Search results for: steam explosion pretreatment
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 724

Search results for: steam explosion pretreatment

604 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production at 2000kg/h

Authors: Yoftahe Nigussie Worku

Abstract:

This study focused on designing a Fire tube boiler to generate saturated steam with a 2000kg/h capacity at a 12bar design pressure. The primary project goal is to achieve efficient steam production while minimizing costs. This involves selecting suitable materials for component parts, employing cost-effective construction methods, and optimizing various parameters. The analysis phase employs iterative processes and relevant formulas to determine key design parameters. This includes optimizing the diameter of tubes for overall heat transfer coefficient, considering a two-pass configuration due to tube and shell size, and using heavy oil fuel no.6 with specific heating values. The designed boiler consumes 140.37kg/hr of fuel, producing 1610kw of heat at an efficiency of 85.25%. The fluid flow is configured as cross flow, leveraging its inherent advantages. The tube arrangement involves welding the tubes inside the shell, which is connected to the tube sheet using a combination of gaskets and welding. The design of the shell adheres to the European Standard code for pressure vessels, accounting for weight and supplementary accessories and providing detailed drawings for components like lifting lugs, openings, ends, manholes, and supports.

Keywords: efficiency, coefficient, saturated steam, fire tube

Procedia PDF Downloads 60
603 Structural Performance of Prefabricated Concrete and Reinforced Concrete Structural Walls under Blast Loads

Authors: S. Kamil Akin, Turgut Acikara

Abstract:

In recent years the world and our country has experienced several explosion events occurred due to terrorist attacks and accidents. In these explosion events many people have lost their lives and many buildings have been damaged. If structures were designed taking the blast loads into account, these results may not have happened or the casualties would have been less. In this thesis analysis of the protection walls have been conducted to prevent the building damage from blast loads. These analyzes was carried out for two different types of wall, concrete and reinforced concrete. Analyses were carried out on four different thicknesses of each wall element. In each wall element the stresses and displacements of the exposed surface due to the detonation charge has been calculated. The limit shear stress and displacement of the wall element according to their material properties has been taken into account. As the result of the analyses the standoff distances and TNT equivalent amount has been determined. According to equivalent TNT amounts and standoff distances the structural response of the protective wall elements has been observed. These structural responses have been observed by ABAQUS finite element package. Explosion loads were brought into effect to the protective wall element models by using the ABAQUS / CONWEP.

Keywords: blast loading, blast wave, TNT equivalent method, CONWEP, finite element analysis, detonation

Procedia PDF Downloads 439
602 Sound Noise Control of a Steam Ejector in a Typical Power Plant: Design, Manufacturing, and Testing a Silencer-Muffler

Authors: Ali Siami, Masoud Asayesh, Asghar Najafi, Amirhosein Hamedanian

Abstract:

There are so many noise sources in power generation units that these sources can produce high-level sound noise. Therefore, sound noise reduction methods can assist these industries, especially in these days that laws related to environmental issues become more strict. In a typical power plant, so many machines and devices with high-level sound noise are arranged beside of each others. Therefore, the sound source identification and reducing the noise level can be very vital. In this paper, the procedure for designing, manufacturing and testing of a silencer-muffler used for a power plant steam vent is mentioned. This unit is placed near the residential area and so it is very important to reduce the noise emission. For this purpose, in the first step, measurements have done to identify the sound source and the frequency content of noise. The overall level of noise was so high and it was more than 120dB. Then, the appropriate noise control device is designed according to the measurement results and operational conditions. In the next step, the designed silencer-muffler has been manufactured and installed on the steam discharge of the ejector. For validation of the silencer-muffler effect, the acoustic test was done again in operating mode. Finally, the measurement results before and after the installation are compared. The results have confirmed a considerable reduction in noise level resultant of using silencer-muffler in the designed frequency range.

Keywords: silencer-muffler, sound noise control, sound measurement, steam ejector

Procedia PDF Downloads 385
601 Characterization of AlOOH Film Containing Mg-Al Layered Double Hydroxide Prepared on Al Alloy by Steam Coating

Authors: Ai Serizawa, Kotaro Mori, Takahiro Ishizaki

Abstract:

Al alloys have been used as advanced structural materials in automobile and railway industries because of excellent physical and mechanical properties such as low density, good heat conductivity, and high specific strength. Their low corrosion resistance, however, limits their use in the corrosive environment. To improve the corrosion resistance of the Al alloys, the development of a novel coating technology has been highly desirable. Chemical conversion methods using layered double hydroxide (LDH) have attracted much attention because the LDH can suppress corrosion reaction due to their trapping ability of corrosive anions such as Cl- between layers. In this presentation, we report on a novel preparation method of AlOOH film containing Mg-Al layered double hydroxide (LDH) on Al alloy by steam coating. The corrosion resistance of the composite film including LDH was especially focused. Al-Mg-Si alloy was used as the substrate. The substrates were ultrasonically cleaned in ethanol for 10 min. The cleaned substrates were set in the autoclave with a 100 mL capacity. 20 ml of ultrapure water was located at the bottom of the autoclave to produce steam. The autoclave was heated up to a temperature of 100 to 200 °C, and then held at this temperature for up to 48 h, and was subsequently cooled naturally to room temperature, resulting in the formation of anticorrosive films on Al alloys. The resultant films were characterized by XRD, FT-IR, FE-SEM and electrochemical measurements. FE-SEM image of film surface treated at 180 °C for 48 h demonstrated that needle-like nanostructure was densely formed on the surface. XRD patterns revealed that the film formed on the Al alloys by steam coating was composed of crystal AlOOH and Mg-Al LDH. The corrosion resistance of the film was evaluated using electrochemical measurements. The potentiodynamic polarization curves of the film coated and uncoated substrates of Al-Mg-Si alloy after immersion in the 5 wt% NaCl aqueous solution for 30 min revealed that the corrosion current density, jcorr, of the film coated sample decreased by more than two orders of magnitude as compared to the uncoated sample, indicating that the corrosion resistance of the substrates of Al-Mg-Si alloy were improved by the formation of the anticorrosive film via steam coating.

Keywords: aluminum alloy, boehmite, corrosion resistance, steam process

Procedia PDF Downloads 290
600 A Simulation-Based Method for Evaluation of Energy System Cooperation between Pulp and Paper Mills and a District Heating System: A Case Study

Authors: Alexander Hedlund, Anna-Karin Stengard, Olof Björkqvist

Abstract:

A step towards reducing greenhouse gases and energy consumption is to collaborate with the energy system between several industries. This work is based on a case study on integration of pulp and paper mills with a district heating system in Sundsvall, Sweden. Present research shows that it is possible to make a significant reduction in the electricity demand in the mechanical pulping process. However, the profitability of the efficiency measures could be an issue, as the excess steam recovered from the refiners decreases with the electricity consumption. A consequence will be that the fuel demand for steam production will increase. If the fuel price is similar to the electricity price it would reduce the profit of such a project. If the paper mill can be integrated with a district heating system, it is possible to upgrade excess heat from a nearby kraft pulp mill to process steam via the district heating system in order to avoid the additional fuel need. The concept is investigated by using a simulation model describing both the mass and energy balance as well as the operating margin. Three scenarios were analyzed: reference, electricity reduction and energy substitution. The simulation show that the total input to the system is lowest in the Energy substitution scenario. Additionally, in the Energy substitution scenario the steam from the incineration boiler covers not only the steam shortage but also a part of the steam produced using the biofuel boiler, the cooling tower connected to the incineration boiler is no longer needed and the excess heat can cover the whole district heating load during the whole year. The study shows a substantial economic advantage if all stakeholders act together as one system. However, costs and benefits are unequally shared between the actors. This means that there is a need for new business models in order to share the system costs and benefits.

Keywords: energy system, cooperation, simulation method, excess heat, district heating

Procedia PDF Downloads 227
599 Mexico's Steam Connections Across the Pacific (1867-1910)

Authors: Ruth Mandujano Lopez

Abstract:

During the second half of the 19th century, in the transition from sail to steam navigation, the transpacific space underwent major transformation. This paper examines the role that the steamship companies between Mexico, the rest of North America and Asia played in that process. Based on primary sources found in Mexico, California, London and Hong Kong, it argues that these companies actively participated in the redefining of the Pacific space as they opened new routes, transported thousands of people and had an impact on regional geopolitics. In order to prove this, the text will present the cases of a handful of companies that emerged between 1867 and 1910 and of some of their passengers. By looking at the way the Mexican ports incorporated to the transpacific steam maritime network, this work contributes to have a better understanding of the role that Latin American ports have played in the formation of a global order. From a theoretical point of view, it proposes the conceptualization of space in the form of transnational networks as a point of departure to conceive a history that is truly global.

Keywords: mexico, steamships, transpacific, maritime companies

Procedia PDF Downloads 51
598 Analysis of Pressure Drop in a Concentrated Solar Collector with Direct Steam Production

Authors: Sara Sallam, Mohamed Taqi, Naoual Belouaggadia

Abstract:

Solar thermal power plants using parabolic trough collectors (PTC) are currently a powerful technology for generating electricity. Most of these solar power plants use thermal oils as heat transfer fluid. The latter is heated in the solar field and transfers the heat absorbed in an oil-water heat exchanger for the production of steam driving the turbines of the power plant. Currently, we are seeking to develop PTCs with direct steam generation (DSG). This process consists of circulating water under pressure in the receiver tube to generate steam directly into the solar loop. This makes it possible to reduce the investment and maintenance costs of the PTCs (the oil-water exchangers are removed) and to avoid the environmental risks associated with the use of thermal oils. The pressure drops in these systems are an important parameter to ensure their proper operation. The determination of these losses is complex because of the presence of the two phases, and most often we limit ourselves to describing them by models using empirical correlations. A comparison of these models with experimental data was performed. Our calculations focused on the evolution of the pressure of the liquid-vapor mixture along the receiver tube of a PTC-DSG for pressure values and inlet flow rates ranging respectively from 3 to 10 MPa, and from 0.4 to 0.6 kg/s. The comparison of the numerical results with experience allows us to demonstrate the validity of some models according to the pressures and the flow rates of entry in the PTC-DSG receiver tube. The analysis of these two parameters’ effects on the evolution of the pressure along the receiving tub, shows that the increase of the inlet pressure and the decrease of the flow rate lead to minimal pressure losses.

Keywords: direct steam generation, parabolic trough collectors, Ppressure drop, empirical models

Procedia PDF Downloads 143
597 Effect of Naphtha in Addition to a Cycle Steam Stimulation Process Reducing the Heavy Oil Viscosity Using a Two-Level Factorial Design

Authors: Nora A. Guerrero, Adan Leon, María I. Sandoval, Romel Perez, Samuel Munoz

Abstract:

The addition of solvents in cyclic steam stimulation is a technique that has shown an impact on the improved recovery of heavy oils. In this technique, it is possible to reduce the steam/oil ratio in the last stages of the process, at which time this ratio increases significantly. The mobility of improved crude oil increases due to the structural changes of its components, which at the same time reflected in the decrease in density and viscosity. In the present work, the effect of the variables such as temperature, time, and weight percentage of naphtha was evaluated, using a factorial design of experiments 23. From the results of analysis of variance (ANOVA) and Pareto diagram, it was possible to identify the effect on viscosity reduction. The experimental representation of the crude-vapor-naphtha interaction was carried out in a batch reactor on a Colombian heavy oil of 12.8° API and 3500 cP. The conditions of temperature, reaction time, and percentage of naphtha were 270-300 °C, 48-66 hours, and 3-9% by weight, respectively. The results showed a decrease in density with values in the range of 0.9542 to 0.9414 g/cm³, while the viscosity decrease was in the order of 55 to 70%. On the other hand, simulated distillation results, according to ASTM 7169, revealed significant conversions of the 315°C+ fraction. From the spectroscopic techniques of nuclear magnetic resonance NMR, infrared FTIR and UV-VIS visible ultraviolet, it was determined that the increase in the performance of the light fractions in the improved crude is due to the breakdown of alkyl chains. The methodology for cyclic steam injection with naphtha and laboratory-scale characterization can be considered as a practical tool in improved recovery processes.

Keywords: viscosity reduction, cyclic steam stimulation, factorial design, naphtha

Procedia PDF Downloads 175
596 Self-Healing Performance of Heavyweight Concrete with Steam Curing

Authors: Hideki Igawa, Yoshinori Kitsutaka, Takashi Yokomuro, Hideo Eguchi

Abstract:

In this study, the crack self-healing performance of the heavyweight concrete used in the walls of containers and structures designed to shield radioactive materials was investigated. A steam curing temperature that preserves self-healing properties and demolding strength was identified. The presented simultaneously mixing method using the expanding material and the fly ash in the process of admixture can maximize the self-curing performance. Also adding synthetic fibers in the heavyweight concrete improved the self-healing performance.

Keywords: expanding material, heavyweight concrete, self-healing performance, synthetic fiber

Procedia PDF Downloads 338
595 Comparative Study of Ni Catalysts Supported by Silica and Modified by Metal Additions Co and Ce for The Steam Reforming of Methane

Authors: Ali Zazi, Ouiza Cherifi

Abstract:

The Catalysts materials Ni-SiO₂, Ni-Co-SiO₂ and Ni-Ce-SiO₂ were synthetized by classical method impregnation and supported by silica. This involves combing the silica with an adequate rate of the solution of nickel nitrates, or nickel nitrate and cobalt nitrate, or nickel nitrate and cerium nitrate, mixed, dried and calcined at 700 ° c. These catalysts have been characterized by different physicochemical analysis techniques. The atomic absorption spectrometry indicates that the real contents of nickel, cerium and cobalt are close to the theoretical contents previously assumed, which let's say that the nitrate solutions have impregnated well the silica support. The BET results show that the surface area of the specific surfaces decreases slightly after impregnation with nickel nitrates or Co and Ce metals and a further slight decrease after the reaction. This is likely due to coke deposition. X-ray diffraction shows the presence of the different SiO₂ and NiO phases for all catalysts—theCoO phase for that promoted by Co and the Ce₂O₂ phase for that promoted by Ce. The methane steam reforming reaction was carried out on a quartz reactor in a fixed bed. Reactants and products of the reaction were analyzed by a gas chromatograph. This study shows that the metal addition of Cerium or Cobalt improves the majority of the catalytic performance of Ni for the steam reforming reaction of methane. And we conclude the classification of our Catalysts in order of decreasing activity and catalytic performances as follows: Ni-Ce / SiO₂ >Ni-Co / SiO₂> Ni / SiO₂ .

Keywords: cerium, cobalt, heterogeneous catalysis, hydrogen, methane, steam reforming, synthesis gas

Procedia PDF Downloads 193
594 A Simplified Method to Assess the Damage of an Immersed Cylinder Subjected to Underwater Explosion

Authors: Kevin Brochard, Herve Le Sourne, Guillaume Barras

Abstract:

The design of a submarine’s hull is crucial for its operability and crew’s safety, but also complex. Indeed, engineers need to balance lightness, acoustic discretion and resistance to both immersion pressure and environmental attacks. Submarine explosions represent a first-rate threat for the integrity of the hull, whose behavior needs to be properly analyzed. The presented work is focused on the development of a simplified analytical method to study the structural response of a deeply immersed cylinder submitted to an underwater explosion. This method aims to provide engineers a quick estimation of the resulting damage, allowing them to simulate a large number of explosion scenarios. The present research relies on the so-called plastic string on plastic foundation model. A two-dimensional boundary value problem for a cylindrical shell is converted to an equivalent one-dimensional problem of a plastic string resting on a non-linear plastic foundation. For this purpose, equivalence parameters are defined and evaluated by making assumptions on the shape of the displacement and velocity field in the cross-sectional plane of the cylinder. Closed-form solutions for the deformation and velocity profile of the shell are obtained for explosive loading, and compare well with numerical and experimental results. However, the plastic-string model has not yet been adapted for a cylinder in immersion subjected to an explosive loading. In fact, the effects of fluid-structure interaction have to be taken into account. Moreover, when an underwater explosion occurs, several pressure waves are emitted by the gas bubble pulsations, called secondary waves. The corresponding loads, which may produce significant damages to the cylinder, must also be accounted for. The analytical developments carried out to solve the above problem of a shock wave impacting a cylinder, considering fluid-structure interaction will be presented for an unstiffened cylinder. The resulting deformations are compared to experimental and numerical results for different shock factors and different standoff distances.

Keywords: immersed cylinder, rigid plastic material, shock loading, underwater explosion

Procedia PDF Downloads 340
593 Influence of Pretreatment Magnetic Resonance Imaging on Local Therapy Decisions in Intermediate-Risk Prostate Cancer Patients

Authors: Christian Skowronski, Andrew Shanholtzer, Brent Yelton, Muayad Almahariq, Daniel J. Krauss

Abstract:

Prostate cancer has the third highest incidence rate and is the second leading cause of cancer death for men in the United States. Of the diagnostic tools available for intermediate-risk prostate cancer, magnetic resonance imaging (MRI) provides superior soft tissue delineation serving as a valuable tool for both diagnosis and treatment planning. Currently, there is minimal data regarding the practical utility of MRI for evaluation of intermediate-risk prostate cancer. As such, the National Comprehensive Cancer Network’s guidelines indicate MRI as optional in intermediate-risk prostate cancer evaluation. This project aims to elucidate whether MRI affects radiation treatment decisions for intermediate-risk prostate cancer. This was a retrospective study evaluating 210 patients with intermediate-risk prostate cancer, treated with definitive radiotherapy at our institution between 2019-2020. NCCN risk stratification criteria were used to define intermediate-risk prostate cancer. Patients were divided into two groups: those with pretreatment prostate MRI, and those without pretreatment prostate MRI. We compared the use of external beam radiotherapy, brachytherapy alone, brachytherapy boost, and androgen depravation therapy between the two groups. Inverse probability of treatment weighting was used to match the two groups for age, comorbidity index, American Urologic Association symptoms index, pretreatment PSA, grade group, and percent core involvement on prostate biopsy. Wilcoxon Rank Sum and Chi-squared tests were used to compare continuous and categorical variables. Of the patients who met the study’s eligibility criteria, 133 had a prostate MRI and 77 did not. Following propensity matching, there were no differences between baseline characteristics between the two groups. There were no statistically significant differences in treatments pursued between the two groups: 42% vs 47% were treated with brachytherapy alone, 40% vs 42% were treated with external beam radiotherapy alone, 18% vs 12% were treated with external beam radiotherapy with a brachytherapy boost, and 24% vs 17% received androgen deprivation therapy in the non-MRI and MRI groups, respectively. This analysis suggests that pretreatment MRI does not significantly impact radiation therapy or androgen deprivation therapy decisions in patients with intermediate-risk prostate cancer. Obtaining a pretreatment prostate MRI should be used judiciously and pursued only to answer a specific question, for which the answer is likely to impact treatment decision. Further follow up is needed to correlate MRI findings with their impacts on specific oncologic outcomes.

Keywords: magnetic resonance imaging, prostate cancer, definitive radiotherapy, gleason score 7

Procedia PDF Downloads 92
592 Faster, Lighter, More Accurate: A Deep Learning Ensemble for Content Moderation

Authors: Arian Hosseini, Mahmudul Hasan

Abstract:

To address the increasing need for efficient and accurate content moderation, we propose an efficient and lightweight deep classification ensemble structure. Our approach is based on a combination of simple visual features, designed for high-accuracy classification of violent content with low false positives. Our ensemble architecture utilizes a set of lightweight models with narrowed-down color features, and we apply it to both images and videos. We evaluated our approach using a large dataset of explosion and blast contents and compared its performance to popular deep learning models such as ResNet-50. Our evaluation results demonstrate significant improvements in prediction accuracy, while benefiting from 7.64x faster inference and lower computation cost. While our approach is tailored to explosion detection, it can be applied to other similar content moderation and violence detection use cases as well. Based on our experiments, we propose a "think small, think many" philosophy in classification scenarios. We argue that transforming a single, large, monolithic deep model into a verification-based step model ensemble of multiple small, simple, and lightweight models with narrowed-down visual features can possibly lead to predictions with higher accuracy.

Keywords: deep classification, content moderation, ensemble learning, explosion detection, video processing

Procedia PDF Downloads 55
591 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment

Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos

Abstract:

Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.

Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology

Procedia PDF Downloads 383
590 Effects of Hypolipidemic Agents in Aminoglycoside-Induced Experimental Nephrotoxicity in Rats: Biochemical and Histopathological Evidence

Authors: Balakumar Pitchai, Xiang Llan Ang, Sunil Prajapati, Varatharajan Rajavel, Sundram Karupiah, Mohd Baidi Bahari

Abstract:

The study examined the pretreatment and post-treatment effects of low-doses of fenofibrate and rosuvastatin in gentamicin-induced acute nephrotoxicity in rats. Gentamicin (100 mg/kg/day, i.p.) was administered to rats for 8 days. In the pretreatment protocol, low-dose fenofibrate (30 mg/kg/day, p.o.) or low-dose rosuvastatin (2 mg/kg/day, p.o.) treatments were started a day before the administration of gentamicin and continued for 8 days. In the post-treatment protocol, rats administered gentamicin were treated with low-dose fenofibrate (30 mg/kg/day, p.o.) or low-dose rosuvastatin (2 mg/kg/day, p.o.) for 6 days after the completion of 8 days protocol of gentamicin administration. Gentamicin-associated acute nephrotoxicity in rats was assessed in terms of biochemical analysis and renal histopathological studies. Gentamicin-administered rats showed marked renal functional changes as assessed in terms of a significant increase in serum creatinine and urea levels as compared to normal rats. The renal dysfunction noted in gentamicin administered rats was accompanied with elevated serum uric acid level as compared to normal rats while there was no significant change in lipid profile. Low-dose fenofibrate pretreatment in gentamicin-administered rats afforded a significant renal functional improvements and renoprotection while its post-treatment showed no significant renoprotection. On the other hand, pretreatment with low-dose rosuvastatin partially reduced gentamicin-induced increase in serum creatinine level, but its post-treatment did not afford renal functional improvements in gentamicin-administered rats. However, all pre and post-treatments with low-doses of fenofibrate or rosuvastatin significantly reduced the elevated serum uric acid concentration in gentamicin-administered rats. Renal histopathological analysis showed a discernible incidence of acute tubular necrosis in gentamicin-administered rats which were markedly reduced by low-dose fenofibrate or low-dose rosuvastatin pretreatments; but, not by their post-treatments. In conclusion, low-dose fenofibrate pretreatment considerably prevented gentamicin-induced acute tubular necrosis and renal functional abnormalities in rats while its post-treatment resulted in no significant renoprotective action. In spite of effective prevention of gentamicin-induced acute tubular necrosis, the pretreatment with low-dose rosuvastatin had only a partial and fractional protection on renal functional abnormalities. The post-treatment with low-dose rosuvastatin was ineffective in affording a renoprotection in gentamicin-administered rats.

Keywords: gentamicin-nephrotoxicity, low-dose fenofibrate, low-dose rosuvastatin, renoprotection

Procedia PDF Downloads 204
589 The Design of Fire in Tube Boiler

Authors: Yoftahe Nigussie

Abstract:

This report presents a final year project pertaining to the design of Fire tube boiler for the purpose of producing saturated steam. The objective of the project is to produce saturated steam for different purpose with a capacity of 2000kg/h at 12bar design pressure by performing a design of a higher performance fire tube boiler that considered the requirements of cost minimization and parameters improvement. This is mostly done in selection of appropriate material for component parts, construction materials and production methods in different steps of analysis. In the analysis process, most of the design parameters are obtained by iterating with related formulas like selection of diameter of tubes with overall heat transfer coefficient optimization, and the other selections are also as like considered. The number of passes is two because of the size and area of the tubes and shell. As the analysis express by using heavy oil fuel no6 with a higher heating value of 44000kJ/kg and lower heating value of 41300kJ/kg and the amount of fuel consumed 140.37kg/hr. and produce 1610kw of heat with efficiency of 85.25%. The flow of the fluid is a cross flow because of its own advantage and the arrangement of the tube in-side the shell is welded with the tube sheet, and the tube sheet is attached with the shell and the end by using a gasket and weld. The design of the shell, using European Standard code section, is as like pressure vessel by considering the weight, including content and the supplementary accessories such as lifting lugs, openings, ends, man hole and supports with detail and assembly drawing.

Keywords: steam generation, external treatment, internal treatment, steam velocity

Procedia PDF Downloads 98
588 An Unexpected Hand Injury with Pluridigital Fractures Due to Premature Explosion of a Ramadan Cannon

Authors: Hakan Akgul

Abstract:

Purpose: The use of firecrackers (i.e., Ramadan Cannon) during the month of Ramadan is a traditional way of indicating that the fasting period is over in Muslim countries. Here, we report the rehabilitation of a case of hand injury with pluridigital fractures due to premature explosion of a Ramadan cannon. Materials and Methods: A 48-year old man admitted to the Emergency Department due to left hand injury as a result of a premature explosion of a Ramadan cannon. The patient was immediately taken to operation room because of the multiple fractures, tendon loss, and soft tissue loss in the left hand. Range of motion (ROM) of joints was measured with goniometer, pain and oedema were measured and splinting was performed. Results: Rehabilitation team took over the patient at postoperative 9th week. During the 3 month rehabilitation, range of motion increased, oedema was taken under control, pain was reduced, the colour of the skin turned to the normal tone. According to the visual analog scale (VAS), pain decreased from 9 to 4. Oedema, around the metacarpofalangeal (MCP) joints, decreased from 27,5 cm to 23,5 cm. Total active range of motion of the wrist increased from 5 degrees to 50 degrees.Total active range of motion of supination and pronation increased from 55 degrees to 70 degrees. Discussion: The rehabilitation of multiple hand injury is quite difficult. Different aspects of trauma should be taken into consideration when rehabilitation is planned. Factors such as waiting for the bone union, wound healing, and use of external fixators may delay rehabilitation process. Joint mobilization, massage for reducing oedema and preventing scar tissue, exercise within the range of motion are efficient measures. Poor patient compliance to treatment may lead to poor outcome. First of all, oedema and scar formation must be taken under control. Removing fixators should not be delayed depending on the bone union, and exercise within the range of motion should be started.

Keywords: explosion, fracture, hand, injury

Procedia PDF Downloads 243
587 Biorefinery Annexed to South African Sugar Mill: Energy Sufficiency Analysis

Authors: S. Farzad, M. Ali Mandegari, J. F. Görgens

Abstract:

The South African Sugar Industry, which has a significant impact on the national economy, is currently facing problems due to increasing energy price and low global sugar price. The available bagasse is already combusted in low-efficiency boilers of the sugar mills while bagasse is generally recognized as a promising feedstock for second generation bioethanol production. Establishment of biorefinery annexed to the existing sugar mills, as an alternative for the revitalization of sugar industry producing biofuel and electricity has been proposed and considered in this study. Since the scale is an important issue in the feasibility of the technology, this study has taken into account a typical sugar mill with 300 ton/hr sugar cane capacity. The biorefinery simulation is carried out using Aspen PlusTM V8.6, in which the sugar mill’s power and steam demand has been considered. Hence, sugar mills in South Africa can be categorized as highly efficient, efficient, and not efficient with steam consumption of 33, 40, and 60 tons of steam per ton of cane and electric power demand of 10 MW; three different scenarios are studied. The sugar cane bagasse and tops/trash are supplied to the biorefinery process and the wastes/residues (mostly lignin) from the process are burnt in the CHP plant in order to produce steam and electricity for the biorefinery and sugar mill as well. Considering the efficient sugar mill, the CHP plant has generated 5 MW surplus electric powers, but the obtained energy is not enough for self-sufficiency of the plant (Biorefinery and Sugar mill) due to lack of 34 MW heat. One of the advantages of second generation biorefinery is its low impact on the environment and carbon footprint, thus the plant should be self-sufficient in energy without using fossil fuels. For this reason, a portion of fresh bagasse should be sent to the CHP plant to meet the energy requirements. An optimization procedure was carried out to find out the appropriate portion to be burnt in the combustor. As a result, 20% of the bagasse is re-routed to the combustor which leads to 5 tons of LP Steam and 8.6 MW electric power surpluses.

Keywords: biorefinery, sugarcane bagasse, sugar mill, energy analysis, bioethanol

Procedia PDF Downloads 476
586 The Performance Improvement of Solar Aided Power Generation System by Introducing the Second Solar Field

Authors: Junjie Wu, Hongjuan Hou, Eric Hu, Yongping Yang

Abstract:

Solar aided power generation (SAPG) technology has been proven as an efficient way to make use of solar energy for power generation purpose. In an SAPG plant, a solar field consisting of parabolic solar collectors is normally used to supply the solar heat in order to displace the high pressure/temperature extraction steam. To understand the performance of such a SAPG plant, a new simulation model was developed by the authors recently, in which the boiler was treated, as a series of heat exchangers unlike other previous models. Through the simulations using the new model, it was found the outlet properties of reheated steam, e.g. temperature, would decrease due to the introduction of the solar heat. The changes make the (lower stage) turbines work under off-design condition. As a result, the whole plant’s performance may not be optimal. In this paper, the second solar filed was proposed to increase the inlet temperature of steam to be reheated, in order to bring the outlet temperature of reheated steam back to the designed condition. A 600MW SAPG plant was simulated as a case study using the new model to understand the impact of the second solar field on the plant performance. It was found in the study, the 2nd solar field would improve the plant’s performance in terms of cycle efficiency and solar-to-electricity efficiency by 1.91% and 6.01%. The solar-generated electricity produced by per aperture area under the design condition was 187.96W/m2, which was 26.14% higher than the previous design.

Keywords: solar-aided power generation system, off-design performance, coal-saving performance, boiler modelling, integration schemes

Procedia PDF Downloads 290
585 Flame Propagation Velocity of Selected Gas Mixtures Depending on the Temperature

Authors: Kaczmarzyk Piotr, Anna Dziechciarz, Wojciech Klapsa

Abstract:

The purpose of this paper is demonstration the test results of research influence of temperature on the velocity of flame propagation using gas and air mixtures for selected gas mixtures. The research was conducted on the test apparatus in the form of duct 2 m long. The test apparatus was funded from the project: “Development of methods to neutralize threats of explosion for determined tanks contained technical gases, including alternative sources of supply in the fire environment, taking into account needs of rescuers” number: DOB-BIO6/02/50/2014. The Project is funded by The National Centre for Research and Development. This paper presents the results of measurement of rate of pressure rise and rate in flame propagation, using test apparatus for mixtures air and methane or air and propane. This paper presents the results performed using the test apparatus in the form of duct measuring the rate of flame and overpressure wave. Studies were performed using three gas mixtures with different concentrations: Methane (3% to 8% vol), Propane (3% to 6% vol). As regard to the above concentrations, tests were carried out at temperatures 20 and 30 ̊C. The gas mixture was supplied to the inside of the duct by the partial pressure molecules. Data acquisition was made using 5 dynamic pressure transducers and 5 ionization probes, arranged along of the duct. Temperature conditions changes were performed using heater which was mounted on the duct’s bottom. During the tests, following parameters were recorded: maximum explosion pressure, maximum pressure recorded by sensors and voltage recorded by ionization probes. Performed tests, for flammable gas and air mixtures, indicate that temperature changes have an influence on overpressure velocity. It should be noted, that temperature changes do not have a major impact on the flame front velocity. In the case of propane and air mixtures (temperature 30 ̊C) was observed DDT (Deflagration to Detonation) phenomena. The velocity increased from 2 to 20 m/s. This kind of explosion could turn into a detonation, but the duct length is too short (2 m).

Keywords: flame propagation, flame propagation velocity, explosion, propane, methane

Procedia PDF Downloads 226
584 Failure Mode Analysis of a Multiple Layer Explosion Bonded Cryogenic Transition Joint

Authors: Richard Colwell, Thomas Englert

Abstract:

In cryogenic liquefaction processes, brazed aluminum core heat exchangers are used to minimize surface area/volume of the exchanger. Aluminum alloy (5083-H321; UNS A95083) piping must transition to higher melting point 304L stainless steel piping outside of the heat exchanger kettle or cold box for safety reasons. Since aluminum alloys and austenitic stainless steel cannot be directly welded to together, a transition joint consisting of 5 layers of different metals explosively bonded are used. Failures of two of these joints resulted in process shut-down and loss of revenue. Failure analyses, FEA analysis, and mock-up testing were performed by multiple teams to gain a further understanding into the failure mechanisms involved.

Keywords: explosion bonding, intermetallic compound, thermal strain, titanium-nickel Interface

Procedia PDF Downloads 219
583 One Dimensional Reactor Modeling for Methanol Steam Reforming to Hydrogen

Authors: Hongfang Ma, Mingchuan Zhou, Haitao Zhang, Weiyong Ying

Abstract:

One dimensional pseudo-homogenous modeling has been performed for methanol steam reforming reactor. The results show that the models can well predict the industrial data. The reactor had minimum temperature along axial because of endothermic reaction. Hydrogen productions and temperature profiles along axial were investigated regarding operation conditions such as inlet mass flow rate and mass fraction of methanol, inlet temperature of external thermal oil. Low inlet mass flow rate of methanol, low inlet temperature, and high mass fraction of methanol decreased minimum temperature along axial. Low inlet mass flow rate of methanol, high mass fraction of methanol, and high inlet temperature of thermal oil made cold point forward. Low mass fraction, high mass flow rate, and high inlet temperature of thermal oil increased hydrogen production. One dimensional models can be a guide for industrial operation.

Keywords: reactor, modeling, methanol, steam reforming

Procedia PDF Downloads 299
582 Thermodynamic Evaluation of Coupling APR-1400 with a Thermal Desalination Plant

Authors: M. Gomaa Abdoelatef, Robert M. Field, Lee, Yong-Kwan

Abstract:

Growing human populations have placed increased demands on water supplies and a heightened interest in desalination infrastructure. Key elements of the economics of desalination projects are thermal and electrical inputs. With growing concerns over the use of fossil fuels to (indirectly) supply these inputs, coupling of desalination with nuclear power production represents a significant opportunity. Individually, nuclear and desalination technologies have a long history and are relatively mature. For desalination, Reverse Osmosis (RO) has the lowest energy inputs. However, the economically driven output quality of the water produced using RO, which uses only electrical inputs, is lower than the output water quality from thermal desalination plants. Therefore, modern desalination projects consider that RO should be coupled with thermal desalination technologies (MSF, MED, or MED-TVC) with attendant steam inputs to permit blending to produce various qualities of water. A large nuclear facility is well positioned to dispatch large quantities of both electrical and thermal power. This paper considers the supply of thermal energy to a large desalination facility to examine heat balance impact on the nuclear steam cycle. The APR1400 nuclear plant is selected as prototypical from both a capacity and turbine cycle heat balance perspective to examine steam supply and the impact on electrical output. Extraction points and quantities of steam are considered parametrically along with various types of thermal desalination technologies to form the basis for further evaluations of economically optimal approaches to the interface of nuclear power production with desalination projects. In our study, the thermodynamic evaluation will be executed by DE-TOP which is the IAEA desalination program, it is approved to be capable of analyzing power generation systems coupled to desalination systems through various steam extraction positions, taking into consideration the isolation loop between the APR-1400 and the thermal desalination plant for safety concern.

Keywords: APR-1400, desalination, DE-TOP, IAEA, MSF, MED, MED-TVC, RO

Procedia PDF Downloads 532
581 Development of the Analysis and Pretreatment of Brown HT in Foods

Authors: Hee-Jae Suh, Mi-Na Hong, Min-Ji Kim, Yeon-Seong Jeong, Ok-Hwan Lee, Jae-Wook Shin, Hyang-Sook Chun, Chan Lee

Abstract:

Brown HT is a bis-azo dye which is permitted in EU as a food colorant. So far, many studies have focused on HPLC using diode array detection (DAD) analysis for detection of this food colorant with different columns and mobile phases. Even though these methods make it possible to detect Brown HT, low recovery, reproducibility, and linearity are still the major limitations for the application in foods. The purpose of this study was to compare various methods for the analysis of Brown HT and to develop an improved analytical methods including pretreatment. Among tested analysis methods, best resolution of Brown HT was observed when the following solvent was applied as a eluent; solvent A of mobile phase was 0.575g NH4H2PO4, and 0.7g Na2HPO4 in 500mL water added with 500mL methanol. The pH was adjusted using phosphoric acid to pH 6.9 and solvent B was methanol. Major peak for Brown HT appeared at the end of separation, 13.4min after injection. This method exhibited relatively high recovery and reproducibility compared with other methods. LOD (0.284 ppm), LOQ (0.861 ppm), resolution (6.143), and selectivity (1.3) of this method were better than those of ammonium acetate solution method which was most frequently used. Precision and accuracy were verified through inter-day test and intra-day test. Various methods for sample pretreatments were developed for different foods and relatively high recovery over 80% was observed in all case. This method exhibited high resolution and reproducibility of Brown HT compared with other previously reported official methods from FSA and, EU regulation.

Keywords: analytic method, Brown HT, food colorants, pretreatment method

Procedia PDF Downloads 480
580 Optimizing Fire Tube Boiler Design for Efficient Saturated Steam Production: A Cost-Minimization Approach

Authors: Yoftahe Nigussie Worku

Abstract:

This report unveils a meticulous project focused on the design intricacies of a Fire Tube Boiler tailored for the efficient generation of saturated steam. The overarching objective is to produce 2000kg/h of saturated steam at 12-bar design pressure, achieved through the development of an advanced fire tube boiler. This design is meticulously crafted to harmonize cost-effectiveness and parameter refinement, with a keen emphasis on material selection for component parts, construction materials, and production methods throughout the analytical phases. The analytical process involves iterative calculations, utilizing pertinent formulas to optimize design parameters, including the selection of tube diameters and overall heat transfer coefficients. The boiler configuration incorporates two passes, a strategic choice influenced by tube and shell size considerations. The utilization of heavy oil fuel no. 6, with a higher heating value of 44000kJ/kg and a lower heating value of 41300kJ/kg, results in a fuel consumption of 140.37kg/hr. The boiler achieves an impressive heat output of 1610kW with an efficiency rating of 85.25%. The fluid flow pattern within the boiler adopts a cross-flow arrangement strategically chosen for inherent advantages. Internally, the welding of the tube sheet to the shell, secured by gaskets and welds, ensures structural integrity. The shell design adheres to European Standard code sections for pressure vessels, encompassing considerations for weight, supplementary accessories (lifting lugs, openings, ends, manhole), and detailed assembly drawings. This research represents a significant stride in optimizing fire tube boiler technology, balancing efficiency and safety considerations in the pursuit of enhanced saturated steam production.

Keywords: fire tube, saturated steam, material selection, efficiency

Procedia PDF Downloads 84
579 Assessment of Frying Material by Deep-Fat Frying Method

Authors: Brinda Sharma, Saakshi S. Sarpotdar

Abstract:

Deep-fat frying is popular standard method that has been studied basically to clarify the complicated mechanisms of fat decomposition at high temperatures and to assess their effects on human health. The aim of this paper is to point out the application of method engineering that has been recently improved our understanding of the fundamental principles and mechanisms concerned at different scales and different times throughout the process: pretreatment, frying, and cooling. It covers the several aspects of deep-fat drying. New results regarding the understanding of the frying method that are obtained as a results of major breakthroughs in on-line instrumentation (heat, steam flux, and native pressure sensors), within the methodology of microstructural and imaging analysis (NMR, MRI, SEM) and in software system tools for the simulation of coupled transfer and transport phenomena. Such advances have opened the approach for the creation of significant information of the behavior of varied materials and to the event of latest tools to manage frying operations via final product quality in real conditions. Lastly, this paper promotes an integrated approach to the frying method as well as numerous competencies like those of chemists, engineers, toxicologists, nutritionists, and materials scientists also as of the occupation and industrial sectors.

Keywords: frying, cooling, imaging analysis (NMR, MRI, SEM), deep-fat frying

Procedia PDF Downloads 430
578 Improvement in Drying Characteristics of Raisin by Carbonic Maceration– Process Optimization

Authors: Nursac Akyol, Merve S. Turan, Mustafa Ozcelik, Erdogan Kucukoner, Erkan Karacabey

Abstract:

Traditional raisin production is a long time drying process under sunlight. During this procedure, grapes are open to some environmental effects besides the adverse effects of the long drying period. Thus, there is a need to develop an alternative method being applicable instead of traditional one. To this extent, a combination of a potential pretreatment (carbonic maceration, CM) with convectional oven drying was examined. CM application was used in raisin production (grape drying) as a pretreatment process before oven drying. Pressure, temperature and time were examined as application parameters of CM. In conventional oven drying, the temperature is a process variable. The aim is to find out how CM and convectional drying processes affect the drying characteristics of grapes as well as their physical and chemical properties. For this purpose, the response surface method was used to determine both the effects of the variables and the optimum pretreatment and drying conditions. The optimum conditions of CM for raisin production were 0.3 MPa of pressure value, 4°C of application temperature and 8 hours of application time. The optimized drying temperature was 77°C. The results showed that the application of CM before the drying process improved the drying characteristics. Drying took only 389 minutes for grapes pretreated by CM under optimum conditions and 495 minutes for the control group dried only by the conventional drying process. According to these results, a decrease of 21% was achieved in the time requirement for raisin production. Also, it was observed that the samples dried under optimum conditions had similar physical properties as those the control group had. It was seen that raisin, which was dried under optimum conditions were in better condition in terms of some of the bioactive contents compared to control groups. In light of all results, it is seen that CM has an important potential in the industrial drying of grape samples. The current study was financially supported by TUBITAK, Turkey (Project no: 116R038).

Keywords: drying time, pretreatment, response surface methodlogy, total phenolic

Procedia PDF Downloads 138
577 Fuels and Platform Chemicals Production from Lignocellulosic Biomass: Current Status and Future Prospects

Authors: Chandan Kundu, Sankar Bhattacharya

Abstract:

A significant disadvantage of fossil fuel energy production is the considerable amount of carbon dioxide (CO₂) released, which is one of the contributors to climate change. Apart from environmental concerns, changing fossil fuel prices have pushed society gradually towards renewable energy sources in recent years. Biomass is a plentiful and renewable resource and a source of carbon. Recent years have seen increased research interest in generating fuels and chemicals from biomass. Unlike fossil-based resources, biomass is composed of lignocellulosic material, which does not contribute to the increase in atmospheric CO₂ over a longer term. These considerations contribute to the current move of the chemical industry from non-renewable feedstock to renewable biomass. This presentation focuses on generating bio-oil and two major platform chemicals that can potentially improve the environment. Thermochemical processes such as pyrolysis are considered viable methods for producing bio-oil and biomass-based platform chemicals. Fluidized bed reactors, on the other hand, are known to boost bio-oil yields during pyrolysis due to their superior mixing and heat transfer features, as well as their scalability. This review and the associated experimental work are focused on the thermochemical conversion of biomass to bio-oil and two high-value platform chemicals, Levoglucosenone (LGO) and 5-Chloromethyl furfural (5-CMF), in a fluidized bed reactor. These two active molecules with distinct features can potentially be useful monomers in the chemical and pharmaceutical industries since they are well adapted to the manufacture of biologically active products. This process took several meticulous steps. To begin, the biomass was delignified using a peracetic acid pretreatment to remove lignin. Because of its complicated structure, biomass must be pretreated to remove the lignin, increasing access to the carbohydrate components and converting them to platform chemicals. The biomass was then characterized by Thermogravimetric analysis, Synchrotron-based THz spectroscopy, and in-situ DRIFTS in the laboratory. Based on the results, a continuous-feeding fluidized bed reactor system was constructed to generate platform chemicals from pretreated biomass using hydrogen chloride acid-gas as a catalyst. The procedure also yields biochar, which has a number of potential applications, including soil remediation, wastewater treatment, electrode production, and energy resource utilization. Consequently, this research also includes a preliminary experimental evaluation of the biochar's prospective applications. The biochar obtained was evaluated for its CO₂ and steam reactivity. The outline of the presentation will comprise the following: Biomass pretreatment for effective delignification Mechanistic study of the thermal and thermochemical conversion of biomass Thermochemical conversion of untreated and pretreated biomass in the presence of an acid catalyst to produce LGO and CMF A thermo-catalytic process for the production of LGO and 5-CMF in a continuously-fed fluidized bed reactor and efficient separation of chemicals Use of biochar generated from the platform chemicals production through gasification

Keywords: biomass, pretreatment, pyrolysis, levoglucosenone

Procedia PDF Downloads 141
576 Effect of Pretreatment on Quality Parameters of Natural Convection Mixed-Mode Solar Dried Potato

Authors: Kshanaprava Dhalsamant, Punyadarshini P. Tripathy, Shanker L. Shrivastava

Abstract:

With present high global population, the need for rising food usage by minimizing food wastage and investment is highly necessary to achieve food security. The purpose of this study is to enlighten the effect of pre-drying treatment on rehydration, color, texture, nanohardness, microstructure and surface morphology of solar dried potato samples dried in the mixed-mode solar dryer. Locally bought potatoes were cleaned and cut into cylindrical pieces and pretreated with sodium metabisulfite (0.5%) for 10 min before placing them in natural convection solar dryer designed and developed in Indian Institute of Technology Kharagpur, India. Advanced quality characteristics were studied using Atomic Force Microscope (AFM), Scanning Electron Microscopy (SEM) and nanoindentation method, along with color, texture and water activity. The rehydration indices of solar dried potatoes were significantly biased by pretreatment followed by rehydration temperature. A lower redness index (a*) with a higher value of yellowness index (b*), chroma (C*) and hue angle (h*) were obtained for pretreated samples. Also, the average nanohardness (H) of untreated samples exhibited substantial lower value (18.46%) compared to pretreated samples. Additionally, a creep displacement of 43.27 nm during 20 s dwell time under constant load of 200

Keywords: pretreatment, nanohardness, microstructure, surface morphology

Procedia PDF Downloads 170
575 Stationary Methanol Steam Reforming to Hydrogen Fuel for Fuel-Cell Filling Stations

Authors: Athanasios A. Tountas, Geoffrey A. Ozin, Mohini M. Sain

Abstract:

Renewable hydrogen (H₂) carriers such as methanol (MeOH), dimethyl ether (DME), oxymethylene dimethyl ethers (OMEs), and conceivably ammonia (NH₃) can be reformed back into H₂ and are fundamental chemical conversions for the long-term viability of the H₂ economy due to their higher densities and ease of transportability compared to H₂. MeOH is an especially important carrier as it is a simple C1 chemical that can be produced from green solar-PV-generated H₂ and direct-air-captured CO₂ with a current commercially practical solar-to-fuel efficiency of 10% from renewable solar energy. MeOH steam reforming (MSR) in stationary systems next to H₂ fuel-cell filling stations can eliminate the need for onboard mobile reformers, and the former systems can be more robust in terms of attaining strict H₂ product specifications, and MeOH is a safe, lossless, and compact medium for long-term H₂ storage. Both thermal- and photo-catalysts are viable options for achieving the stable, long-term performance of stationary MSR systems.

Keywords: fuel-cell vehicle filling stations, methanol steam reforming, hydrogen transport and storage, stationary reformer, liquid hydrogen carriers

Procedia PDF Downloads 102