of the energy analysis by some selected case studies for typical industrial processes. The energy analysis represents an essential part of energy management systems (EMS). Generally, process control system (PCS) can support EMS. They provide information about the production process, and they organize the maintenance actions. Combining these tools into an integrated process allows the development of an energy critical equipment strategy. Thus, asset and energy management can use the same common data to improve the energy efficiency.

Keywords: crossover technologies, data management, energy analysis, energy efficiency, process control

Procedia PDF Downloads 209
28103 The Analysis of Drill Bit Optimization by the Application of New Electric Impulse Technology in Shallow Water Absheron Peninsula

Authors: Ayshan Gurbanova

Abstract:

Despite based on the fact that drill bit which is the smallest part of bottom hole assembly costs only in between 10% and 15% of the total expenses made, they are the first equipment that is in contact with the formation itself. Hence, it is consequential to choose the appropriate type and dimension of drilling bit, which will prevent majority of problems by not demanding many tripping procedure. However, within the advance in technology, it is now seamless to be beneficial in the terms of many concepts such as subsequent time of operation, energy, expenditure, power and so forth. With the intention of applying the method to Azerbaijan, the field of Shallow Water Absheron Peninsula has been suggested, where the mainland has been located 15 km away from the wildcat wells, named as “NKX01”. It has the water depth of 22 m as indicated. In 2015 and 2016, the seismic survey analysis of 2D and 3D have been conducted in contract area as well as onshore shallow water depth locations. With the aim of indicating clear elucidation, soil stability, possible submersible dangerous scenarios, geohazards and bathymetry surveys have been carried out as well. Within the seismic analysis results, the exact location of exploration wells have been determined and along with this, the correct measurement decisions have been made to divide the land into three productive zones. In the term of the method, Electric Impulse Technology (EIT) is based on discharge energies of electricity within the corrosivity in rock. Take it simply, the highest value of voltages could be created in the less range of nano time, where it is sent to the rock through electrodes’ baring as demonstrated below. These electrodes- higher voltage powered and grounded are placed on the formation which could be obscured in liquid. With the design, it is more seamless to drill horizontal well based on the advantage of loose contact of formation. There is also no chance of worn ability as there are no combustion, mechanical power exist. In the case of energy, the usage of conventional drilling accounts for 1000 𝐽/𝑐𝑚3 , where this value accounts for between 100 and 200 𝐽/𝑐𝑚3 in EIT. Last but not the least, from the test analysis, it has been yielded that it achieves the value of ROP more than 2 𝑚/ℎ𝑟 throughout 15 days. Taking everything into consideration, it is such a fact that with the comparison of data analysis, this method is highly applicable to the fields of Azerbaijan.

Keywords: drilling, drill bit cost, efficiency, cost

Procedia PDF Downloads 72
28102 Emoji, the Language of the Future: An Analysis of the Usage and Understanding of Emoji across User-Groups

Authors: Sakshi Bhalla

Abstract:

On the one hand, given their seemingly simplistic, near universal usage and understanding, emoji are discarded as a potential step back in the evolution of communication. On the other, their effectiveness, pervasiveness, and adaptability across and within contexts are undeniable. In this study, the responses of 40 people (categorized by age) were recorded based on a uniform two-part questionnaire where they were required to a) identify the meaning of 15 emoji when placed in isolation, and b) interpret the meaning of the same 15 emoji when placed in a context-defining posting on Twitter. Their responses were studied on the basis of deviation from their responses that identified the emoji in isolation, as well as the originally intended meaning ascribed to the emoji. Based on an analysis of these results, it was discovered that each of the five age categories uses, understands and perceives emoji differently, which could be attributed to the degree of exposure they have undergone. For example, in the case of the youngest category (aged < 20), it was observed that they were the least accurate at correctly identifying emoji in isolation (~55%). Further, their proclivity to change their response with respect to the context was also the least (~31%). However, an analysis of each of their individual responses showed that these first-borns of social media seem to have reached a point where emojis no longer inspire their most literal meanings to them. The meaning and implication of these emoji have evolved to imply their context-derived meanings, even when placed in isolation. These trends carry forward meaningfully for the other four groups as well. In the case of the oldest category (aged > 35), however, the trends indicated inaccuracy and therefore, a higher incidence of a proclivity to change their responses. When studied in a continuum, the responses indicate that slowly and steadily, emoji are evolving from pictograms to ideograms. That is to suggest that they do not just indicate a one-to-one relation between a singular form and singular meaning. In fact, they communicate increasingly complicated ideas. This is much like the evolution of ancient hieroglyphics on papyrus reed or cuneiform on Sumerian clay tablets, which evolved from simple pictograms to progressively more complex ideograms. This evolution within communication is parallel to and contingent on the simultaneous evolution of communication. What’s astounding is the capacity of humans to leverage different platforms to facilitate such changes. Twiterese, as it is now called, is one of the instances where language is adapting to the demands of the digital world. That it does not have a spoken component, an ostensible grammar, and lacks standardization of use and meaning, as some might suggest, may seem like impediments in qualifying it as the 'language' of the digital world. However, that kind of a declarative remains a function of time, and time alone.

Keywords: communication, emoji, language, Twitter

Procedia PDF Downloads 94
28101 Enhancing Metaverse Security: A Multi-Factor Authentication Scheme

Authors: R. Chinnaiyaprabhu, S. Bharanidharan, V. Dharsana, Rajalavanya

Abstract:

The concept of the Metaverse represents a potential evolution in the realm of cyberspace. In the early stages of Web 2.0, we observed a proliferation of online pseudonyms or 'nyms,' which increased the prevalence of fake accounts and made it challenging to establish unique online identities for various roles. However, in the era of Web 3.0, particularly in the context of the Metaverse, an individual's digital identity is intrinsically linked to their real-world identity. Consequently, actions taken in the Metaverse can carry significant consequences in the physical world. In light of these considerations, we propose the development of an innovative authentication system known as 'Metasec.' This system is designed to enhance security for digital assets, online identities, avatars, and user accounts within the Metaverse. Notably, Metasec operates as a password less authentication solution, relying on a multifaceted approach to security, encompassing device attestation, facial recognition, and pattern-based security keys.

Keywords: metaverse, multifactor authentication, security, facial recognition, patten password

Procedia PDF Downloads 65
28100 Golden Dawn's Rhetoric on Social Networks: Populism, Xenophobia and Antisemitism

Authors: Georgios Samaras

Abstract:

New media such as Facebook, YouTube and Twitter introduced the world to a new era of instant communication. An era where online interactions could replace a lot of offline actions. Technology can create a mediated environment in which participants can communicate (one-to-one, one-to-many, and many-to-many) both synchronously and asynchronously and participate in reciprocal message exchanges. Currently, social networks are attracting similar academic attention to that of the internet after its mainstream implementation into public life. Websites and platforms are seen as the forefront of a new political change. There is a significant backdrop of previous methodologies employed to research the effects of social networks. New approaches are being developed to be able to adapt to the growth of social networks and the invention of new platforms. Golden Dawn was the first openly neo-Nazi party post World War II to win seats in the parliament of a European country. Its racist rhetoric and violent tactics on social networks were rewarded by their supporters, who in the face of Golden Dawn’s leaders saw a ‘new dawn’ in Greek politics. Mainstream media banned its leaders and members of the party indefinitely after Ilias Kasidiaris attacked Liana Kanelli, a member of the Greek Communist Party, on live television. This media ban was seen as a treasonous move by a significant percentage of voters, who believed that the system was desperately trying to censor Golden Dawn to favor mainstream parties. The shocking attack on live television received international coverage and while European countries were condemning this newly emerged neo-Nazi rhetoric, almost 7 percent of the Greek population rewarded Golden Dawn with 18 seats in the Greek parliament. Many seem to think that Golden Dawn mobilised its voters online and this approach played a significant role in spreading their message and appealing to wider audiences. No strict online censorship existed back in 2012 and although Golden Dawn was openly used neo-Nazi symbolism, it was allowed to use social networks without serious restrictions until 2017. This paper used qualitative methods to investigate Golden Dawn’s rise in social networks from 2012 to 2019. The focus of the content analysis was set on three social networking platforms: Facebook, Twitter and YouTube, while the existence of Golden Dawn’s website, which was used as a news sharing hub, was also taken into account. The content analysis included text and visual analyses that sampled content from their social networking pages to translate their political messaging through an ideological lens focused on extreme-right populism. The absence of hate speech regulations on social network platforms in 2012 allowed the free expression of those heavily ultranationalist and populist views, as they were employed by Golden Dawn in the Greek political scene. On YouTube, Facebook and Twitter, the influence of their rhetoric was particularly strong. Official channels and MPs profiles were investigated to explore the messaging in-depth and understand its ideological elements.

Keywords: populism, far-right, social media, Greece, golden dawn

Procedia PDF Downloads 147
28099 Towards Law Data Labelling Using Topic Modelling

Authors: Daniel Pinheiro Da Silva Junior, Aline Paes, Daniel De Oliveira, Christiano Lacerda Ghuerren, Marcio Duran

Abstract:

The Courts of Accounts are institutions responsible for overseeing and point out irregularities of Public Administration expenses. They have a high demand for processes to be analyzed, whose decisions must be grounded on severity laws. Despite the existing large amount of processes, there are several cases reporting similar subjects. Thus, previous decisions on already analyzed processes can be a precedent for current processes that refer to similar topics. Identifying similar topics is an open, yet essential task for identifying similarities between several processes. Since the actual amount of topics is considerably large, it is tedious and error-prone to identify topics using a pure manual approach. This paper presents a tool based on Machine Learning and Natural Language Processing to assists in building a labeled dataset. The tool relies on Topic Modelling with Latent Dirichlet Allocation to find the topics underlying a document followed by Jensen Shannon distance metric to generate a probability of similarity between documents pairs. Furthermore, in a case study with a corpus of decisions of the Rio de Janeiro State Court of Accounts, it was noted that data pre-processing plays an essential role in modeling relevant topics. Also, the combination of topic modeling and a calculated distance metric over document represented among generated topics has been proved useful in helping to construct a labeled base of similar and non-similar document pairs.

Keywords: courts of accounts, data labelling, document similarity, topic modeling

Procedia PDF Downloads 177
28098 Evaluating Generative Neural Attention Weights-Based Chatbot on Customer Support Twitter Dataset

Authors: Sinarwati Mohamad Suhaili, Naomie Salim, Mohamad Nazim Jambli

Abstract:

Sequence-to-sequence (seq2seq) models augmented with attention mechanisms are playing an increasingly important role in automated customer service. These models, which are able to recognize complex relationships between input and output sequences, are crucial for optimizing chatbot responses. Central to these mechanisms are neural attention weights that determine the focus of the model during sequence generation. Despite their widespread use, there remains a gap in the comparative analysis of different attention weighting functions within seq2seq models, particularly in the domain of chatbots using the Customer Support Twitter (CST) dataset. This study addresses this gap by evaluating four distinct attention-scoring functions—dot, multiplicative/general, additive, and an extended multiplicative function with a tanh activation parameter — in neural generative seq2seq models. Utilizing the CST dataset, these models were trained and evaluated over 10 epochs with the AdamW optimizer. Evaluation criteria included validation loss and BLEU scores implemented under both greedy and beam search strategies with a beam size of k=3. Results indicate that the model with the tanh-augmented multiplicative function significantly outperforms its counterparts, achieving the lowest validation loss (1.136484) and the highest BLEU scores (0.438926 under greedy search, 0.443000 under beam search, k=3). These results emphasize the crucial influence of selecting an appropriate attention-scoring function in improving the performance of seq2seq models for chatbots. Particularly, the model that integrates tanh activation proves to be a promising approach to improve the quality of chatbots in the customer support context.

Keywords: attention weight, chatbot, encoder-decoder, neural generative attention, score function, sequence-to-sequence

Procedia PDF Downloads 76
28097 Life-Cycle Assessment of Residential Buildings: Addressing the Influence of Commuting

Authors: J. Bastos, P. Marques, S. Batterman, F. Freire

Abstract:

Due to demands of a growing urban population, it is crucial to manage urban development and its associated environmental impacts. While most of the environmental analyses have addressed buildings and transportation separately, both the design and location of a building affect environmental performance and focusing on one or the other can shift impacts and overlook improvement opportunities for more sustainable urban development. Recently, several life-cycle (LC) studies of residential buildings have integrated user transportation, focusing exclusively on primary energy demand and/or greenhouse gas emissions. Additionally, most papers considered only private transportation (mainly car). Although it is likely to have the largest share both in terms of use and associated impacts, exploring the variability associated with mode choice is relevant for comprehensive assessments and, eventually, for supporting decision-makers. This paper presents a life-cycle assessment (LCA) of a residential building in Lisbon (Portugal), addressing building construction, use and user transportation (commuting with private and public transportation). Five environmental indicators or categories are considered: (i) non-renewable primary energy (NRE), (ii) greenhouse gas intensity (GHG), (iii) eutrophication (EUT), (iv) acidification (ACID), and (v) ozone layer depletion (OLD). In a first stage, the analysis addresses the overall life-cycle considering the statistical model mix for commuting in the residence location. Then, a comparative analysis compares different available transportation modes to address the influence mode choice variability has on the results. The results highlight the large contribution of transportation to the overall LC results in all categories. NRE and GHG show strong correlation, as the three LC phases contribute with similar shares to both of them: building construction accounts for 6-9%, building use for 44-45%, and user transportation for 48% of the overall results. However, for other impact categories there is a large variation in the relative contribution of each phase. Transport is the most significant phase in OLD (60%); however, in EUT and ACID building use has the largest contribution to the overall LC (55% and 64%, respectively). In these categories, transportation accounts for 31-38%. A comparative analysis was also performed for four alternative transport modes for the household commuting: car, bus, motorcycle, and company/school collective transport. The car has the largest results in all impact categories. When compared to the overall LC with commuting by car, mode choice accounts for a variability of about 35% in NRE, GHG and OLD (the categories where transportation accounted for the largest share of the LC), 24% in EUT and 16% in ACID. NRE and GHG show a strong correlation because all modes have internal combustion engines. The second largest results for NRE, GHG and OLD are associated with commuting by motorcycle; however, for ACID and EUT this mode has better performance than bus and company/school transport. No single transportation mode performed best in all impact categories. Integrated assessments of buildings are needed to avoid shifts of impacts between life-cycle phases and environmental categories, and ultimately to support decision-makers.

Keywords: environmental impacts, LCA, Lisbon, transport

Procedia PDF Downloads 362
28096 The Use of the Social Media as a Propaganda Tool from the Political Parties in Europe against the Immigrants

Authors: Gülbuğ Erol, Caner Çakı

Abstract:

In Europe, it is seen that the immigrant population has increased in recent years. The rapid increase in the immigrant population has led to that some extreme right-wing parties increased their harsh discourse against the immigrants in Europe. In particular, it is seen that some right-wing parties in some European countries have demanded that the immigrant population could be controlled in the countries they are in, and even those immigrants should be removed from their countries. In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In this study, it was tried to investigate how and why the extreme right-wing parties in Europe have used social media in their propaganda activities towards immigrant populations in Europe. For this purpose, the political parties of the three German-speaking countries in Europe were elected; Die Nationaldemokratische Partei Deutschlands (NPD) from Germany, Die Freiheitliche Partei Österreichs (FPÖ) from Austria, Die Schweizerische Volkspartei (SVP) from Switzerland. As social media platform, only their Facebook accounts were analyzed in this study. Accounts The political parties selected were examined with content analysis, and that social media was effectively used by extreme right-wing parties for propaganda purposes towards immigrants in Europe revealed.In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In Europe, it is seen that the immigrant population has increased in recent years. The rapid increase in the immigrant population has led to that some extreme right-wing parties increased their harsh discourse against the immigrants in Europe. In particular, it is seen that some right-wing parties in some European countries have demanded that the immigrant population should be controlled in the countries they are in, and even those immigrants should be removed from their countries. In this process, it is seen that these parties have effectively used social media platforms in the propaganda activities carried out for immigrants in recent years. In particular, the social media has great advantages in that these parties can address to the entire population in the country, apart from the limited masses that political parties address. How these political parties benefit from these advantages has great importance for the political parties to demonstrate their influence in political arena. In this study, it was tried to investigate how and why the extreme right-wing parties in Europe have used social media in their propaganda activities towards immigrant populations in Europe. For this purpose, the political parties of the three German-speaking countries in Europe were elected; Die Nationaldemokratische Partei Deutschlands (NPD) from Germany, Die Freiheitliche Partei Österreichs (FPÖ) from Austria, Die Schweizerische Volkspartei (SVP) from Switzerland. As social media platform, only their Facebook accounts were analyzed in this study. Accounts The political parties selected were examined with content analysis and that social media was effectively used by extreme right-wing parties for propaganda purposes towards immigrants in Europe revealed.

Keywords: content analysis, political parties, propaganda, social media

Procedia PDF Downloads 415
28095 Women Retelling the Iranian Revolution: A Comparative Study of Novelists Maryam Madjidi and Negar Djavadi

Authors: Alessandro Giardino

Abstract:

The Iranian Revolution has been the object of numberless historical and semi-fictional accounts, often providing a monolithic perspective on the events, due to the westerner positioning of those recounting them. Against this tradition, two contemporary French-Iranian novels "Disoriental" (2016) by Negar Djavadi and "Marx and The Doll" (2017) by Maryam Madjidi have offered readers a female-oriented and interestingly layered representation of the Iranian Revolution, hence addressing the responsibilities and misconceptions of Western countries. Furthermore, these two women writers have shed light on the disenchantment of the Iranian intellectual class vis-à-vis the foundation of the Islamic Republic, by particularly focusing on the deterioration of women’s rights, as well as the repression of political, ethnical, religious and sexual minorities. By a psycholinguistic and semasiological analysis of the two novels by Djavadi and Madjidi, this essay will focus on alternative accounts of the revolution in order to reflect upon the role of intersectional literature to the understanding of history. More specifically, as both women, refugees, and bi-cultural writers, Djavadi and Madjidi unearthed moments and figures of the revolution which had disappeared from the prevalent narrative. In doing so, however, these two writers resorted to entirely opposite styles of writing that, it will be argued, stem from different types of female resistance. In defining these two approaches as a "narrative resistance" and a "photographic resistance," the essay will elucidate the dependence of these writers’ language on generational and psychological factors, but it will also stir a reflection on their different communicative strategies.

Keywords: Iranian revolution, French-Iranian, intersectionality, literature, women writers

Procedia PDF Downloads 155
28094 Empirical Orthogonal Functions Analysis of Hydrophysical Characteristics in the Shira Lake in Southern Siberia

Authors: Olga S. Volodko, Lidiya A. Kompaniets, Ludmila V. Gavrilova

Abstract:

The method of empirical orthogonal functions is the method of data analysis with a complex spatial-temporal structure. This method allows us to decompose the data into a finite number of modes determined by empirically finding the eigenfunctions of data correlation matrix. The modes have different scales and can be associated with various physical processes. The empirical orthogonal function method has been widely used for the analysis of hydrophysical characteristics, for example, the analysis of sea surface temperatures in the Western North Atlantic, ocean surface currents in the North Carolina, the study of tropical wave disturbances etc. The method used in this study has been applied to the analysis of temperature and velocity measurements in saline Lake Shira (Southern Siberia, Russia). Shira is a shallow lake with the maximum depth of 25 m. The lake Shira can be considered as a closed water site because of it has one small river providing inflow and but it has no outflows. The main factor that causes the motion of fluid is variable wind flows. In summer the lake is strongly stratified by temperature and saline. Long-term measurements of the temperatures and currents were conducted at several points during summer 2014-2015. The temperature has been measured with an accuracy of 0.1 ºC. The data were analyzed using the empirical orthogonal function method in the real version. The first empirical eigenmode accounts for 70-80 % of the energy and can be interpreted as temperature distribution with a thermocline. A thermocline is a thermal layer where the temperature decreases rapidly from the mixed upper layer of the lake to much colder deep water. The higher order modes can be interpreted as oscillations induced by internal waves. The currents measurements were recorded using Acoustic Doppler Current Profilers 600 kHz and 1200 kHz. The data were analyzed using the empirical orthogonal function method in the complex version. The first empirical eigenmode accounts for about 40 % of the energy and corresponds to the Ekman spiral occurring in the case of a stationary homogeneous fluid. Other modes describe the effects associated with the stratification of fluids. The second and next empirical eigenmodes were associated with dynamical modes. These modes were obtained for a simplified model of inhomogeneous three-level fluid at a water site with a flat bottom.

Keywords: Ekman spiral, empirical orthogonal functions, data analysis, stratified fluid, thermocline

Procedia PDF Downloads 134
28093 Improving Fake News Detection Using K-means and Support Vector Machine Approaches

Authors: Kasra Majbouri Yazdi, Adel Majbouri Yazdi, Saeid Khodayi, Jingyu Hou, Wanlei Zhou, Saeed Saedy

Abstract:

Fake news and false information are big challenges of all types of media, especially social media. There is a lot of false information, fake likes, views and duplicated accounts as big social networks such as Facebook and Twitter admitted. Most information appearing on social media is doubtful and in some cases misleading. They need to be detected as soon as possible to avoid a negative impact on society. The dimensions of the fake news datasets are growing rapidly, so to obtain a better result of detecting false information with less computation time and complexity, the dimensions need to be reduced. One of the best techniques of reducing data size is using feature selection method. The aim of this technique is to choose a feature subset from the original set to improve the classification performance. In this paper, a feature selection method is proposed with the integration of K-means clustering and Support Vector Machine (SVM) approaches which work in four steps. First, the similarities between all features are calculated. Then, features are divided into several clusters. Next, the final feature set is selected from all clusters, and finally, fake news is classified based on the final feature subset using the SVM method. The proposed method was evaluated by comparing its performance with other state-of-the-art methods on several specific benchmark datasets and the outcome showed a better classification of false information for our work. The detection performance was improved in two aspects. On the one hand, the detection runtime process decreased, and on the other hand, the classification accuracy increased because of the elimination of redundant features and the reduction of datasets dimensions.

Keywords: clustering, fake news detection, feature selection, machine learning, social media, support vector machine

Procedia PDF Downloads 176
28092 The Narrative Coherence of Autistic Children’s Accounts of an Experienced Event over Time

Authors: Fuming Yang, Telma Sousa Almeida, Xinyu Li, Yunxi Deng, Heying Zhang, Michael E. Lamb

Abstract:

Twenty-seven children aged 6-15 years with autism spectrum disorder (ASD) and 32 typically developing children were questioned about their participation in a set of activities after a two-week delay and again after a two-month delay, using a best-practice interview protocol. This paper assessed the narrative coherence of children’s reports based on key story grammar elements and temporal features included in their accounts of the event. Results indicated that, over time, both children with ASD and typically developing (TD) children decreased their narrative coherence. Children with ASD were no different from TD peers with regards to story length and syntactic complexity. However, they showed significantly less coherence than TD children. They were less likely to use the gist of the story to organize their narrative coherence. Interviewer prompts influenced children’s narrative coherence. The findings indicated that children with ASD could provide meaningful and reliable testimony about an event they personally experienced, but the narrative coherence of their reports deteriorates over time and is affected by interviewer prompts.

Keywords: autism spectrum disorders, delay, eyewitness testimony, narrative coherence

Procedia PDF Downloads 286
28091 Estimation of Desktop E-Wastes in Delhi Using Multivariate Flow Analysis

Authors: Sumay Bhojwani, Ashutosh Chandra, Mamita Devaburman, Akriti Bhogal

Abstract:

This article uses the Material flow analysis for estimating e-wastes in the Delhi/NCR region. The Material flow analysis is based on sales data obtained from various sources. Much of the data available for the sales is unreliable because of the existence of a huge informal sector. The informal sector in India accounts for more than 90%. Therefore, the scope of this study is only limited to the formal one. Also, for projection of the sales data till 2030, we have used regression (linear) to avoid complexity. The actual sales in the years following 2015 may vary non-linearly but we have assumed a basic linear relation. The purpose of this study was to know an approximate quantity of desktop e-wastes that we will have by the year 2030 so that we start preparing ourselves for the ineluctable investment in the treatment of these ever-rising e-wastes. The results of this study can be used to install a treatment plant for e-wastes in Delhi.

Keywords: e-wastes, Delhi, desktops, estimation

Procedia PDF Downloads 257
28090 Early Stage Suicide Ideation Detection Using Supervised Machine Learning and Neural Network Classifier

Authors: Devendra Kr Tayal, Vrinda Gupta, Aastha Bansal, Khushi Singh, Sristi Sharma, Hunny Gaur

Abstract:

In today's world, suicide is a serious problem. In order to save lives, early suicide attempt detection and prevention should be addressed. A good number of at-risk people utilize social media platforms to talk about their issues or find knowledge on related chores. Twitter and Reddit are two of the most common platforms that are used for expressing oneself. Extensive research has already been done in this field. Through supervised classification techniques like Nave Bayes, Bernoulli Nave Bayes, and Multiple Layer Perceptron on a Reddit dataset, we demonstrate the early recognition of suicidal ideation. We also performed comparative analysis on these approaches and used accuracy, recall score, F1 score, and precision score for analysis.

Keywords: machine learning, suicide ideation detection, supervised classification, natural language processing

Procedia PDF Downloads 89
28089 Changing the Biopower Hierarchy between Women’s Bodily Knowledge and the Medical Knowledge about the Body: The Case of Female Ejaculation and #Notpee

Authors: Lior B. Navon

Abstract:

The objective of this study is to investigate how technology, such as social media, can influence the biopower hierarchy between the medical knowledge about the body and women’s bodily knowledge through the case study of the hashtag 'notpee'. In January 2015, the hashtag #notpee, relating to a feminine physiological phenomenon called female ejaculation (FE) or squirting (SQ) started circulating on twitter. This hashtag, born as a reaction to a medical study claiming that SQ is essentially involuntary emission of urine during sexual activity, sparked an unusual public discourse about FE, a phenomenon that is usually not discussed or referred to in socio-legitimate public spheres. This unusual backlash got the attention of women’s magazines and blogs, as well as more mainstream large and respected outlets such as The Guardian and CNN. Both the tweets on twitter, as well as the media coverage of them, were mainly aimed at rejecting the research’s findings. While not offering an alternative and choosing to define the phenomenon by negation, women argued that the fluid extracted was not pee based on their personal experiences. Based on a critical discourse analysis of 742 tweets with the hashtag 'notpee' between January 2015 and January 2016, and of 15 articles covering the backlash, this study suggests that the #notpee backlash challenged the power balance between the medical knowledge about the feminine body and the feminine bodily knowledge through two different, yet related, forms of resistance to biopower. The first resistance is to the authority over knowledge production — who has the power to produce 'true' statements when it comes to the body? Is it the women who experience the phenomenon, or is it the medical institution? The second resistance to biopower has to do with what we regard as facts or veracity. A critical discourse analysis reveals that while both the scientific field, as well as the women arguing against its findings, use empirical information, they, nevertheless, rely on two dichotomic databases- while the scientific research relies on samples from the 'dead like body', these woman are relying on their lived subjective senses as a source for fact making. Nevertheless, while #notpee is asking to change the power relations between the feminine subjective bodily knowledge and the seemingly objective masculine medical knowledge about the body, it by no means dismisses it. These women are essentially asking the medical institution to take into consideration the subjective body as well as the objective one while acknowledging and accepting the power of the latter over knowledge production.

Keywords: biopower, female ejaculation, new media, bodily knowledge

Procedia PDF Downloads 157
28088 Finite Element Analysis of a Dynamic Linear Crack Problem

Authors: Brian E. Usibe

Abstract:

This paper addresses the problem of a linear crack located in the middle of a homogeneous elastic media under normal tension-compression harmonic loading. The problem of deformation of the fractured media is solved using the direct finite element numerical procedure, including the analysis of the dynamic field variables of the problem. A finite element algorithm that satisfies the unilateral Signorini contact constraint is also presented for the solution of the contact interaction of the crack faces and how this accounts for the qualitative and quantitative changes in the solution when determining the dynamic fracture parameter.

Keywords: harmonic loading, linear crack, fracture parameter, wave number, FEA, contact interaction

Procedia PDF Downloads 42
28087 Impact of Hashtags in Tweets Regarding COVID-19 on the Psyche of Pakistanis: A Critical Discourse Analytical Study

Authors: Muhammad Hamza

Abstract:

This study attempts to analyze the social media reports regarding Covid-19 that impacted the psyche of Pakistanis. This Study is delimited to hashtags from Tweets on a social media platform. During Covid-19, it has been observed that it affected the psychological conditions of Pakistanis. With the application of the three-dimensional model presented by Fairclough, together with a data analytic software “FireAnt” i.e., social media and data analysis toolkit, which is used to filter, identify, report and export data from social media accurately. A detailed and explicit exploration of the various hashtags by users from different fields was conducted. This study conducted a quantitative as well as qualitative methods of analysis. The study examined the perspectives of the Pakistanis behind the use of various hashtags with the lenses of Critical Discourse Analysis (CDA). While conducting this research, CDA was helpful to reveal the connection between the psyche of the people and the Covid-19 pandemic. It was found that how different Pakistanis used social media and how Covid-19 impacted their psyche. After collecting and analyzing the hashtags from twitter it was concluded that majority of people received negative impact from social media reports, while, some people used their hashtags positively and were found positive during Covid-19, and some people were found neutral.

Keywords: Covid, Covid-19, psyche, Covid Pakistan

Procedia PDF Downloads 58
28086 Natural Language Processing for the Classification of Social Media Posts in Post-Disaster Management

Authors: Ezgi Şendil

Abstract:

Information extracted from social media has received great attention since it has become an effective alternative for collecting people’s opinions and emotions based on specific experiences in a faster and easier way. The paper aims to put data in a meaningful way to analyze users’ posts and get a result in terms of the experiences and opinions of the users during and after natural disasters. The posts collected from Reddit are classified into nine different categories, including injured/dead people, infrastructure and utility damage, missing/found people, donation needs/offers, caution/advice, and emotional support, identified by using labelled Twitter data and four different machine learning (ML) classifiers.

Keywords: disaster, NLP, postdisaster management, sentiment analysis

Procedia PDF Downloads 74
28085 A Study of Social Media Users’ Switching Behavior

Authors: Chiao-Chen Chang, Yang-Chieh Chin

Abstract:

Social media has created a change in the way the network community is clustered, especially from the location of the community, from the original virtual space to the intertwined network, and thus the communication between people will change from face to face communication to social media-based communication model. However, social media users who have had a fixed engagement may have an intention to switch to another service provider because of the emergence of new forms of social media. For example, some of Facebook or Twitter users switched to Instagram in 2014 because of social media messages or image overloads, and users may seek simpler and instant social media to become their main social networking tool. This study explores the impact of system features overload, information overload, social monitoring concerns, problematic use and privacy concerns as the antecedents on social media fatigue, dissatisfaction, and alternative attractiveness; further influence social media switching. This study also uses the online questionnaire survey method to recover the sample data, and then confirm the factor analysis, path analysis, model fit analysis and mediating analysis with the structural equation model (SEM). Research findings demonstrated that there were significant effects on multiple paths. Based on the research findings, this study puts forward the implications of theory and practice.

Keywords: social media, switching, social media fatigue, alternative attractiveness

Procedia PDF Downloads 140
28084 Use of Social Media in Political Communications: Example of Facebook

Authors: Havva Nur Tarakci, Bahar Urhan Torun

Abstract:

The transformation that is seen in every area of life by technology, especially internet technology changes the structure of political communications too. Internet, which is at the top of new communication technologies, affects political communications with its structure in a way that no traditional communication tools ever have and enables interaction and the channel between receiver and sender, and it becomes one of the most effective tools preferred among the political communication applications. This state as a result of technological convergence makes Internet an unobtainable place for political communication campaigns. Political communications, which means every kind of communication strategies that political parties called 'actors of political communications' use with the aim of messaging their opinions and party programmes to their present and potential voters who are a target group for them, is a type of communication that is frequently used also among social media tools at the present day. The electorate consisting of different structures is informed, directed, and managed by social media tools. Political parties easily reach their electorate by these tools without any limitations of both time and place and also are able to take the opinions and reactions of their electorate by the element of interaction that is a feature of social media. In this context, Facebook, which is a place that political parties use in social media at most, is a communication network including in our daily life since 2004. As it is one of the most popular social networks today, it is among the most-visited websites in the global scale. In this way, the research is based on the question, “How do the political parties use Facebook at the campaigns, which they conduct during the election periods, for informing their voters?” and it aims at clarifying the Facebook using practices of the political parties. In direction of this objective the official Facebook accounts of the four political parties (JDP–AKParti, PDP–BDP, RPP-CHP, NMP-MHP), which reach their voters by social media besides other communication tools, are treated, and a frame for the politics of Turkey is formed. The time of examination is constricted with totally two weeks, one week before the mayoral elections and one week after the mayoral elections, when it is supposed that the political parties use their Facebook accounts in full swing. As a research method, the method of content analysis is preferred, and the texts and the visual elements that are gotten are interpreted based on this analysis.

Keywords: Facebook, political communications, social media, electrorate

Procedia PDF Downloads 379