Search results for: stability
3286 Fatty Acid Structure and Composition Effects of Biodiesel on Its Oxidative Stability
Authors: Gelu Varghese, Khizer Saeed
Abstract:
Biodiesel is as a mixture of mono-alkyl esters of long chain fatty acids derived from vegetable oils or animal fats. Recent studies in the literature suggest that end property of biodiesel such as its oxidative stability (OS) is highly influenced by the structure and composition of its alkyl esters than by environmental conditions. The structure and composition of these long chain fatty acid components have been also associated with trends in Cetane number, heat of combustion, cold flow properties viscosity, and lubricity. In the present work, detailed investigation has been carried out to decouple and correlate the fatty acid structure indices of biodiesel such as degree of unsaturation, chain length, double bond orientation, and composition with its oxidative stability. Measurements were taken using the EN14214 established Rancimat oxidative stability test method (EN141120). Firstly, effects of the degree of unsaturation, chain length and bond orientation were tested for the pure fatty acids to establish their oxidative stability. Results for pure Fatty acid show that Saturated FAs are more stable than unsaturated ones to oxidation; superior oxidative stability can be achieved by blending biodiesel fuels with relatively high in saturated fatty acid contents. A lower oxidative stability is noticed when a greater quantity of double bonds is present in the methyl ester. A strong inverse relationship with the number of double bonds and the Rancimat IP values can be identified. Trans isomer Methyl elaidate shows superior stability to oxidation than its cis isomer methyl oleate (7.2 vs. 2.3). Secondly, the effects of the variation in the composition of the biodiesel were investigated and established. Finally, biodiesels with varying structure and composition were investigated and correlated.Keywords: biodiesel, fame, oxidative stability, fatty acid structure, acid composition
Procedia PDF Downloads 2863285 Two Strain Dengue Dynamics Incorporating Temporary Cross Immunity with ADE Effect
Authors: Sunita Gakkhar, Arti Mishra
Abstract:
In this paper, a nonlinear host vector model has been proposed and analyzed for the two strain dengue dynamics incorporating ADE effect. The model considers that the asymptomatic infected people are more responsible for secondary infection than that of symptomatic ones and differentiates between them. The existence conditions are obtained for various equilibrium points. Basic reproduction number has been computed and analyzed to explore the effect of secondary infection enhancement parameter on dengue infection. Stability analyses of various equilibrium states have been performed. Numerical simulation has been done for the stability of endemic state.Keywords: dengue, ade, stability, threshold, asymptomatic, infection
Procedia PDF Downloads 4303284 Research of Seepage Field and Slope Stability Considering Heterogeneous Characteristics of Waste Piles: A Less Costly Way to Reduce High Leachate Levels and Avoid Accidents
Authors: Serges Mendomo Meye, Li Guowei, Shen Zhenzhong, Gan Lei, Xu Liqun
Abstract:
Due to the characteristics of high-heap and large-volume, the complex layers of waste and the high-water level of leachate, environmental pollution, and slope instability are easily produced. It is therefore of great significance to research the heterogeneous seepage field and stability of landfills. This paper focuses on the heterogeneous characteristics of the landfill piles and analyzes the seepage field and slope stability of the landfill using statistical and numerical analysis methods. The calculated results are compared with the field measurement and literature research data to verify the reliability of the model, which may provide the basis for the design, safe, and eco-friendly operation of the landfill. The main innovations are as follows: (1) The saturated-unsaturated seepage equation of heterogeneous soil is derived theoretically. The heterogeneous landfill is regarded as composed of infinite layers of homogeneous waste, and a method for establishing the heterogeneous seepage model is proposed. Then the formation law of the stagnant water level of heterogeneous landfills is studied. It is found that the maximum stagnant water level of landfills is higher when considering the heterogeneous seepage characteristics, which harms the stability of landfills. (2) Considering the heterogeneity weight and strength characteristics of waste, a method of establishing a heterogeneous stability model is proposed, and it is extended to the three-dimensional stability study. It is found that the distribution of heterogeneous characteristics has a great influence on the stability of landfill slope. During the operation and management of the landfill, the reservoir bank should also be considered while considering the capacity of the landfill.Keywords: heterogeneous characteristics, leachate levels, saturated-unsaturated seepage, seepage field, slope stability
Procedia PDF Downloads 2523283 Enhanced Dimensional Stability of Rigid PVC Foams Using Glass Fibers
Authors: Nidal H. Abu-Zahra, Murtatha M. Jamel, Parisa Khoshnoud, Subhashini Gunashekar
Abstract:
Two types of glass fibers having different lengths (1/16" and 1/32") were added into rigid PVC foams to enhance the dimensional stability of extruded rigid Polyvinyl Chloride (PVC) foam at different concentrations (0-20 phr) using a single screw profile extruder. PVC foam-glass fiber composites (PVC-GF) were characterized for their dimensional stability, structural, thermal, and mechanical properties. Experimental results show that the dimensional stability, heat resistance, and storage modulus were enhanced without compromising the tensile and flexural strengths of the composites. Overall, foam composites which were prepared with longer glass fibers exhibit better mechanical and thermal properties than those prepared with shorter glass fibers due to higher interlocking between the fibers and the foam cells, which result in better load distribution in the matrix.Keywords: polyvinyl chloride, PVC foam, PVC composites, polymer composites, glass fiber composites, reinforced polymers
Procedia PDF Downloads 3963282 Folding Pathway and Thermodynamic Stability of Monomeric GroEL
Authors: Sarita Puri, Tapan K. Chaudhuri
Abstract:
Chaperonin GroEL is a tetradecameric Escherichia coli protein having identical subunits of 57 kDa. The elucidation of thermodynamic parameters related to stability for the native GroEL is not feasible as it undergoes irreversible unfolding because of its large size (800kDa) and multimeric nature. Nevertheless, it is important to determine the thermodynamic stability parameters for the highly stable GroEL protein as it helps in folding and holding of many substrate proteins during many cellular stresses. Properly folded monomers work as building-block for the formation of native tetradecameric GroEL. Spontaneous refolding behavior of monomeric GroEL makes it suitable for protein-denaturant interactions and thermodynamic stability based studies. The urea mediated unfolding is a three state process which means there is the formation of one intermediate state along with native and unfolded states. The heat mediated denaturation is a two-state process. The unfolding process is reversible as observed by the spontaneous refolding of denatured protein in both urea and head mediated refolding processes. Analysis of folding/unfolding data provides a measure of various thermodynamic stability parameters for the monomeric GroEL. The proposed mechanism of unfolding of monomeric GroEL is a three state process which involves formation of one stable intermediate having folded apical domain and unfolded equatorial, intermediate domains. Research in progress is to demonstrate the importance of specific residues in stability and oligomerization of GroEL protein. Several mutant versions of GroEL are under investigation to resolve the above mentioned issue.Keywords: equilibrium unfolding, monomeric GroEl, spontaneous refolding, thermodynamic stability
Procedia PDF Downloads 2823281 Enhancing the Stability of Vietnamese Power System - from Theory to Practical
Authors: Edwin Lerch, Dirk Audring, Cuong Nguyen Mau, Duc Ninh Nguyen, The Cuong Nguyen, The Van Nguyen
Abstract:
The National Load Dispatch Centre of Electricity Vietnam (EVNNLDC) and Siemens PTI investigated the stability of the electrical 500/220 kV transportation system of Vietnam. The general scope of the investigations is improving the stability of the Vietnam power system and giving the EVNNLDC staff the capability to decide how to deal with expected stability challenges in the future, which are related to the very fast growth of the system. Rapid system growth leads to a very high demand of power transmission from North to South. This was investigated by stability studies of interconnected power system with neighboring countries. These investigations are performed in close cooperation and coordination with the EVNNLDC project team. This important project includes data collection, measurement, model validation and investigation of relevant stability phenomena as well as training of the EVNNLDC staff. Generally, the power system of Vietnam has good voltage and dynamic stability. The main problems are related to the longitudinal system with more power generation in the North and Center, especially hydro power, and load centers in the South of Vietnam. Faults on the power transmission system from North to South risks the stability of the entire system due to a high power transfer from North to South and high loading of the 500 kV backbone. An additional problem is the weak connection to Cambodia power system which leads to interarea oscillations mode. Therefore, strengthening the power transfer capability by new 500kV lines or HVDC connection and balancing the power generation across the country will solve many challenges. Other countermeasures, such as wide area load shedding, PSS tuning and correct SVC placement will improve and stabilize the power system as well. Primary frequency reserve should be increased.Keywords: dynamic power transmission system studies, blackout prevention, power system interconnection, stability
Procedia PDF Downloads 3623280 The Evaluation of the Safety Coefficient of Soil Slope Stability by Group Pile
Authors: Seyed Abolhassan Naeini, Hamed Yekehdehghan
Abstract:
One of the factors that affect the constructions adjacent to a slope is stability. There are various methods for the stability of the slopes, one of which is the use of concrete group piles. This study, using FLAC3D software, has tried to investigate the changes in safety coefficient because of the use of concrete group piles. In this research, furthermore, the optimal position of the piles has been investigated and the results show that the group pile does not affect the toe of the slope. In addition, the effect of the piles' burial depth on the slope has been studied. Results show that by increasing the piles burial depth on a slope, the level of stability and as a result the safety coefficient increases. In the investigation of reducing the distance between the piles and increasing the depth of underground water, it was observed that the obtained safety coefficient increased. Finally, the effect of the resistance of the lower stabilizing layer of the slope on stabilization was investigated by the pile group. The results showed that due to the behavior of the pile as a deep foundation, the stronger the soil layers are in the stable part of a stronger slope (in terms of resistance parameters), the more influential the piles are in enhancing the coefficient of safety.Keywords: safety coefficient, group pile, slope, stability, FLAC3D software
Procedia PDF Downloads 943279 The Use of Nuclear Generation to Provide Power System Stability
Authors: Heather Wyman-Pain, Yuankai Bian, Furong Li
Abstract:
The decreasing use of fossil fuel power stations has a negative effect on the stability of the electricity systems in many countries. Nuclear power stations have traditionally provided minimal ancillary services to support the system but this must change in the future as they replace fossil fuel generators. This paper explains the development of the four most popular reactor types still in regular operation across the world which have formed the basis for most reactor development since their commercialisation in the 1950s. The use of nuclear power in four countries with varying levels of capacity provided by nuclear generators is investigated, using the primary frequency response provided by generators as a measure for the electricity networks stability, to assess the need for nuclear generators to provide additional support as their share of the generation capacity increases.Keywords: frequency control, nuclear power generation, power system stability, system inertia
Procedia PDF Downloads 4383278 50/50 Oil-Water Ratio Invert Emulsion Drilling Mud Using Vegetable Oil as Continuous Phase
Authors: P. C. Ihenacho, M. Burby, G. G. Nasr, G. C. Enyi
Abstract:
Formulation of a low oil-water ratio drilling mud with vegetable oil continuous phase without adversely affecting the mud rheology and stability has been a major challenge. A low oil-water ratio is beneficial in producing low fluid loss which is essential for wellbore stability. This study examined the possibility of 50/50 oil-water ratio invert emulsion drilling mud using a vegetable oil continuous phase. Jatropha oil was used as continuous phase. 12 ml of egg yolk which was separated from the albumen was added as the primary emulsifier additive. The rheological, stability and filtration properties were examined. The plastic viscosity and yield point were found to be 36cp and 17 Ib/100 ft2 respectively. The electrical stability at 48.9ºC was 353v and the 30 minutes fluid loss was 6ml. The results compared favourably with a similar formulation using 70/30 oil - water ratio giving plastic viscosity of 31cp, yield point of 17 Ib/100 ft2, electrical stability value of 480v and 12ml for the 30 minutes fluid loss. This study indicates that with a good mud composition using guided empiricism, 50/50 oil-water ratio invert emulsion drilling mud is feasible with a vegetable oil continuous phase. The choice of egg yolk as emulsifier additive is for compatibility with the vegetable oil and environmental concern. The high water content with no fluid loss additive will also minimise the cost of mud formulation.Keywords: environmental compatibility, low cost of mud formulation, low fluid loss, wellbore stability
Procedia PDF Downloads 3903277 Study of Gait Stability Evaluation Technique Based on Linear Inverted Pendulum Model
Authors: Kang Sungjae
Abstract:
This research proposes a gait stability evaluation technique based on the linear inverted pendulum model and moving support foot Zero Moment Point. With this, an improvement towards the gait analysis of the orthosis walk is validated. The application of Lagrangian mechanics approximation to the solutions of the dynamics equations for the linear inverted pendulum does not only simplify the solution, but it provides a smooth Zero Moment Point for the double feet support phase. The Zero Moment Point gait analysis techniques mentioned above validates reference trajectories for the center of mass of the gait orthosis, the timing of the steps and landing position references for the swing feet. The stability evaluation technique are tested with a 6 DOF powered gait orthosis. The results obtained are promising for implementations.Keywords: locomotion, center of mass, gait stability, linear inverted pendulum model
Procedia PDF Downloads 5173276 Addition of Phosphates on Stability of Sterilized Goat Milk in Different Seasons
Authors: Mei-Jen Lin, Yuan-Yuan Yu
Abstract:
Low heat stability of goat milk limited the application of ultra-high temperature (UHT) sterilization on producing sterilized goat milk in order to keep excess goat milk in summer for producing goat dairy products in winter in Taiwan. Therefore, this study aimed to add stabilizers in goat milk to increase the heat stability for producing UHT sterilized goat milk preserved for making goat dairy products in winter. The amounts of 0.05-0.11% blend of sodium phosphates (Na) and blend of sodium/potassium phosphates (Sp) were added in raw goat milk at different seasons a night before autoclaved sterilization at 135°C 4 sec. The coagulation, ion calcium concentration and ethanol stability of sterilized goat milk were analyzed. Results showed that there were seasonal differences on choosing the optimal stabilizers and the addition levels. Addition of 0.05% and 0.22% of both Na and Sp salts in Spring goat milk, 0.10-0.11% of both Na and Sp salts in Summer goat milk, and 0.05%Na Sp group in Autumn goat milk were coagulated after autoclaved, respectively. There was no coagulation found with the addition of 0.08-0.09% both Na and Sp salts in goat milk; furthermore, the ionic calcium concentration were lower than 2.00 mM and ethanol stability higher than 70% in both 0.08-0.09% Na and Sp salts added goat milk. Therefore, the optimal addition level of blend of sodium phosphates and blend of sodium/potassium phosphates were 0.08-0.09% for producing sterilized goat milk at different seasons in Taiwan.Keywords: coagulation, goat milk, phosphates, stability
Procedia PDF Downloads 3723275 Nonlinear Control of Mobile Inverted Pendulum: Theory and Experiment
Authors: V. Sankaranarayanan, V. Amrita Sundari, Sunit P. Gopal
Abstract:
This paper presents the design and implementation of a nonlinear controller for the point to point control of a mobile inverted pendulum (MIP). The controller is designed based on the kinematic model of the MIP to stabilize all the four coordinates. The stability of the closed-loop system is proved using Lyapunov stability theory. The proposed controller is validated through numerical simulations and also implemented in a laboratory prototype. The results are presented to evaluate the performance of the proposed closed loop system.Keywords: mobile inverted pendulum, switched control, nonlinear systems, lyapunov stability
Procedia PDF Downloads 3283274 First-Principles Calculations and Thermo-Calc Study of the Elastic and Thermodynamic Properties of Ti-Nb-ZR-Ta Alloy for Biomedical Applications
Authors: M. Madigoe, R. Modiba
Abstract:
High alloyed beta (β) phase-stabilized titanium alloys are known to have a low elastic modulus comparable to that of the human bone (≈30 GPa). The β phase in titanium alloys exhibits an elastic Young’s modulus of about 60-80 GPa, which is nearly half that of α-phase (100-120 GPa). In this work, a theoretical investigation of structural stability and thermodynamic stability, as well as the elastic properties of a quaternary Ti-Nb-Ta-Zr alloy, will be presented with an attempt to lower Young’s modulus. The structural stability and elastic properties of the alloy were evaluated using the first-principles approach within the density functional theory (DFT) framework implemented in the CASTEP code. The elastic properties include bulk modulus B, elastic Young’s modulus E, shear modulus cʹ and Poisson’s ratio v. Thermodynamic stability, as well as the fraction of β phase in the alloy, was evaluated using the Thermo-Calc software package. Thermodynamic properties such as Gibbs free energy (Δ?⁰?) and enthalpy of formation will be presented in addition to phase proportion diagrams. The stoichiometric compositions of the alloy is Ti-Nbx-Ta5-Zr5 (x = 5, 10, 20, 30, 40 at.%). An optimum alloy composition must satisfy the Born stability criteria and also possess low elastic Young’s modulus. In addition, the alloy must be thermodynamically stable, i.e., Δ?⁰? < 0.Keywords: elastic modulus, phase proportion diagram, thermo-calc, titanium alloys
Procedia PDF Downloads 1863273 Quality of the Ruin Probabilities Approximation Using the Regenerative Processes Approach regarding to Large Claims
Authors: Safia Hocine, Djamil Aïssani
Abstract:
Risk models, recently studied in the literature, are becoming increasingly complex. It is rare to find explicit analytical relations to calculate the ruin probability. Indeed, the stability issue occurs naturally in ruin theory, when parameters in risk cannot be estimated than with uncertainty. However, in most cases, there are no explicit formulas for the ruin probability. Hence, the interest to obtain explicit stability bounds for these probabilities in different risk models. In this paper, we interest to the stability bounds of the univariate classical risk model established using the regenerative processes approach. By adopting an algorithmic approach, we implement this approximation and determine numerically the bounds of ruin probability in the case of large claims (heavy-tailed distribution).Keywords: heavy-tailed distribution, large claims, regenerative process, risk model, ruin probability, stability
Procedia PDF Downloads 3643272 Theoretical, Numerical and Experimental Assessment of Elastomeric Bearing Stability
Authors: Manuel A. Guzman, Davide Forcellini, Ricardo Moreno, Diego H. Giraldo
Abstract:
Elastomeric bearings (EB) are used in many applications, such as base isolation of bridges, seismic protection and vibration control of other structures and machinery. Their versatility is due to their particular behavior since they have different stiffness in the vertical and horizontal directions, allowing to sustain vertical loads and at the same time horizontal displacements. Therefore, vertical, horizontal and bending stiffnesses are important parameters to take into account in the design of EB. In order to acquire a proper design methodology of EB all three, theoretical, finite element analysis and experimental, approaches should be taken into account to assess stability due to different loading states, predict their behavior and consequently their effects on the dynamic response of structures, and understand complex behavior and properties of rubber-like materials respectively. In particular, the recent large-displacement theory on the stability of EB formulated by Forcellini and Kelly is validated with both numerical simulations using the finite element method, and experimental results set at the University of Antioquia in Medellin, Colombia. In this regard, this study reproduces the behavior of EB under compression loads and investigates the stability behavior with the three mentioned points of view.Keywords: elastomeric bearings, experimental tests, numerical simulations, stability, large-displacement theory
Procedia PDF Downloads 4593271 Effect of Core Stability Exercises on Trunk Proprioception in Healthy Adult Individuals
Authors: Omaima E. S. Mohammed, Amira A. A. Abdallah, Amal A. M. El Borady
Abstract:
Background: Core stability training has recently attracted attention for improving muscle performance. Purpose: This study investigated the effect of beginners' core stability exercises on trunk active repositioning error at 30° and 60° trunk flexion. Methods: Forty healthy males participated in the study. They were divided into two equal groups; experimental “group I” and control “group II”. Their mean age, weight and height were 19.35±1.11 vs 20.45±1.64 years, 70.15±6.44 vs 72.45±6.91 kg and 174.7±7.02 vs 176.3±7.24 cm for group I vs group II. Data were collected using the Biodex Isokinetic system at an angular velocity of 60º/s. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The Mixed 3-way ANOVA revealed significant increases (p<0.05) in the absolute error (AE) at 30˚ compared with 60˚ flexion in the pre-test condition of group I and II and the post-test condition of group II. Moreover, there were significant decreases (p<0.05) in the AE in the post-test condition compared with the pre-test in group I at both 30˚ and 60˚ flexion with no significant differences for group II. Finally, there were significant decreases (p<0.05) in the AE in group I compared with group II in the post-test condition at 30˚ and 60˚ flexion with no significant differences for the pre-test condition Interpretation/Conclusion: The improvement in trunk proprioception indicated by the decrease in the active repositioning error in the experimental group recommends including core stability training in the exercise programs that aim to improve trunk proprioception.Keywords: core stability, isokinetic, trunk proprioception, biomechanics
Procedia PDF Downloads 4753270 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot
Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi
Abstract:
To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients
Procedia PDF Downloads 923269 Empirical Study of Correlation between the Cost Performance Index Stability and the Project Cost Forecast Accuracy in Construction Projects
Authors: Amin AminiKhafri, James M. Dawson-Edwards, Ryan M. Simpson, Simaan M. AbouRizk
Abstract:
Earned value management (EVM) has been introduced as an integrated method to combine schedule, budget, and work breakdown structure (WBS). EVM provides various indices to demonstrate project performance including the cost performance index (CPI). CPI is also used to forecast final project cost at completion based on the cost performance during the project execution. Knowing the final project cost during execution can initiate corrective actions, which can enhance project outputs. CPI, however, is not constant during the project, and calculating the final project cost using a variable index is an inaccurate and challenging task for practitioners. Since CPI is based on the cumulative progress values and because of the learning curve effect, CPI variation dampens and stabilizes as project progress. Although various definitions for the CPI stability have been proposed in literature, many scholars have agreed upon the definition that considers a project as stable if the CPI at 20% completion varies less than 0.1 from the final CPI. While 20% completion point is recognized as the stability point for military development projects, construction projects stability have not been studied. In the current study, an empirical study was first conducted using construction project data to determine the stability point for construction projects. Early findings have demonstrated that a majority of construction projects stabilize towards completion (i.e., after 70% completion point). To investigate the effect of CPI stability on cost forecast accuracy, the correlation between CPI stability and project cost at completion forecast accuracy was also investigated. It was determined that as projects progress closer towards completion, variation of the CPI decreases and final project cost forecast accuracy increases. Most projects were found to have 90% accuracy in the final cost forecast at 70% completion point, which is inlined with findings from the CPI stability findings. It can be concluded that early stabilization of the project CPI results in more accurate cost at completion forecasts.Keywords: cost performance index, earned value management, empirical study, final project cost
Procedia PDF Downloads 1563268 Formal Asymptotic Stability Guarantees, Analysis, and Evaluation of Nonlinear Controlled Unmanned Aerial Vehicle for Trajectory Tracking
Authors: Soheib Fergani
Abstract:
This paper concerns with the formal asymptotic stability guarantees, analysis and evaluation of a nonlinear controlled unmanned aerial vehicles (uav) for trajectory tracking purpose. As the system has been recognised as an under-actuated non linear system, the control strategy has been oriented towards a hierarchical control. The dynamics of the system and the mission purpose make it mandatory to provide an absolute proof of the vehicle stability during the maneuvers. For this sake, this work establishes the complete theoretical proof for an implementable control oriented strategy that asymptotically stabilizes (GAS and LISS) the system and has never been provided in previous works. The considered model is reorganized into two partly decoupled sub-systems. The concidered control strategy is presented into two stages: the first sub-system is controlled by a nonlinear backstepping controller that generates the desired control inputs to stabilize the second sub-system. This methodology is then applied to a harware in the loop uav simulator (SiMoDrones) that reproduces the realistic behaviour of the uav in an indoor environment has been performed to show the efficiency of the proposed strategy.Keywords: UAV application, trajectory tracking, backstepping, sliding mode control, input to state stability, stability evaluation
Procedia PDF Downloads 653267 Exploring Probabilistic Models for Transient Stability Analysis of Renewable-Dominant Power Grid
Authors: Phuong Nguyen
Abstract:
Along with the ongoing energy transition, the electrical power system is getting more vulnerable with the increasing penetration of renewable energy sources (RES). By replacing a large amount of fossil fuel-based power plants with RES, the rotating mass of the power grid is decreasing drastically, which has been reported by a number of system operators. This leads to a huge challenge for operators to secure the operation of their grids in all-time horizon ranges, from sub-seconds to minutes and even hours. There is a need to revise the grid capabilities in dealing with transient (angle) stability and voltage dynamics. While the traditional approaches relied on deterministic scenarios (worst-case scenarios), there is also a need to cover a whole range of probabilities regarding a wide range of uncertainties coming from massive RES units. To contribute to handle these issues, this paper aims to focus on developing a new analytical approach for transient stability.Keywords: transient stability, uncertainties, renewable energy sources, analytical approach
Procedia PDF Downloads 743266 H∞ Sampled-Data Control for Linear Systems Time-Varying Delays: Application to Power System
Authors: Chang-Ho Lee, Seung-Hoon Lee, Myeong-Jin Park, Oh-Min Kwon
Abstract:
This paper investigates improved stability criteria for sampled-data control of linear systems with disturbances and time-varying delays. Based on Lyapunov-Krasovskii stability theory, delay-dependent conditions sufficient to ensure H∞ stability for the system are derived in the form of linear matrix inequalities(LMI). The effectiveness of the proposed method will be shown in numerical examples.Keywords: sampled-data control system, Lyapunov-Krasovskii functional, time delay-dependent, LMI, H∞ control
Procedia PDF Downloads 3203265 Effect of Rice Husk Ash on Properties of Cold Bituminous Emulsion Mix
Authors: Sampada Katekar, Namdeo Hedaoo
Abstract:
Cold Bituminous Emulsion Mixtures (CBEMs) are generally produced by mixing unheated aggregate, binder and filler at ambient temperature. Cold bituminous emulsion mixtures have several environmental and cost-effective benefits. But CBEMs offer poor early life properties too and they require long curing time to achieve maximum strength. The main focus of this study is to overcome inferiority of CBEMs by incorporating Rice Husk Ash (RHA) and Ordinary Portland Cement (OPC). In this study, RHA and OPC are substituted for conventional mineral filler in an increased percentage from 0 to 3% with an increment of 1%. Marshall stability, retained stability and tensile strength tests were conducted to evaluate the enhancement in performance of CBEMs. The experimental results have shown that Marshall stability and tensile strength of CBEMs increased significantly by replacing the conventional mineral filler with RHA and OPC. The addition of RHA and OPC in CBEMs result in a reduction in moisture induced damages. However, stability and tensile strength values of RHA modified CBEMs are higher than that of OPC modified CBEMs.Keywords: cold bituminous emulsion mixtures, Marshall stability test, ordinary Portland cement, rice husk ash
Procedia PDF Downloads 1683264 Improving the Foult Ride through Capability and Stability of Wind Farms with DFIG Wind Turbine by Using Statcom
Authors: Abdulfetah Shobole, Arif Karakas, Ugur Savas Selamogullari, Mustafa Baysal
Abstract:
The concern of reducing emissions of Co2 from the fossil fuel generating units and using renewable energy sources increased in our world. Due this fact the integration ratio of wind farms to grid reached 20-30% in some part of our world. With increased integration of large MW scaled wind farms to the electric grid, the stability of the electrical system is a great concern. Thus, operators of power systems usually deman the wind turbine generators to obey the same rules as other traditional kinds of generation, such as thermal and hydro, i.e. not affect the grid stability. FACTS devices such as SVC or STATCOM are mostly installed close to the connection point of the wind farm to the grid in order to increase the stability especially during faulty conditions. In this paper wind farm with DFIG turbine type and STATCOM are dynamically modeled and simulated under three phase short circuit fault condition. The dynamic modeling is done by DigSILENT PowerFactory for the wind farm, STATCOM and the network. The simulation results show improvement of system stability near to the connection point of the STATCOM.Keywords: DFIG wind turbine, statcom, dynamic modeling, digsilent
Procedia PDF Downloads 7133263 Stability of Solutions of Semidiscrete Stochastic Systems
Authors: Ramazan Kadiev, Arkadi Ponossov
Abstract:
Semidiscrete systems contain both continuous and discrete components. This means that the dynamics is mostly continuous, but at certain instants, it is exposed to abrupt influences. Such systems naturally appear in applications, for example, in biological and ecological models as well as in the control theory. Therefore, the study of semidiscrete systems has recently attracted the attention of many specialists. Stochastic effects are an important part of any realistic approach to modeling. For example, stochasticity arises in the population dynamics, demographic and ecological due to a change in time of factors external to the system affecting the survival of the population. In control theory, random coefficients can simulate inaccuracies in measurements. It will be shown in the presentation how to incorporate such effects into semidiscrete systems. Stability analysis is an essential part of modeling real-world problems. In the presentation, it will be explained how sufficient conditions for the moment stability of solutions in terms of the coefficients for linear semidiscrete stochastic equations can be derived using non-Lyapunov technique.Keywords: abrupt changes, exponential stability, regularization, stochastic noises
Procedia PDF Downloads 1883262 Investigation of Slope Stability in Gravel Soils in Unsaturated State
Authors: Seyyed Abolhasan Naeini, Ehsan Azini
Abstract:
In this paper, we consider the stability of a slope of 10 meters in silty gravel soils with modeling in the Geostudio Software. we intend to use the parameters of the volumetric water content and suction dependent permeability and provides relationships and graphs using the parameters obtained from gradation tests and Atterberg’s limits. Also, different conditions of the soil will be investigated, including: checking the factor of safety and deformation rates and pore water pressure in drained, non-drained and unsaturated conditions, as well as the effect of reducing the water level on other parameters. For this purpose, it is assumed that the groundwater level is at a depth of 2 meters from the ground. Then, with decreasing water level, the safety factor of slope stability was investigated and it was observed that with decreasing water level, the safety factor increased.Keywords: slope stability analysis, factor of safety, matric suction, unsaturated silty gravel soil
Procedia PDF Downloads 1763261 Study on the Stability of Large Space Expandable Parabolic Cylindrical Antenna
Authors: Chuanzhi Chen, Wenjing Yu
Abstract:
Parabolic cylindrical deployable antenna has the characteristics of wide cutting width, strong directivity, high gain, and easy automatic beam scanning. While, due to its large size, high flexibility, and strong coupling, the deployment process of parabolic cylindrical deployable antenna presents such problems as unsynchronized deployment speed, large local deformation and discontinuous switching of deployment state. A large deployable parabolic cylindrical antenna is taken as the research object, and the problem of unfolding process instability of cylindrical antenna is studied in the paper, which is caused by multiple factors such as multiple closed loops, elastic deformation, motion friction, and gap collision. Firstly, the multi-flexible system dynamics model of large-scale parabolic cylindrical antenna is established to study the influence of friction and elastic deformation on the stability of large multi-closed loop antenna. Secondly, the evaluation method of antenna expansion stability is studied, and the quantitative index of antenna configuration design is proposed to provide a theoretical basis for improving the overall performance of the antenna. Finally, through simulation analysis and experiment, the development dynamics and stability of large-scale parabolic cylindrical antennas are verified by in-depth analysis, and the principles for improving the stability of antenna deployment are summarized.Keywords: multibody dynamics, expandable parabolic cylindrical antenna, stability, flexible deformation
Procedia PDF Downloads 1463260 Study and Analysis of a Susceptible Infective Susceptible Mathematical Model with Density Dependent Migration
Authors: Jitendra Singh, Vivek Kumar
Abstract:
In this paper, a susceptible infective susceptible mathematical model is proposed and analyzed where the migration of human population is given by migration function. It is assumed that the disease is transmitted by direct contact of susceptible and infective populations with constant contact rate. The equilibria and their stability are studied by using the stability theory of ordinary differential equations and computer simulation. The model analysis shows that the spread of infectious disease increases when human population immigration increases in the habitat but it decreases if emigration increases.Keywords: SIS (Susceptible Infective Susceptible) model, migration function, susceptible, stability
Procedia PDF Downloads 2623259 Well Stability Analysis Based on Geomechanical Properties of Formations in One of the Wells of Haftgol Oil Field, Iran
Authors: Naser Ebadati
Abstract:
introductory statement: Drilling operations in oil wells often involve significant risks due to varying azimuths, slopes, and the passage through layers with different lithological properties. As a result, maintaining well stability is crucial. Instability in wells can lead to costly well losses, interrupted drilling operations, and halted production from reservoirs. Objective: One of the key challenges in drilling operations is ensuring the stability of the wellbore, particularly in loose and low-resistance formations. These factors make the analysis and evaluation of well stability essential. Therefore, building a geo mechanical model for a hydrocarbon field or reservoir requires both a stress field model and a mechanical properties model of the geological formations. Numerous studies have focused on analyzing the stability of well walls, an issue known as well instability. This study aims to analyze the stability and the safe mud weight window for drilling in one of the oil fields in southern Iran. Methodology: In wellbore stability analysis, it is essential to consider the stress field model, which includes values and directions of the three principal stresses, and the mechanical properties model, which covers elastic properties and rock fracture characteristics. Wellbore instability arises from mechanical failure of the rock. Well stability can be maintained by adjusting the drilling mud weight. This study investigates wellbore stability using field data. The lithological characteristics of the well mainly consist of limestone, dolomite, and shale, as determined from log data. Wellbore logging was conducted throughout the well to calculate the required drilling mud pressure using the Mohr-Coulomb criterion. Findings: The results indicate that the safe and stable drilling mud window ranges between 17.13 MPa and 27.80 MPa. By comparing and calculating induced stresses, it was determined that the wellbore wall primarily exhibits shear fractures in the form of wide shear fractures and tensile fractures in the form of radial tensile fractures.Keywords: drilling mud weight, formation evaluation, sheer strees, safe window
Procedia PDF Downloads 53258 Delay-Independent Closed-Loop Stabilization of Neutral System with Infinite Delays
Authors: Iyai Davies, Olivier L. C. Haas
Abstract:
In this paper, the problem of stability and stabilization for neutral delay-differential systems with infinite delay is investigated. Using Lyapunov method, new delay-independent sufficient condition for the stability of neutral systems with infinite delay is obtained in terms of linear matrix inequality (LMI). Memory-less state feedback controllers are then designed for the stabilization of the system using the feasible solution of the resulting LMI, which are easily solved using any optimization algorithms. Numerical examples are given to illustrate the results of the proposed methods.Keywords: infinite delays, Lyapunov method, linear matrix inequality, neutral systems, stability
Procedia PDF Downloads 4323257 Application of Artificial Neural Network in Assessing Fill Slope Stability
Authors: An-Jui. Li, Kelvin Lim, Chien-Kuo Chiu, Benson Hsiung
Abstract:
This paper details the utilization of artificial intelligence (AI) in the field of slope stability whereby quick and convenient solutions can be obtained using the developed tool. The AI tool used in this study is the artificial neural network (ANN), while the slope stability analysis methods are the finite element limit analysis methods. The developed tool allows for the prompt prediction of the safety factors of fill slopes and their corresponding probability of failure (depending on the degree of variation of the soil parameters), which can give the practicing engineer a reasonable basis in their decision making. In fact, the successful use of the Extreme Learning Machine (ELM) algorithm shows that slope stability analysis is no longer confined to the conventional methods of modeling, which at times may be tedious and repetitive during the preliminary design stage where the focus is more on cost saving options rather than detailed design. Therefore, similar ANN-based tools can be further developed to assist engineers in this aspect.Keywords: landslide, limit analysis, artificial neural network, soil properties
Procedia PDF Downloads 207