Search results for: single ended primary inductance converter
9365 Analysis of an High Voltage Direct Current (HVDC) Connection Using a Real-Time Simulator Under Various Disturbances
Authors: Mankour Mohamed, Miloudi Mohamed
Abstract:
A thorough and accurate simulation is necessary for the study of a High Voltage Direct Current (HVDC) link system during various types of disturbances, including internal faults on both converters, either on the rectifier or on the inverter, as well as external faults, such as AC or DC faults on both converter sides inside the DC link party. In this study, we examine how an HVDC inverter responds to three different types of failures, including faults at the inverter valve, system control faults, and single-phase-to-ground AC faults at the sending end of the inverter side. As this phenomenon represents the most frequent problem that may affect inverter valves, particularly those based on thyristor valves (LCC (line-Commutated converter)), it is more precise to explore which circumstance generates and raises the commutation failure on inverter valves. Because of the techniques used to accelerate the simulation, digital real-time simulators are now the most potent tools that provide simulation results. The real-time-lab RT-LAB platform HYPERSIM OP-5600 is used to implement the Simulation in the Loop (SIL) technique, which is used to validate the results. It is demonstrated how to recover from both the internal faults and the AC problem. The simulation findings show how crucial a role the control system plays in fault recovery.Keywords: hypersim simulator, HVDC systems, mono-polar link, AC faults, misfiring faults
Procedia PDF Downloads 949364 Single Valued Neutrosophic Hesitant Fuzzy Rough Set and Its Application
Authors: K. M. Alsager, N. O. Alshehri
Abstract:
In this paper, we proposed the notion of single valued neutrosophic hesitant fuzzy rough set, by combining single valued neutrosophic hesitant fuzzy set and rough set. The combination of single valued neutrosophic hesitant fuzzy set and rough set is a powerful tool for dealing with uncertainty, granularity and incompleteness of knowledge in information systems. We presented both definition and some basic properties of the proposed model. Finally, we gave a general approach which is applied to a decision making problem in disease diagnoses, and demonstrated the effectiveness of the approach by a numerical example.Keywords: single valued neutrosophic fuzzy set, single valued neutrosophic fuzzy hesitant set, rough set, single valued neutrosophic hesitant fuzzy rough set
Procedia PDF Downloads 2729363 Improved Traveling Wave Method Based Fault Location Algorithm for Multi-Terminal Transmission System of Wind Farm with Grounding Transformer
Authors: Ke Zhang, Yongli Zhu
Abstract:
Due to rapid load growths in today’s highly electrified societies and the requirement for green energy sources, large-scale wind farm power transmission system is constantly developing. This system is a typical multi-terminal power supply system, whose structure of the network topology of transmission lines is complex. What’s more, it locates in the complex terrain of mountains and grasslands, thus increasing the possibility of transmission line faults and finding the fault location with difficulty after the faults and resulting in an extremely serious phenomenon of abandoning the wind. In order to solve these problems, a fault location method for multi-terminal transmission line based on wind farm characteristics and improved single-ended traveling wave positioning method is proposed. Through studying the zero sequence current characteristics by using the characteristics of the grounding transformer(GT) in the existing large-scale wind farms, it is obtained that the criterion for judging the fault interval of the multi-terminal transmission line. When a ground short-circuit fault occurs, there is only zero sequence current on the path between GT and the fault point. Therefore, the interval where the fault point exists is obtained by determining the path of the zero sequence current. After determining the fault interval, The location of the short-circuit fault point is calculated by the traveling wave method. However, this article uses an improved traveling wave method. It makes the positioning accuracy more accurate by combining the single-ended traveling wave method with double-ended electrical data. What’s more, a method of calculating the traveling wave velocity is deduced according to the above improvements (it is the actual wave velocity in theory). The improvement of the traveling wave velocity calculation method further improves the positioning accuracy. Compared with the traditional positioning method, the average positioning error of this method is reduced by 30%.This method overcomes the shortcomings of the traditional method in poor fault location of wind farm transmission lines. In addition, it is more accurate than the traditional fixed wave velocity method in the calculation of the traveling wave velocity. It can calculate the wave velocity in real time according to the scene and solve the traveling wave velocity can’t be updated with the environment and real-time update. The method is verified in PSCAD/EMTDC.Keywords: grounding transformer, multi-terminal transmission line, short circuit fault location, traveling wave velocity, wind farm
Procedia PDF Downloads 2639362 Power Production Performance of Different Wave Energy Converters in the Southwestern Black Sea
Authors: Ajab G. Majidi, Bilal Bingölbali, Adem Akpınar
Abstract:
This study aims to investigate the amount of energy (economic wave energy potential) that can be obtained from the existing wave energy converters in the high wave energy potential region of the Black Sea in terms of wave energy potential and their performance at different depths in the region. The data needed for this purpose were obtained using the calibrated nested layered SWAN wave modeling program version 41.01AB, which was forced with Climate Forecast System Reanalysis (CFSR) winds from 1979 to 2009. The wave dataset at a time interval of 2 hours was accumulated for a sub-grid domain for around Karaburun beach in Arnavutkoy, a district of Istanbul city. The annual sea state characteristic matrices for the five different depths along with a vertical line to the coastline were calculated for 31 years. According to the power matrices of different wave energy converter systems and characteristic matrices for each possible installation depth, the probability distribution tables of the specified mean wave period or wave energy period and significant wave height were calculated. Then, by using the relationship between these distribution tables, according to the present wave climate, the energy that the wave energy converter systems at each depth can produce was determined. Thus, the economically feasible potential of the relevant coastal zone was revealed, and the effect of different depths on energy converter systems is presented. The Oceantic at 50, 75 and 100 m depths and Oyster at 5 and 25 m depths presents the best performance. In the 31-year long period 1998 the most and 1989 is the least dynamic year.Keywords: annual power production, Black Sea, efficiency, power production performance, wave energy converter
Procedia PDF Downloads 1339361 An Improved Modular Multilevel Converter Voltage Balancing Approach for Grid Connected PV System
Authors: Safia Bashir, Zulfiqar Memon
Abstract:
During the last decade, renewable energy sources in particular solar photovoltaic (PV) has gained increased attention. Therefore, various PV converters topologies have emerged. Among this topology, the modular multilevel converter (MMC) is considered as one of the most promising topologies for the grid-connected PV system due to its modularity and transformerless features. When it comes to the safe operation of MMC, the balancing of the Submodules Voltages (SMs) plays a critical role. This paper proposes a balancing approach based on space vector PWM (SVPWM). Unlike the existing techniques, this method generates the switching vectors for the MMC by using only one SVPWM for the upper arm. The lower arm switching vectors are obtained by finding the complement of the upper arm switching vectors. The use of one SVPWM not only simplifies the calculation but also helped in reducing the circulating current in the MMC. The proposed method is varied through simulation using Matlab/Simulink and compared with other available modulation methods. The results validate the ability of the suggested method in balancing the SMs capacitors voltages and reducing the circulating current which will help in reducing the power loss of the PV system.Keywords: capacitor voltage balancing, circulating current, modular multilevel converter, PV system
Procedia PDF Downloads 1589360 Voltage Stabilization of Hybrid PV and Battery Systems by Considering Temperature and Irradiance Changes in Standalone Operation
Authors: S. Jalilzadeh, S. M. Mohseni Bonab
Abstract:
Solar and battery energy storage systems are very useful for consumers who live in deprived areas and do not have access to electricity distribution networks. Nowadays one of the problems that photo voltaic systems (PV) have changing of output power in temperature and irradiance variations, which directly affects the load that is connected to photo voltaic systems. In this paper, with considering the fact that the solar array varies with change in temperature and solar power radiation, a voltage stabilizer system of a load connected to photo voltaic array is designed to stabilize the load voltage and to transfer surplus power of the battery. Also, in proposed hybrid system, the needed load power amount is supplemented considering the voltage stabilization in standalone operation for supplying unbalanced AC load. Electrical energy storage system for voltage control and improvement of the performance of PV by a DC/DC converter is connected to the DC bus. The load is also feed by an AC/DC converter. In this paper, when the voltage increases in its reference limit, the battery gets charged by the photo voltaic array and when it decreases in its defined limit, the power gets injected to the DC bus by this battery. The constant of DC bus Voltage is the cause for the reduced harmonics generated by the inverter. In addition, a series of filters are provided in the inverter output in to reduced harmonics. The inverter control circuit is designed that the voltage and frequency of the load remain almost constant at different load conditions. This paper has focused on controlling strategies of converters to improve their performance.Keywords: photovoltaic array (PV), DC/DC Boost converter, battery converter, inverters control
Procedia PDF Downloads 4859359 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery
Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim
Abstract:
In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter
Procedia PDF Downloads 6419358 An 8-Bit, 100-MSPS Fully Dynamic SAR ADC for Ultra-High Speed Image Sensor
Authors: F. Rarbi, D. Dzahini, W. Uhring
Abstract:
In this paper, a dynamic and power efficient 8-bit and 100-MSPS Successive Approximation Register (SAR) Analog-to-Digital Converter (ADC) is presented. The circuit uses a non-differential capacitive Digital-to-Analog (DAC) architecture segmented by 2. The prototype is produced in a commercial 65-nm 1P7M CMOS technology with 1.2-V supply voltage. The size of the core ADC is 208.6 x 103.6 µm2. The post-layout noise simulation results feature a SNR of 46.9 dB at Nyquist frequency, which means an effective number of bit (ENOB) of 7.5-b. The total power consumption of this SAR ADC is only 1.55 mW at 100-MSPS. It achieves then a figure of merit of 85.6 fJ/step.Keywords: CMOS analog to digital converter, dynamic comparator, image sensor application, successive approximation register
Procedia PDF Downloads 4189357 Optimal Implementation of Photovoltaic Water Pumping System
Authors: Sarah Abdourraziq
Abstract:
To improve the efficiency of photovoltaic pumping system, more attention has been paid to their setting up. This paper presents an optimal technique to establish an efficient system under different conditions of irradiance and temperature. The state of place should be carefully studied before stage of installation of the over system: local climate, boreholes, soil, crops and water resources. The studied system consists of a PV panel, a DC-DC boost converter, a DC motor-pump, and storage tank. The concepts shown in this paper presents a support for an optimal installation of each solar pump.Keywords: photovoltaic pumping system, optimal implementation, boost converter, motor-pump
Procedia PDF Downloads 3519356 156vdc to 110vac Sinusoidal Inverter Simulation and Implementation
Authors: Phinyo Mueangmeesap
Abstract:
This paper describes about pure sinusoidal inverter simulation and implementation from high voltage DC (156 Vdc). This simulation is to study and improve the efficiency of the inverter. By reducing the loss of power from boost converter in current inverter. The simulation is done by using the H-bridge circuit with pulse width modulate (PWM) signal and low-pass filter circuit. To convert the DC into AC. This paper used the PSCad for simulation. The result of simulation can be used to create prototype inverter by converting 156 Vdc to 110Vac. The inverter gives the output signal similar to the output from a simulation.Keywords: inverter simulation, PWM signal, single-phase inverter, sinusoidal inverter
Procedia PDF Downloads 4129355 3 Phase Induction Motor Control Using Single Phase Input and GSM
Authors: Pooja S. Billade, Sanjay S. Chopade
Abstract:
This paper focuses on the design of three phase induction motor control using single phase input and GSM.The controller used in this work is a wireless speed control using a GSM technique that proves to be very efficient and reliable in applications.The most common principle is the constant V/Hz principle which requires that the magnitude and frequency of the voltage applied to the stator of a motor maintain a constant ratio. By doing this, the magnitude of the magnetic field in the stator is kept at an approximately constant level throughout the operating range. Thus, maximum constant torque producing capability is maintained. The energy that a switching power converter delivers to a motor is controlled by Pulse Width Modulated signals applied to the gates of the power transistors in H-bridge configuration. PWM signals are pulse trains with fixed frequency and magnitude and variable pulse width. When a PWM signal is applied to the gate of a power transistor, it causes the turn on and turns off intervals of the transistor to change from one PWM period.Keywords: index terms— PIC, GSM (global system for mobile), LCD (Liquid Crystal Display), IM (Induction Motor)
Procedia PDF Downloads 4489354 On the Optimization of a Decentralized Photovoltaic System
Authors: Zaouche Khelil, Talha Abdelaziz, Berkouk El Madjid
Abstract:
In this paper, we present a grid-tied photovoltaic system. The studied topology is structured around a seven-level inverter, supplying a non-linear load. A three-stage step-up DC/DC converter ensures DC-link balancing. The presented system allows the extraction of all the available photovoltaic power. This extracted energy feeds the local load; the surplus energy is injected into the electrical network. During poor weather conditions, where the photovoltaic panels cannot meet the energy needs of the load, the missing power is supplied by the electrical network. At the common connexion point, the network current shows excellent spectral performances.Keywords: seven-level inverter, multi-level DC/DC converter, photovoltaic, non-linear load
Procedia PDF Downloads 1929353 Comparative Analysis of Control Techniques Based Sliding Mode for Transient Stability Assessment for Synchronous Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Fatiha Khelili, Sakina Zerouali, Ouafae Bennis
Abstract:
This paper features a comparative study performance of sliding mode controller (SMC) for closed-loop voltage control of direct current to direct current (DC-DC) three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM) with SMC based on hysteresis modulation (HM) where an adaptive feedforward technique is adopted. On one hand, for the PWM-based SM, the approach is to incorporate a fixed-frequency PWM scheme which is effectively a variant of SM control. On the other hand, for the HM-based SM, oncoming an adaptive feedforward control that makes the hysteresis band variable in the hysteresis modulator of the SM controller in the aim to restrict the switching frequency variation in the case of any change of the line input voltage or output load variation are introduced. The results obtained under load change, input change and reference change clearly demonstrates a similar dynamic response of both proposed techniques, their effectiveness is fast and smooth tracking of the desired output voltage. The PWM-based SM technique has greatly improved the dynamic behavior with a bit advantageous compared to the HM-based SM technique, as well as provide stability in any operating conditions. Simulation studies in MATLAB/Simulink environment have been performed to verify the concept.Keywords: DC-DC converter, hysteresis modulation, parallel multi-cells converter, pulse-width modulation, robustness, sliding mode control
Procedia PDF Downloads 1679352 The Application of Pareto Local Search to the Single-Objective Quadratic Assignment Problem
Authors: Abdullah Alsheddy
Abstract:
This paper presents the employment of Pareto optimality as a strategy to help (single-objective) local search escaping local optima. Instead of local search, Pareto local search is applied to solve the quadratic assignment problem which is multi-objectivized by adding a helper objective. The additional objective is defined as a function of the primary one with augmented penalties that are dynamically updated.Keywords: Pareto optimization, multi-objectivization, quadratic assignment problem, local search
Procedia PDF Downloads 4669351 Performance Analysis of Different Power Electronics Structures for Electric Vehicles (EVs)
Authors: Sekkak Abdelmalek
Abstract:
The aim of this paper is to establish an energy balance of the drivetrain of a low power electric vehicle (around ten kilowatts). The study is based on two topologies of power electronics converter, the voltage source inverter and cascaded H-Bridge inverter. For each of these solutions, two voltage levels are studied for the drivetrain. At first a discussion of cascaded H-Bridge inverters will be performed on the potential benefits of this structure for its use to other functions such as macroscopic batteries management system. In a second step, the performances of the traction chain are compared according to the structure of the power converter and the voltage level of the traction chain.Keywords: power electronics, static converters, cascaded H-Bridge, traction chain, efficiency, losses, batteries balancing
Procedia PDF Downloads 5129350 Simulation and Analytical Investigation of Different Combination of Single Phase Power Transformers
Authors: M. Salih Taci, N. Tayebi, I. Bozkır
Abstract:
In this paper, the equivalent circuit of the ideal single-phase power transformer with its appropriate voltage current measurement was presented. The calculated values of the voltages and currents of the different connections single phase normal transformer and the results of the simulation process are compared. As it can be seen, the calculated results are the same as the simulated results. This paper includes eight possible different transformer connections. Depending on the desired voltage level, step-down and step-up application transformer is considered. Modelling and analysis of a system consisting of an equivalent source, transformer (primary and secondary), and loads are performed to investigate the combinations. The obtained values are simulated in PSpice environment and then how the currents, voltages and phase angle are distributed between them is explained based on calculation.Keywords: transformer, simulation, equivalent model, parallel series combinations
Procedia PDF Downloads 3619349 Fixed-Frequency Pulse Width Modulation-Based Sliding Mode Controller for Switching Multicellular Converter
Authors: Rihab Hamdi, Amel Hadri Hamida, Ouafae Bennis, Fatima Babaa, Sakina Zerouali
Abstract:
This paper features a sliding mode controller (SMC) for closed-loop voltage control of DC-DC three-cells buck converter connected in parallel, operating in continuous conduction mode (CCM), based on pulse-width modulation (PWM). To maintain the switching frequency, the approach is to incorporate a pulse-width modulation that utilizes an equivalent control, inferred by applying the SM control method, to produce a control sign to be contrasted and the fixed-frequency within the modulator. Detailed stability and transient performance analysis have been conducted using Lyapunov stability criteria to restrict the switching frequency variation facing wide variations in output load, input changes, and set-point changes. The results obtained confirm the effectiveness of the proposed control scheme in achieving an enhanced output transient performance while faithfully realizing its control objective in the event of abrupt and uncertain parameter variations. Simulations studies in MATLAB/Simulink environment are performed to confirm the idea.Keywords: DC-DC converter, pulse width modulation, power electronics, sliding mode control
Procedia PDF Downloads 1479348 Real-Time Control of Grid-Connected Inverter Based on labVIEW
Authors: L. Benbaouche, H. E. , F. Krim
Abstract:
In this paper we propose real-time control of grid-connected single phase inverter, which is flexible and efficient. The first step is devoted to the study and design of the controller through simulation, conducted by the LabVIEW software on the computer 'host'. The second step is running the application from PXI 'target'. LabVIEW software, combined with NI-DAQmx, gives the tools to easily build applications using the digital to analog converter to generate the PWM control signals. Experimental results show that the effectiveness of LabVIEW software applied to power electronics.Keywords: real-time control, labview, inverter, PWM
Procedia PDF Downloads 5099347 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction
Authors: Jun Wang, Tingcun Wei
Abstract:
The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.Keywords: DPWM, digitally-controlled DC-DC switching converter, FPGA, PLL megafunction, time resolution
Procedia PDF Downloads 4809346 Equivalent Electrical Model of a Shielded Pulse Planar Transformer in Isolated Gate Drivers for SiC MOSFETs
Authors: Loreine Makki, Marc Anthony Mannah, Christophe Batard, Nicolas Ginot, Julien Weckbrodt
Abstract:
Planar transformers are extensively utilized in high-frequency, high power density power electronic converters. The breakthrough of wide-bandgap technology compelled power electronic system miniaturization while inducing pivotal effects on system modeling and manufacturing within the power electronics industry. A significant consideration to simulate and model the unanticipated parasitic parameters emerges with the requirement to mitigate electromagnetic disturbances. This paper will present an equivalent circuit model of a shielded pulse planar transformer quantifying leakage inductance and resistance in addition to the interwinding capacitance of the primary and secondary windings. ANSYS Q3D Extractor was utilized to model and simulate the transformer, intending to study the immunity of the simulated equivalent model to high dv/dt occurrences. A convenient correlation between simulation and experimental results is presented.Keywords: Planar transformers, wide-band gap, equivalent circuit model, shielded, ANSYS Q3D Extractor, dv/dt
Procedia PDF Downloads 2069345 Research on Modern Semiconductor Converters and the Usage of SiC Devices in the Technology Centre of Ostrava
Authors: P. Vaculík, P. Kaňovský
Abstract:
The following article presents Technology Centre of Ostrava (TCO) in the Czech Republic. Describes the structure and main research areas realized by the project ENET-Energy Units for Utilization of non-traditional Energy Sources. More details are presented from the research program dealing with transformation, accumulation, and distribution of electric energy. Technology Centre has its own energy mix consisting of alternative sources of fuel sources that use of process gases from the storage part and also the energy from distribution network. The article will focus on the properties and application possibilities SiC semiconductor devices for power semiconductor converter for photo-voltaic systems.Keywords: SiC, Si, technology centre of Ostrava, photovoltaic systems, DC/DC Converter, simulation
Procedia PDF Downloads 6109344 An Elegant Technique to Achieve ZCS in a Boost Converter Incorporating Complete Energy Transfer
Authors: Nagesh Vangala, Rayudu Mannam
Abstract:
Soft switching has attracted the interest of various researchers constantly. Many techniques are in vogue to achieve soft switching (ZVS and/or ZCS) in Boost converters. These techniques utilize an auxiliary switch to incorporate the ZCS/ZVS. Such schemes require additional control circuit and induce complexity in design. This paper proposes an elegant fly back approach which guarantees zero current switching of the main Switch without the need for any additional active device. A simple flyback transformer scheme is implemented which absorbs the initial turn ON energy (or the Reverse recovery energy of Boost diode) and delivers to the output.Keywords: boost converter, complete energy transfer, flyback, zero current switching
Procedia PDF Downloads 3979343 Performance Validation of Model Predictive Control for Electrical Power Converters of a Grid Integrated Oscillating Water Column
Authors: G. Rajapakse, S. Jayasinghe, A. Fleming
Abstract:
This paper aims to experimentally validate the control strategy used for electrical power converters in grid integrated oscillating water column (OWC) wave energy converter (WEC). The particular OWC’s unidirectional air turbine-generator output power results in discrete large power pulses. Therefore, the system requires power conditioning prior to integrating to the grid. This is achieved by using a back to back power converter with an energy storage system. A Li-Ion battery energy storage is connected to the dc-link of the back-to-back converter using a bidirectional dc-dc converter. This arrangement decouples the system dynamics and mitigates the mismatch between supply and demand powers. All three electrical power converters used in the arrangement are controlled using finite control set-model predictive control (FCS-MPC) strategy. The rectifier controller is to regulate the speed of the turbine at a set rotational speed to uphold the air turbine at a desirable speed range under varying wave conditions. The inverter controller is to maintain the output power to the grid adhering to grid codes. The dc-dc bidirectional converter controller is to set the dc-link voltage at its reference value. The software modeling of the OWC system and FCS-MPC is carried out in the MATLAB/Simulink software using actual data and parameters obtained from a prototype unidirectional air-turbine OWC developed at Australian Maritime College (AMC). The hardware development and experimental validations are being carried out at AMC Electronic laboratory. The designed FCS-MPC for the power converters are separately coded in Code Composer Studio V8 and downloaded into separate Texas Instrument’s TIVA C Series EK-TM4C123GXL Launchpad Evaluation Boards with TM4C123GH6PMI microcontrollers (real-time control processors). Each microcontroller is used to drive 2kW 3-phase STEVAL-IHM028V2 evaluation board with an intelligent power module (STGIPS20C60). The power module consists of a 3-phase inverter bridge with 600V insulated gate bipolar transistors. Delta standard (ASDA-B2 series) servo drive/motor coupled to a 2kW permanent magnet synchronous generator is served as the turbine-generator. This lab-scale setup is used to obtain experimental results. The validation of the FCS-MPC is done by comparing these experimental results to the results obtained by MATLAB/Simulink software results in similar scenarios. The results show that under the proposed control scheme, the regulated variables follow their references accurately. This research confirms that FCS-MPC fits well into the power converter control of the OWC-WEC system with a Li-Ion battery energy storage.Keywords: dc-dc bidirectional converter, finite control set-model predictive control, Li-ion battery energy storage, oscillating water column, wave energy converter
Procedia PDF Downloads 1139342 A Study on 5-11 Year-Old Children's Level of Knowledge about Personal Safety and Protection from Social Dangers
Authors: Özden Kuşcu, Yağmur Kuşcu, Zeynep Çetintaş, S. Sunay Yildirim Doğru
Abstract:
The purpose of this work is to evaluate the effect of the subjects “personal safety” and “protection from dangers” included in primary school curriculum on the students’ levels of knowledge about safety and protection from social dangers. The study group included 469 students between 5–11 years old with 231 preschoolers and 238 primary school students and their parents and teachers. Instruments used to collect data were “Personal Safety Interview Form” for children, “Parent Interview Form” and “Teacher Interview Form”. Forms included 15 open-ended questions about personal safety. The researchers collected the research data through one-on-one interviews with children. Results of the study revealed that preschoolers and 1st, 2nd, and 3rd graders did not know their home addresses and telephone numbers and their families were not aware of that. The study also showed that those who had this information were unsure as to who to share this information with. Accordingly, more should be done to increase the levels of knowledge of preschoolers and 1st, 2nd, and 3rd graders about personal safety and protection from dangers.Keywords: security, social danger, elementary school, preschool
Procedia PDF Downloads 4579341 Control of Proton Exchange Membrane Fuel Cell Power System Using PI and Sliding Mode Controller
Authors: Mohamed Derbeli, Maissa Farhat, Oscar Barambones, Lassaad Sbita
Abstract:
Conventional controller (PI) applied to a DC/DC boost converter for the improvement and optimization of the Proton Exchange Membrane Fuel Cell (PEMFC) system efficiency, cannot attain a good performance effect. Thus, due to its advantages comparatively with the PI controller, this paper interest is focused on the use of the sliding mode controller (SMC), Stability of the closed loop system is analytically proved using Lyapunov approach for the proposed controller. The model and the controllers are implemented in the MATLAB and SIMULINK environment. A comparison of results indicates that the suggested approach has considerable advantages compared to the traditional controller.Keywords: DC/DC boost converter, PEMFC, PI controller, sliding mode controller
Procedia PDF Downloads 2349340 Design and Optimization of an Electromagnetic Vibration Energy Converter
Authors: Slim Naifar, Sonia Bradai, Christian Viehweger, Olfa Kanoun
Abstract:
Vibration provides an interesting source of energy since it is available in many indoor and outdoor applications. Nevertheless, in order to have an efficient design of the harvesting system, vibration converters have to satisfy some criterion in terms of robustness, compactness and energy outcome. In this work, an electromagnetic converter based on mechanical spring principle is proposed. The designed harvester is formed by a coil oscillating around ten ring magnets using a mechanical spring. The proposed design overcomes one of the main limitation of the moving coil by avoiding the contact between the coil wires with the mechanical spring which leads to a better robustness for the converter. In addition, the whole system can be implemented in a cavity of a screw. Different parameters in the harvester were investigated by finite element method including the magnet size, the coil winding number and diameter and the excitation frequency and amplitude. A prototype was realized and tested. Experiments were performed for 0.5 g to 1 g acceleration. The used experimental setup consists of an electrodynamic shaker as an external artificial vibration source controlled by a laser sensor to measure the applied displacement and frequency excitation. Together with the laser sensor, a controller unit, and an amplifier, the shaker is operated in a closed loop which allows controlling the vibration amplitude. The resonance frequency of the proposed designs is in the range of 24 Hz. Results indicate that the harvester can generate 612 mV and 1150 mV maximum open circuit peak to peak voltage at resonance for 0.5 g and 1 g acceleration respectively which correspond to 4.75 mW and 1.34 mW output power. Tuning the frequency to other values is also possible due to the possibility to add mass to the moving part of the or by changing the mechanical spring stiffness.Keywords: energy harvesting, electromagnetic principle, vibration converter, moving coil
Procedia PDF Downloads 2989339 Load Bearing Capacity and Operational Effectiveness of Single Shear Joints of CFRP Composite Laminate with Spread Tow Thin Plies
Authors: Tabrej Khan, Tamer A. Sebaey, Balbir Singh, M. A. Umarfarooq
Abstract:
Spread-tow thin-ply-based technology has resulted in the progress of optimized reinforced composite plies with ultra-low thicknesses. There is wide use of composite bolted joints in the aircraft industry for load-bearing structures, and they are regarded as the primary source of stress concentration. The purpose of this study is to look into the bearing strength and structural performance of single shear bolt joint configurations in composite laminates, which are basically a combination of conventional thin-plies and thick-plies in some specific stacking sequence. The placement effect of thin-ply within the configured stack on bearing strength, as well as the potential damages, were investigated. Mechanical tests were used to understand the disfigurement mechanisms of the plies and their reciprocity, as well as to reflect on the single shear bolt joint properties and its load-bearing capacity. The results showed that changing the configuration of laminates by inserting the thin plies inside improved the bearing strength by up to 19%.Keywords: hybrid composites, delamination, stress concentrations, mechanical testing, single bolt joint, thin-plies
Procedia PDF Downloads 649338 3G or 4G: A Predilection for Millennial Generation of Indian Society
Authors: Rishi Prajapati
Abstract:
3G is the abbreviation of third generation of wireless mobile telecommunication technologies. 3G is a mode that finds application in wireless voice telephony, mobile internet access, fixed wireless internet access, video calls and mobile TV. It also provides mobile broadband access to smartphones and mobile modems in laptops and computers. The first 3G networks were introduced in 1998, followed by 4G networks in 2008. 4G is the abbreviation of fourth generation of wireless mobile telecommunication technologies. 4G is termed to be the advanced form of 3G. 4G was firstly introduced in South Korea in 2007. Many abstracts have floated researches that depicted the diversity and similarity between the third and the fourth generation of wireless mobile telecommunications technology, whereas this abstract reflects the study that focuses on analyzing the preference between 3G versus 4G given by the elite group of the Indian society who are known as adolescents or the Millennial Generation aging from 18 years to 25 years. The Millennial Generation was chosen for this study as they have the easiest access to the latest technology. A sample size of 200 adolescents was selected and a structured survey was carried out which had several closed ended as well as open ended questions, to aggregate the result of this study. It was made sure that the effect of environmental factors on the subjects was as minimal as possible. The data analysis comprised of primary data collection reflecting it as quantitative research. The rationale behind this research is to give brief idea of how 3G and 4G are accepted by the Millennial Generation in India. The findings of this research would materialize a framework which depicts whether Millennial Generation would prefer 4G over 3G or vice versa.Keywords: fourth generation, wireless telecommunication technology, Indian society, millennial generation, market research, third generation
Procedia PDF Downloads 2699337 A Variable Speed DC Motor Using a Converter DC-DC
Authors: Touati Mawloud
Abstract:
Between electronics and electrical systems has developed a new technology that is power electronics, also called electronic of strong currents, this application covers a very wide range of use particularly in the industrial sector, where direct current engines are frequently used, they control their speed by the use of the converters (DC-DC), which aims to deal with various mechanical disturbances (fillers) or electrical (power). In future, it will play a critical role in transforming the current electric grid into the next generation grid. Existing silicon-based PE devices enable electric grid functionalities such as fault-current limiting and converter devices. Systems of future are envisioned to be highly automated, interactive "smart" grid that can self-adjust to meet the demand for electricity reliability, securely, and economically. Transforming today’s electric grid to the grid of the future will require creating or advancing a number of technologies, tools, and techniques—specifically, the capabilities of power electronics (PE). PE devices provide an interface between electrical system, and electronics system by converting AC to direct current (DC) and vice versa. Solid-state wide Bandgap (WBG), semiconductor electronics (such as silicon carbide [SiC], gallium nitride [GaN], and diamond) are envisioned to improve the reliability and efficiency of the next-generation grid substantially.Keywords: Power Electronics (PE), electrical system generation electric grid, switching frequencies, converter devices
Procedia PDF Downloads 4429336 Teachers Influence on Encouraging Physical Activity and Recreation in Township Schools in the City of Tshwane
Authors: Rapuane Eric Jan Pule
Abstract:
Sport participation plays a significant role in learners’ well-being and lifestyle. Learners spend most of their time in the school environment, where they are monitored, guided and advised by teachers. Teachers have a good relationship with the learners, therefore they can play a major role in promoting and influencing learners to participate in physical activities, both competitive and recreational purposes. Their influence and involvement could assist in increasing the number learners' involvement in physical activities, sport and recreation at Township schools. The national sport and recreation plan in South Africa, recommends that promotion of sport and physical activities at primary and secondary schools should play an important role in helping learners commit to a live-long participation in sport, recreational and physical activities. Schoolteachers could play an influential role in ensuring that learners spent their leisure time productively through physical and recreational activities. However, the role and the influence of teachers in promoting physical and recreational activities have been previously overlooked in the literature. Part of this study focuses on the in-depth challenges encountered by primary and secondary school teachers at Township schools in promoting and influencing learners’ involvement in sport, recreation and physical activities. 109 primary and secondary teachers at Township schools agreed to participate in the study through the provision of informed consent. The participants consisted of 49 primary school teachers and 60 secondary school teachers. Quantitative approach was followed using validated structured questionnaire comprising 12 close-ended items were used. Findings indicated that teachers' can play a significant role in influencing and encouraging learners to participate in sport, recreation or physical activities. Teachers view physical activity as an important developmental component for learners. Primary school teachers believe that they have a significant role to play in encouraging and promoting physical activities, sport and recreation, as compared to the secondary school teachers. Both group of teachers at primary and secondary schools, believe that infrastructure development, financial support, and extra incentives could motivate them to promote physical, recreational and sporting activities at schools. Teachers also acknowledge that schools are facing challenges in implementing and coordinating physical activities and recreational programmes as required by the Department of sport and recreation South Africa. It is recommended that the Department of Basic Education and Sport and Recreation South Africa revise their policies regarding the role of teachers in promoting and administering physical and recreational activities at schools.Keywords: township, physical activities, sport and recreation participation, learners, teachers, primary and secondary schools, physical education
Procedia PDF Downloads 353