Search results for: project progress prediction
8292 Machine Learning Approach for Predicting Students’ Academic Performance and Study Strategies Based on Their Motivation
Authors: Fidelia A. Orji, Julita Vassileva
Abstract:
This research aims to develop machine learning models for students' academic performance and study strategy prediction, which could be generalized to all courses in higher education. Key learning attributes (intrinsic, extrinsic, autonomy, relatedness, competence, and self-esteem) used in building the models are chosen based on prior studies, which revealed that the attributes are essential in students’ learning process. Previous studies revealed the individual effects of each of these attributes on students’ learning progress. However, few studies have investigated the combined effect of the attributes in predicting student study strategy and academic performance to reduce the dropout rate. To bridge this gap, we used Scikit-learn in python to build five machine learning models (Decision Tree, K-Nearest Neighbour, Random Forest, Linear/Logistic Regression, and Support Vector Machine) for both regression and classification tasks to perform our analysis. The models were trained, evaluated, and tested for accuracy using 924 university dentistry students' data collected by Chilean authors through quantitative research design. A comparative analysis of the models revealed that the tree-based models such as the random forest (with prediction accuracy of 94.9%) and decision tree show the best results compared to the linear, support vector, and k-nearest neighbours. The models built in this research can be used in predicting student performance and study strategy so that appropriate interventions could be implemented to improve student learning progress. Thus, incorporating strategies that could improve diverse student learning attributes in the design of online educational systems may increase the likelihood of students continuing with their learning tasks as required. Moreover, the results show that the attributes could be modelled together and used to adapt/personalize the learning process.Keywords: classification models, learning strategy, predictive modeling, regression models, student academic performance, student motivation, supervised machine learning
Procedia PDF Downloads 1278291 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms
Authors: A. Majidian
Abstract:
The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.Keywords: life prediction, condenser tube, neural network, fuzzy logic
Procedia PDF Downloads 3508290 Hybrid Project Management Model Based on Lean and Agile Approach
Authors: Fatima-Zahra Eddoug, Jamal Benhra, Rajaa Benabbou
Abstract:
Several project management models exist in the literature and the most used ones are the hybrids for their multiple advantages. Our objective in this paper is to analyze the existing models, which are based on the Lean and Agile approaches and to propose a novel framework with the convenient tools that will allow efficient management of a general project. To create the desired framework, we were based essentially on 7 existing models. Only the Scrum tool among the agile tools was identified by several authors to be appropriate for project management. In contrast, multiple lean tools were proposed in different phases of the project.Keywords: agility, hybrid project management, lean, scrum
Procedia PDF Downloads 1378289 Empirical Study for the Project and the Project Management Dimensions Comparison between SMEs and Large Companies
Authors: Amina Oukennou, Zitouni Beidouri, Otmane Bouksour
Abstract:
Small to Medium-sized enterprises are a very important component of the economy. They are present in the whole industries all over the world. They are considered as the engine for future growth in the economy. Project management is an economical international factor impacting all types of enterprises including the SMEs. This paper has the aim of measuring the weight of using projects and project management in Moroccan SMEs in comparison with the large companies. The study is based on interviews with experts: project managers, managers, directors, and consultants. They were asked questions measuring the weight of using projects, the level of using project management, and the resources employed. Eighteen Moroccan companies from a range of industries and sizes were consulted. All the companies consider projects as a key element in their strategy. Most of them affirm the great usefulness of the approach 'project', especially for the external activities. The main differences lie in the duration and the size of used projects. Despite the commonly shared idea about the importance of the project management, the interviewed persons believe that the project management knowledge has the same importance or less than the technical knowledge. All the companies affirm the need for a simpler version of project management. The content varies from one company to another.Keywords: project dimension, project management, small to medium-sized entreprise, Morocco
Procedia PDF Downloads 3148288 Project Management Agile Model Based on Project Management Body of Knowledge Guideline
Authors: Mehrzad Abdi Khalife, Iraj Mahdavi
Abstract:
This paper presents the agile model for project management process. For project management process, the Project Management Body of Knowledge (PMBOK) guideline has been selected as platform. Combination of computational science and artificial intelligent methodology has been added to the guideline to transfer the standard to agile project management process. The model is the combination of practical standard, computational science and artificial intelligent. In this model, we present communication model and protocols to keep process agile. Here, we illustrate the collaboration man and machine in project management area with artificial intelligent approach.Keywords: artificial intelligent, conceptual model, man-machine collaboration, project management, standard
Procedia PDF Downloads 3408287 Wind Speed Prediction Using Passive Aggregation Artificial Intelligence Model
Authors: Tarek Aboueldahab, Amin Mohamed Nassar
Abstract:
Wind energy is a fluctuating energy source unlike conventional power plants, thus, it is necessary to accurately predict short term wind speed to integrate wind energy in the electricity supply structure. To do so, we present a hybrid artificial intelligence model of short term wind speed prediction based on passive aggregation of the particle swarm optimization and neural networks. As a result, improvement of the prediction accuracy is obviously obtained compared to the standard artificial intelligence method.Keywords: artificial intelligence, neural networks, particle swarm optimization, passive aggregation, wind speed prediction
Procedia PDF Downloads 4498286 SNR Classification Using Multiple CNNs
Authors: Thinh Ngo, Paul Rad, Brian Kelley
Abstract:
Noise estimation is essential in today wireless systems for power control, adaptive modulation, interference suppression and quality of service. Deep learning (DL) has already been applied in the physical layer for modulation and signal classifications. Unacceptably low accuracy of less than 50% is found to undermine traditional application of DL classification for SNR prediction. In this paper, we use divide-and-conquer algorithm and classifier fusion method to simplify SNR classification and therefore enhances DL learning and prediction. Specifically, multiple CNNs are used for classification rather than a single CNN. Each CNN performs a binary classification of a single SNR with two labels: less than, greater than or equal. Together, multiple CNNs are combined to effectively classify over a range of SNR values from −20 ≤ SNR ≤ 32 dB.We use pre-trained CNNs to predict SNR over a wide range of joint channel parameters including multiple Doppler shifts (0, 60, 120 Hz), power-delay profiles, and signal-modulation types (QPSK,16QAM,64-QAM). The approach achieves individual SNR prediction accuracy of 92%, composite accuracy of 70% and prediction convergence one order of magnitude faster than that of traditional estimation.Keywords: classification, CNN, deep learning, prediction, SNR
Procedia PDF Downloads 1338285 Evaluation of Spatial Distribution Prediction for Site-Scale Soil Contaminants Based on Partition Interpolation
Authors: Pengwei Qiao, Sucai Yang, Wenxia Wei
Abstract:
Soil pollution has become an important issue in China. Accurate spatial distribution prediction of pollutants with interpolation methods is the basis for soil remediation in the site. However, a relatively strong variability of pollutants would decrease the prediction accuracy. Theoretically, partition interpolation can result in accurate prediction results. In order to verify the applicability of partition interpolation for a site, benzo (b) fluoranthene (BbF) in four soil layers was adopted as the research object in this paper. IDW (inverse distance weighting)-, RBF (radial basis function)-and OK (ordinary kriging)-based partition interpolation accuracies were evaluated, and their influential factors were analyzed; then, the uncertainty and applicability of partition interpolation were determined. Three conclusions were drawn. (1) The prediction error of partitioned interpolation decreased by 70% compared to unpartitioned interpolation. (2) Partition interpolation reduced the impact of high CV (coefficient of variation) and high concentration value on the prediction accuracy. (3) The prediction accuracy of IDW-based partition interpolation was higher than that of RBF- and OK-based partition interpolation, and it was suitable for the identification of highly polluted areas at a contaminated site. These results provide a useful method to obtain relatively accurate spatial distribution information of pollutants and to identify highly polluted areas, which is important for soil pollution remediation in the site.Keywords: accuracy, applicability, partition interpolation, site, soil pollution, uncertainty
Procedia PDF Downloads 1448284 Development of Industry Oriented Undergraduate Research Program
Authors: Sung Ryong Kim, Hyung Sup Han, Jae-Yup Kim
Abstract:
Many engineering students feel uncomfortable in solving the industry related problems. There are many ways to strengthen the engineering student’s ability to solve the assigned problem when they get a job. Korea National University of Transportation has developed an industry-oriented undergraduate research program (URP). An URP program is designed for engineering students to provide an experience of solving a company’s research problem. The URP project is carried out for 6 months. Each URP team consisted of 1 company mentor, 1 professor, and 3-4 engineering students. A team of different majors is strongly encouraged to integrate different perspectives of multidisciplinary background. The corporate research projects proposed by companies are chosen by the major-related student teams. A company mentor gives the detailed technical background of the project to the students, and he/she also provides a basic data, raw materials and so forth. The company allows students to use the company's research equipment. An assigned professor has adjusted the project scope and level to the student’s ability after discussing with a company mentor. Monthly meeting is used to check the progress, to exchange ideas, and to help the students. It is proven as an effective engineering education program not only to provide an experience of company research but also to motivate the students in their course work. This program provides a premier interdisciplinary platform for undergraduate students to perform the practical challenges encountered in their major-related companies and it is especially helpful for students who want to get a job from a company that proposed the project.Keywords: company mentor, industry oriented, interdisciplinary platform, undergraduate research program
Procedia PDF Downloads 2458283 An Argument for Agile, Lean, and Hybrid Project Management in Museum Conservation Practice: A Qualitative Evaluation of the Morris Collection Conservation Project at the Sainsbury Centre for Visual Arts
Authors: Maria Ledinskaya
Abstract:
This paper is part case study and part literature review. It seeks to introduce Agile, Lean, and Hybrid project management concepts from business, software development, and manufacturing fields to museum conservation by looking at their practical application on a recent conservation project at the Sainsbury Centre for Visual Arts. The author outlines the advantages of leaner and more agile conservation practices in today’s faster, less certain, and more budget-conscious museum climate where traditional project structures are no longer as relevant or effective. The Morris Collection Conservation Project was carried out in 2019-2021 in Norwich, UK, and concerned the remedial conservation of around 150 Abstract Constructivist artworks bequeathed to the Sainsbury Centre by private collectors Michael and Joyce Morris. It was a medium-sized conservation project of moderate complexity, planned and delivered in an environment with multiple known unknowns – unresearched collection, unknown conditions and materials, unconfirmed budget. The project was later impacted by the COVID-19 pandemic, introducing indeterminate lockdowns, budget cuts, staff changes, and the need to accommodate social distancing and remote communications. The author, then a staff conservator at the Sainsbury Centre who acted as project manager on the Morris Project, presents an incremental, iterative, and value-based approach to managing a conservation project in an uncertain environment. The paper examines the project from the point of view of Traditional, Agile, Lean, and Hybrid project management. The author argues that most academic writing on project management in conservation has focussed on a Traditional plan-driven approach – also known as Waterfall project management – which has significant drawbacks in today’s museum environment due to its over-reliance on prediction-based planning and its low tolerance to change. In the last 20 years, alternative Agile, Lean and Hybrid approaches to project management have been widely adopted in software development, manufacturing, and other industries, although their recognition in the museum sector has been slow. Using examples from the Morris Project, the author introduces key principles and tools of Agile, Lean, and Hybrid project management and presents a series of arguments on the effectiveness of these alternative methodologies in museum conservation, including the ethical and practical challenges to their implementation. These project management approaches are discussed in the context of consequentialist, relativist, and utilitarian developments in contemporary conservation ethics. Although not intentionally planned as such, the Morris Project had a number of Agile and Lean features which were instrumental to its successful delivery. These key features are identified as distributed decision-making, a co-located cross-disciplinary team, servant leadership, focus on value-added work, flexible planning done in shorter sprint cycles, light documentation, and emphasis on reducing procedural, financial, and logistical waste. Overall, the author’s findings point in favour of a hybrid model, which combines traditional and alternative project processes and tools to suit the specific needs of the project.Keywords: agile project management, conservation, hybrid project management, lean project management, waterfall project management
Procedia PDF Downloads 718282 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: drive test, LTE, machine learning, uplink throughput prediction
Procedia PDF Downloads 1558281 Lexicographic Rules on the Use of Technologies for Realization of the National Signs-Terms Inventory of Cultural Heritage Field in Libras
Authors: Gláucio de Castro Júnior, Daniela Prometi, Patrícia Tuxi
Abstract:
The project 'Inventory Signs-terms of the cultural heritage field in Libras' provides for the establishment of an inventory of signs, terms relating to the field of cultural heritage in Libras, from the results of research in progress as the pilot project' Accessibility Communication, Translation and Interpretation to the Application Portal Libras Heritage 'and the Pilot Project' registration-signal terms for the preparation of bilingual lexicon Libras / Portuguese terms available in the Portal Heritage. The project's goal is to spread the lexicographical rules on the use of technologies in video graphic records of sign language and foster the training of undergraduate students and graduate to the registration of the linguistic diversity of Libras through social and communicative interaction with the community deaf and enable access to Deaf information relating to the field of cultural heritage in Libras. As a result, we expect the spread of the inventory of cultural heritage-signs in terms Libras in application usage 'Portal Heritage'. To achieve the proposed objectives are accomplished technical consulting and continuous training for the production of academic material through theoretical and practical meetings, taught by experts Libras LIP / UNB in partnership with some institutions. The Inventory project signals-Terms under Heritage in Libras field initially took place in Rio de Janeiro in order to allow its development in the Midwest region, due to technical, elected some cities in Brazil, including Manaus in Amazon Macapa in Amapa, Salvador Bahia, Goiás and Goiânia in Florianopolis in Santa Catarina. At the end of all this process, the assessment by preparing a technical report presenting all the advances and points achieved in the project looking for social improvement, economic, environmental and language in the use of technology will be conducted.Keywords: signs-terms, equity-cultural accessibility, technology, sign language
Procedia PDF Downloads 4198280 The Successful in Construction Project via Effectiveness of Project Team
Authors: Zarabizan Zakaria, Hayati Zainal
Abstract:
The construction industry is one of the most important sectors that contribute to the nation’s economy and catalyze towards the growth of other industries. However, some construction projects have not been completed on its stipulated time and duration, scope and budget due to several factors. This problem arises due to the weaknesses of human factors, especially from ineffective leadership quality practiced by project managers and contractors in managing project teams. Therefore, a construction project should impose the element of Project Team. The project team is formed in the implementation of the project which includes the project brief, project scope, customer requirements and provided designs. Many organizations in the construction sector use teams to meet today's global competition and customer expectations, however, team effectiveness evaluation is required. In insuring the construction team is successful and effectiveness, the construction department must encourage, measure, set up, and evaluate or review the effectiveness of project team that was formed. In order to produce a better outcome for a high-end project, an effective and efficient project team is required which also help in increasing overall productivity. The purpose of this study is to determine the role of team effectiveness in the construction project team based on the overall construction project performance. It examines several different factors which related to team effectiveness. It also examines the relationship between team effectiveness factor and project performance aspect. Team Effect Review and Project Performance Review are developed to be used for data collection. Data collected were analyzed using several statistical tests. Results obtained from data analysis are validated using semi-structured interviews. Besides that, a comprehensive survey were developed to assess the way construction project teams in order to maintain its effectiveness throughout the project phase. In order to determine a project successful it has been found that Project Team Leadership is the most important factor. In addition, the definition of team effectiveness in the construction project team is developed based on the perspective of project clients and project team members. The results of this study are expected to provide an idea on the factors that are needed to be focused on improving the team's effectiveness towards project performance aspects. At the same time, the definition of team effectiveness from team members and owner views has been developed in order to provide a better understanding of the word team's effectiveness in construction projects.Keywords: project team, leadership, construction project, project successful
Procedia PDF Downloads 1758279 External Validation of Risk Prediction Score for Candidemia in Critically Ill Patients: A Retrospective Observational Study
Authors: Nurul Mazni Abdullah, Saw Kian Cheah, Raha Abdul Rahman, Qurratu 'Aini Musthafa
Abstract:
Purpose: Candidemia was associated with high mortality in the critically ill patients. Early candidemia prediction is imperative for preemptive antifungal treatment. This study aimed to externally validate the candidemia risk prediction scores by Jameran et al. (2021) by identifying risk factors of acute kidney injury, renal replacement therapy, parenteral nutrition, and multifocal candida colonization. Methods: This single-center, retrospective observational study included all critically ill patients admitted to the intensive care unit (ICU) in a tertiary referral center from January 2018 to December 2023. The study evaluated the candidemia risk prediction score performance by analysing the occurrence of candidemia within the study period. Patients’ demographic characteristics, comorbidities, SOFA scores, and ICU outcomes were analyzed. Patients who were diagnosed with candidemia prior to ICU admission were excluded. Results: A total of 500 patients were analyzed with 2 dropouts due to incomplete data. Validation analysis showed that the candidemia risk prediction score has a sensitivity of 75.00% (95% CI: 59.66-86.81), specificity of 65.35% (95% CI: 60.78-69.72), positive predictive value of 17.28, and negative predictive value of 96.44. The incidence of candidemia was 8.86%, with no significant differences in demographics or comorbidities except for higher SOFA scoring in the candidemia group. The candidemia group showed significantly longer ICU, hospital LOS, and higher ICU in-hospital mortality. Conclusion: This study concluded the candidemia risk prediction score by Jameran et al. (2021) had good sensitivity and a high negative prediction value. Thus, the risk prediction score was validated for candidemia prediction in critically ill patients.Keywords: Candidemia, intensive care, acute kidney injury, clinical prediction rule, incidence
Procedia PDF Downloads 58278 Application of the Electrical Resistivity Tomography and Tunnel Seismic Prediction 303 Methods for Detection Fracture Zones Ahead of Tunnel: A Case Study
Authors: Nima Dastanboo, Xiao-Qing Li, Hamed Gharibdoost
Abstract:
The purpose of this study is to investigate about the geological properties ahead of a tunnel face with using Electrical Resistivity Tomography ERT and Tunnel Seismic Prediction TSP303 methods. In deep tunnels with hydro-geological conditions, it is important to study the geological structures of the region before excavating tunnels. Otherwise, it would lead to unexpected accidents that impose serious damage to the project. For constructing Nosoud tunnel in west of Iran, the ERT and TSP303 methods are employed to predict the geological conditions dynamically during the excavation. In this paper, based on the engineering background of Nosoud tunnel, the important results of applying these methods are discussed. This work demonstrates seismic method and electrical tomography as two geophysical techniques that are able to detect a tunnel. The results of these two methods were being in agreement with each other but the results of TSP303 are more accurate and quality. In this case, the TSP 303 method was a useful tool for predicting unstable geological structures ahead of the tunnel face during excavation. Thus, using another geophysical method together with TSP303 could be helpful as a decision support in excavating, especially in complicated geological conditions.Keywords: tunnel seismic prediction (TSP303), electrical resistivity tomography (ERT), seismic wave, velocity analysis, low-velocity zones
Procedia PDF Downloads 1478277 Study on the Model Predicting Post-Construction Settlement of Soft Ground
Authors: Pingshan Chen, Zhiliang Dong
Abstract:
In order to estimate the post-construction settlement more objectively, the power-polynomial model is proposed, which can reflect the trend of settlement development based on the observed settlement data. It was demonstrated by an actual case history of an embankment, and during the prediction. Compared with the other three prediction models, the power-polynomial model can estimate the post-construction settlement more accurately with more simple calculation.Keywords: prediction, model, post-construction settlement, soft ground
Procedia PDF Downloads 4258276 Integrated Formulation of Project Scheduling and Material Procurement Considering Different Discount Options
Authors: Babak H. Tabrizi, Seyed Farid Ghaderi
Abstract:
On-time availability of materials in the construction sites plays an outstanding role in successful achievement of project’s deliverables. Thus, this paper has investigated formulation of project scheduling and material procurement at the same time, by a mixed-integer programming model, aiming to minimize/maximize penalty/reward to deliver the project and minimize material holding, ordering, and procurement costs, respectively. We have taken both all-units and incremental discount possibilities into consideration to address more flexibility from the procurement side with regard to real world conditions. Finally, the applicability and efficiency of the mathematical model is tested by different numerical examples.Keywords: discount strategies, material purchasing, project planning, project scheduling
Procedia PDF Downloads 2618275 Genetic Algorithms Multi-Objective Model for Project Scheduling
Authors: Elsheikh Asser
Abstract:
Time and cost are the main goals of the construction project management. The first schedule developed may not be a suitable schedule for beginning or completing the project to achieve the target completion time at a minimum total cost. In general, there are trade-offs between time and cost (TCT) to complete the activities of a project. This research presents genetic algorithms (GAs) multi-objective model for project scheduling considering different scenarios such as least cost, least time, and target time.Keywords: genetic algorithms, time-cost trade-off, multi-objective model, project scheduling
Procedia PDF Downloads 4138274 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory
Authors: Yang Zhang, Jian He
Abstract:
Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window
Procedia PDF Downloads 888273 Traffic Analysis and Prediction Using Closed-Circuit Television Systems
Authors: Aragorn Joaquin Pineda Dela Cruz
Abstract:
Road traffic congestion is continually deteriorating in Hong Kong. The largest contributing factor is the increase in vehicle fleet size, resulting in higher competition over the utilisation of road space. This study proposes a project that can process closed-circuit television images and videos to provide real-time traffic detection and prediction capabilities. Specifically, a deep-learning model involving computer vision techniques for video and image-based vehicle counting, then a separate model to detect and predict traffic congestion levels based on said data. State-of-the-art object detection models such as You Only Look Once and Faster Region-based Convolutional Neural Networks are tested and compared on closed-circuit television data from various major roads in Hong Kong. It is then used for training in long short-term memory networks to be able to predict traffic conditions in the near future, in an effort to provide more precise and quicker overviews of current and future traffic conditions relative to current solutions such as navigation apps.Keywords: intelligent transportation system, vehicle detection, traffic analysis, deep learning, machine learning, computer vision, traffic prediction
Procedia PDF Downloads 1028272 Identifying Project Delay Factors in the Australian Construction Industry
Authors: Syed Sohaib Bin Hasib, Hiyam Al-Kilidar
Abstract:
Meeting project deadlines is a major challenge for most construction projects. In this study, perceptions of contractors, clients, and consultants are compared relative to a list of factors derived from the review of the extant literature on project delay. 59 causes (categorized into 8 groups) of project delays were identified from the literature. A survey was devised to get insights and ranking of these factors from clients, consultants & contractors in the Australian construction industry. Findings showed that project delays in the Australian construction industry are mainly the result of skill shortages, interference in execution, and poor coordination and communication between the project stakeholders.Keywords: construction, delay factors, time delay, australian construction industry
Procedia PDF Downloads 1738271 Application of the Sufficiency Economy Philosophy to Integrated Instructional Model of In-Service Teachers of Schools under the Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn, Nakhonnayok Educational Service Area Office
Authors: Kathaleeya Chanda
Abstract:
The schools under the Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn in Nakhonnayok Educational Service Area Office are the small schools, situated in a remote and undeveloped area.Thus, the school-age youth didn’t have or have fewer opportunities to study at the higher education level which can lead to many social and economic problems. This study aims to solve these educational issues of the schools, under The Project Initiated by H.R.H Princess in Maha Chakri Sirindhorn, Nakhonnayok Educational Service Area Office, by the development of teachers, so that teachers could develop teaching and learning system with the ultimate goal to increase students’ academic achievement, increase the educational opportunities for the youth in the area, and help them learn happily. 154 in-service teachers from 22 schools and 4 different districts in Nakhonnayok participated in this teacher training. Most teachers were satisfied with the training content and the trainer. Thereafter, the teachers were given the test to assess the skills and knowledge after training. Most of the teachers earned a score higher than 75%. Accordingly, it can be concluded that after attending the training, teachers have a clear understanding of the contents. After the training session, the teachers have to write a lesson plan that is integrated or adapted to the Sufficiency Economy Philosophy. The teachers can either adopt intradisciplinary or interdisciplinary integration according to their actual teaching conditions in the school. Two weeks after training session, the researchers went to the schools to discuss with the teachers and follow up the assigned integrated lesson plan. It was revealed that the progress of integrated lesson plan could be divided into 3 groups: 1) the teachers who have completed the integrated lesson plan, but are concerned about the accuracy and consistency, 2) teachers who almost complete the lesson plan or made a great progress but are still concerned, confused in some aspects and not fill in the details of the plan, and 3), the teachers who made few progress, are uncertain and confused in many aspects, and may had overloaded tasks from their school. However, a follow-up procedure led to the commitment of teachers to complete the lesson plan. Regarding student learning assessment, from an experiment teaching, most of the students earned a score higher than 50 %. The rate is higher than the one from actual teaching. In addition, the teacher have assessed that the student is happy, enjoys learning, and providing a good cooperates in teaching activities. The students’ interview about the new lesson plan shows that they are happy with it, willing to learn, and able to apply such knowledge in daily life. Integrated lesson plan can increases the educational opportunities for youth in the area.Keywords: sufficiency, economy, philosophy, integrated education syllabus
Procedia PDF Downloads 1848270 Social Space or the Art of Belonging: The Socio-Spatial Approach in the Field of Residential Facilities for Persons with Disabilities
Authors: Sarah Reker
Abstract:
The Convention on the Rights of Persons with Disabilities (CRPD) provides the basis of this study. For all countries which have ratified the convention since its entry into force in 2007, the effective implementation of the requirements often leads to considerable challenges. Furthermore, missing indicators make it difficult to measure progress. Therefore, the aim of the research project is to contribute to analyze the consequences of the implementation process on the inclusion and exclusion conditions for people with disabilities in Germany. Disabled People’s Organisations and other associations consider the social space to be relevant for the successful implementation of the CRPD. Against this background, the research project wants to focus on the relationship between a barrier-free access to the social space and the “full and effective participation and inclusion” (Art. 3) of persons with disabilities. The theoretical basis of the study is the sociological theory of social space (“Sozialraumtheorie”).Keywords: decentralisation, qualitative research, residential facilities, social space
Procedia PDF Downloads 3638269 Understanding Health-Related Properties of Grapes by Pharmacokinetic Modelling of Intestinal Absorption
Authors: Sophie N. Selby-Pham, Yudie Wang, Louise Bennett
Abstract:
Consumption of grapes promotes health and reduces the risk of chronic diseases due to the action of grape phytochemicals in regulation of Oxidative Stress and Inflammation (OSI). The bioefficacy of phytochemicals depends on their absorption in the human body. The time required for phytochemicals to achieve maximal plasma concentration (Tₘₐₓ) after oral intake reflects the time window of maximal bioefficacy of phytochemicals, with Tₘₐₓ dependent on physicochemical properties of phytochemicals. This research collated physicochemical properties of grape phytochemicals from white and red grapes to predict their Tₘₐₓ using pharmacokinetic modelling. The predicted values of Tₘₐₓ were then compared to the measured Tₘₐₓ collected from clinical studies to determine the accuracy of prediction. In both liquid and solid intake forms, white grapes exhibit a shorter Tₘₐₓ range (0.5-2.5 h) versus red grapes (1.5-5h). The prediction accuracy of Tₘₐₓ for grape phytochemicals was 33.3% total error of prediction compared to the mean, indicating high prediction accuracy. Pharmacokinetic modelling allows prediction of Tₘₐₓ without costly clinical trials, informing dosing frequency for sustained presence of phytochemicals in the body to optimize the health benefits of phytochemicals.Keywords: absorption kinetics, phytochemical, phytochemical absorption prediction model, Vitis vinifera
Procedia PDF Downloads 1488268 A Correlation Between Perceived Usage of Project Management Methodologies and Project Success in Horizon 2020 Projects
Authors: Aurelio Palacardo, Giulio Mangano, Alberto De Marco
Abstract:
Nowadays, the global economic framework is extremely competitive, and it consequently requires an efficient deployment of the resources provided by EU. In this context, Project management practices are intended to be one of the levers for increasing such an efficiency. The objective of this work is to explore the usage of Project Management methodologies and good practices in the European-wide research program “Horizon2020” and establish whether their maturity might impact the project's success. This allows to identify strengths in terms of application of PM methodologies and good practices and, in turn, to provide feedback and opportunities for improvements to be implemented in future programs. In order to achieve this objective, the present research makes use of a survey-based data retrieval and correlation analysis to investigate the level of perceived PM maturity in H2020 projects and the correlation of maturity with project success. The results show the Project Managers involved in H2020 to hold a high level of PM maturity, confirming PM standards, which are imposed by the EU commission as a binding process, are effectively enforced.Keywords: project management, project management maturity, maturity models, project success
Procedia PDF Downloads 1588267 Navigating Uncertainties in Project Control: A Predictive Tracking Framework
Authors: Byung Cheol Kim
Abstract:
This study explores a method for the signal-noise separation challenge in project control, focusing on the limitations of traditional deterministic approaches that use single-point performance metrics to predict project outcomes. We detail how traditional methods often overlook future uncertainties, resulting in tracking biases when reliance is placed solely on immediate data without adjustments for predictive accuracy. Our investigation led to the development of the Predictive Tracking Project Control (PTPC) framework, which incorporates network simulation and Bayesian control models to adapt more effectively to project dynamics. The PTPC introduces controlled disturbances to better identify and separate tracking biases from useful predictive signals. We will demonstrate the efficacy of the PTPC with examples, highlighting its potential to enhance real-time project monitoring and decision-making, marking a significant shift towards more accurate project management practices.Keywords: predictive tracking, project control, signal-noise separation, Bayesian inference
Procedia PDF Downloads 178266 Perceived Barriers and Benefits of Technology-Based Progress Monitoring for Non-Academic Individual Education Program Goals
Authors: A. Drelick, T. Sondergeld, M. Decarlo-Tecce, K. McGinley
Abstract:
In 1975, a free, appropriate public education (FAPE) was granted for all students in the United States regardless of their disabilities. As a result, the special education landscape has been reshaped through new policies and legislation. Progress monitoring, a specific component of an Individual Education Program (IEP) calls, for the use of data collection to determine the appropriateness of services provided to students with disabilities. The recent US Supreme Court ruling in Endrew F. v. Douglas County warrants giving increased attention to student progress, specifically pertaining to improving functional, or non-academic, skills that are addressed outside the general education curriculum. While using technology to enhance data collection has become a common practice for measuring academic growth, its application for non-academic IEP goals is uncertain. A mixed-methods study examined current practices and rationales for implementing technology-based progress monitoring focused on non-academic IEP goals. Fifty-seven participants responded to an online survey regarding their progress monitoring programs for non-academic goals. After isolated analysis and interpretation of quantitative and qualitative results, data were synthesized to produce meta-inferences that drew broader conclusions on the topic. For the purpose of this paper, specific focus will be placed on the perceived barriers and benefits of implementing technology-based progress monitoring protocols for non-academic IEP goals. The findings of this study highlight facts impacting the use of technology-based progress monitoring. Perceived barriers to implementation include: (1) lack of training, (2) access to technology, (3) outdated or inoperable technology, (4) reluctance to change, (5) cost, (6) lack of individualization within technology-based programs, and (7) legal issues in special education; while perceived benefits include: (1) overall ease of use, (2) accessibility, (3) organization, (4) potential for improved presentation of data, (5) streamlining the progress-monitoring process, and (6) legal issues in special education. Based on these conclusions, recommendations are made to IEP teams, school districts, and software developers to improve the progress-monitoring process for functional skills.Keywords: special education, progress monitoring, functional skills, technology
Procedia PDF Downloads 2468265 A Study of Factors Affecting the Elapsed Time of Housing Renewal Project Implementation in Seoul
Authors: In Su Na, Gunwon Lee, Seiyong Kim
Abstract:
This study analyzed the effect of area variables and economic variables on the length of each period of the project in order to analyze the effect of agreement rate on project implementation in housing renewal projects. In conclusion, as can be seen from these results, a low agreement rate may not translate into project promotion, and a higher agreement rate may not translate into project delay. The expectation of the policy is that the lower the agreement rate, the more projects would be promoted, but that is not the actual effect. From a policy consistency viewpoint, changing the agreement rate frequently, depending on the decision of the public, is not reasonable. The policy of using agreement rate as a necessary condition for project implementation should be reconsidered.Keywords: Area and Economic Variables, Elapsed time, Housing Renewal Project
Procedia PDF Downloads 4548264 A Hybrid Feature Selection Algorithm with Neural Network for Software Fault Prediction
Authors: Khalaf Khatatneh, Nabeel Al-Milli, Amjad Hudaib, Monther Ali Tarawneh
Abstract:
Software fault prediction identify potential faults in software modules during the development process. In this paper, we present a novel approach for software fault prediction by combining a feedforward neural network with particle swarm optimization (PSO). The PSO algorithm is employed as a feature selection technique to identify the most relevant metrics as inputs to the neural network. Which enhances the quality of feature selection and subsequently improves the performance of the neural network model. Through comprehensive experiments on software fault prediction datasets, the proposed hybrid approach achieves better results, outperforming traditional classification methods. The integration of PSO-based feature selection with the neural network enables the identification of critical metrics that provide more accurate fault prediction. Results shows the effectiveness of the proposed approach and its potential for reducing development costs and effort by detecting faults early in the software development lifecycle. Further research and validation on diverse datasets will help solidify the practical applicability of the new approach in real-world software engineering scenarios.Keywords: feature selection, neural network, particle swarm optimization, software fault prediction
Procedia PDF Downloads 938263 Soccer Match Result Prediction System (SMRPS) Model
Authors: Ajayi Olusola Olajide, Alonge Olaide Moses
Abstract:
Predicting the outcome of soccer matches poses an interesting challenge for which it is realistically impossible to successfully do so for every match. Despite this, there are lots of resources that are being expended on the correct prediction of soccer matches weekly, and all over the world. Soccer Match Result Prediction System Model (SMRPSM) is a system that is proposed whereby the results of matches between two soccer teams are auto-generated, with the added excitement of giving users a chance to test their predictive abilities. Soccer teams from different league football are loaded by the application, with each team’s corresponding manager and other information like team location, team logo and nickname. The user is also allowed to interact with the system by selecting the match to be predicted and viewing of the results of completed matches after registering/logging in.Keywords: predicting, soccer match, outcome, soccer, matches, result prediction, system, model
Procedia PDF Downloads 491