Search results for: philosophy of quantum mechanics
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1442

Search results for: philosophy of quantum mechanics

1322 Ultrastrong Coupling of CdZnS/ZnS Quantum Dots and Breathing Plasmons in Aluminum Metal-Insulator-Metal Nanocavities in Near-Ultraviolet Spectrum

Authors: Li Li, Lei Wang, Chenglin Du, Mengxin Ren, Xinzheng Zhang, Wei Cai, Jingjun Xu

Abstract:

Strong coupling between excitons of quantum dots and plasmons in nanocavites can be realized at room temperature due to the strong confinement of the plasmon fields, which offers building blocks for quantum information systems or ultralow-power switches and lasers. In this work, by using cathodoluminescence, ultrastrong coupling with Rabi splitting above 1 eV between breathing plasmons in Aluminum metal-insulator-metal (MIM) cavity and excited state of CdZnS/ZnS quantum dots was reported in near-UV spectrum. Analytic analysis and full-wave electromagnetic simulations provide the evidence for the strong coupling and confirm the hybridization of the QDs exciton and LSP breathing mode. This study opens the way for new emerging applications based on strongly coupled light-matter states all over the visible region down to ultra-violet frequencies.

Keywords: breathing mode, plasmonics, quantum dot, strong coupling, ultraviolet

Procedia PDF Downloads 187
1321 Photoreflectance Anisotropy Spectroscopy of Coupled Quantum Wells

Authors: J. V. Gonzalez Fernandez, T. Mozume, S. Gozu, A. Lastras Martinez, L. F. Lastras Martinez, J. Ortega Gallegos, R. E. Balderas Navarro

Abstract:

We report on a theoretical-experimental study of photoreflectance anisotropy (PRA) spectroscopy of coupled double quantum wells. By probing the in-plane interfacial optical anisotropies, we demonstrate that PRA spectroscopy has the capacity to detect and distinguish layers with quantum dimensions. In order to account for the experimental PRA spectra, we have used a theoretical model at k=0 based on a linear electro-optic effect through a piezoelectric shear strain.

Keywords: coupled double quantum well (CDQW), linear electro-optic (LEO) effect, photoreflectance anisotropy (PRA), piezoelectric shear strain

Procedia PDF Downloads 678
1320 Fast-Forward Problem in Asymmetric Double-Well Potential

Authors: Iwan Setiawan, Bobby Eka Gunara, Katshuhiro Nakamura

Abstract:

The theory to accelerate system on quantum dynamics has been constructed to get the desired wave function on shorter time. This theory is developed on adiabatic quantum dynamics which any regulation is done on wave function that satisfies Schrödinger equation. We show accelerated manipulation of WFs with the use of a parameter-dependent in asymmetric double-well potential and also when it’s influenced by electromagnetic fields.

Keywords: driving potential, Adiabatic Quantum Dynamics, regulation, electromagnetic field

Procedia PDF Downloads 327
1319 Superconductor-Insulator Transition in Disordered Spin-1/2 Systems

Authors: E. Cuevas, M. Feigel'man, L. Ioffe, M. Mezard

Abstract:

The origin of continuous energy spectrum in large disordered interacting quantum systems is one of the key unsolved problems in quantum physics. While small quantum systems with discrete energy levels are noiseless and stay coherent forever in the absence of any coupling to external world, most large-scale quantum systems are able to produce thermal bath, thermal transport and excitation decay. This intrinsic decoherence is manifested by a broadening of energy levels which acquire a finite width. The important question is: What is the driving force and mechanism of transition(s) between two different types of many-body systems - with and without decoherence and thermal transport? Here, we address this question via two complementary approaches applied to the same model of quantum spin-1/2 system with XY-type exchange interaction and random transverse field. Namely, we develop analytical theory for this spin model on a Bethe lattice and implement numerical study of exact level statistics for the same spin model on random graph. This spin model is relevant to the study of pseudogaped superconductivity and S-I transition in some amorphous materials.

Keywords: strongly correlated electrons, quantum phase transitions, superconductor, insulator

Procedia PDF Downloads 564
1318 A Review on the Problems of Constructing a Theory of Quantum Gravity

Authors: Amber Jamal, Imran Siddiqui, Syed Tanveer Iqbal

Abstract:

This review is aimed to shed some light on problems constructing a theory of spacetime and geometry in terms of all quantum degrees of freedom called ‘Quantum Gravity’. Such a theory, which is effective at all scales of distances and energies, describes the enigma of the beginning of the Universe, its possible end, and reducing to general relativity at large distances but in a semi-classical approximation. Furthermore, the theory of quantum gravity also describes the Universe as a whole and provides a description of most fundamental questions that have puzzled scientists for decades, such as: what is space, what is time, and what is the fundamental structure of the Universe, is the spacetime discrete, if it is, where does the continuum of spacetime come from at low energies and macroscopic scales and where does it emerge from its fundamentally discrete building blocks? Quantum Field Theory (QFT) is a framework which describes the microscopic properties and dynamics of the basic building blocks of any condensed matter system. In QFT, atoms are quanta of continuous fields. At smaller scales or higher energies, the continuum description of spacetime fails. Therefore, a new description is required in terms of microscopic constituents (atoms or molecules). The objective of this scientific endeavor is to discuss the above-mentioned problems rigorously and to discuss possible way-out of the problems.

Keywords: QFT, quantum degrees of freedom, quantum gravity, semi-classical approximation

Procedia PDF Downloads 104
1317 Exploring Unexplored Horizons: Innovative Applications of Applied Fluid Mechanics in Sustainable Energy

Authors: Elvira S. Castillo, Surupa Shaw

Abstract:

This paper delves into the uncharted territories of innovative applications of applied fluid mechanics in sustainable energy. By exploring the intersection of fluid mechanics principles with renewable energy technologies, the study uncovers untapped potential and novel solutions. Through theoretical analyses, the research investigates how fluid dynamics can be strategically leveraged to enhance the efficiency and sustainability of renewable energy systems. The findings contribute to expanding the discourse on sustainable energy by presenting innovative perspectives and practical insights. This paper serves as a guide for future research endeavors and offers valuable insights for implementing advanced methodologies and technologies to address global energy challenges.

Keywords: fluid mechanics, sustainable energy, sustainble practices, renewable energy

Procedia PDF Downloads 30
1316 Hall Coefficient in the Presence of Strong Electromagnetic Waves Caused by Confined Electrons and Phonons in a Rectangular Quantum Wire

Authors: Nguyen Quang Bau, Nguyen Thu Huong, Dang Thi Thanh Thuy

Abstract:

The analytic expression for the Hall Coefficient (HC) caused by the confined electrons in the presence of a strong electromagnetic wave (EMW) including the effect of phonon confinement in rectangular quantum wires (RQWs) is calculated by using the quantum kinetic equation for electrons in the case of electron - optical phonon scattering. It is because the expression of the HC for the confined phonon case contains indexes m, m’ which are specific to the phonon confinement. The expression in a RQW is different from that for the case of unconfined phonons in a RQW or in 2D. The results are numerically calculated and discussed for a GaAs/GaAsAl RQW. The numerical results show that HC in a RQW can have both negative and positive values. This is different from the case of the absence of EMW and the case presence of EMW including the effect of phonon unconfinement in a RQW. These results are also compared with those in the case of unconfined phonons in a RQW and confined phonons in a quantum well. The conductivity in the case of confined phonon has more resonance peaks compared with that in case of unconfined phonons in a RQW. This new property is the same in quantum well. All results are compared with the case of unconfined phonons to see differences.

Keywords: Hall coefficient, rectangular quantum wires, electron-optical phonon interaction, quantum kinetic equation, confined phonons

Procedia PDF Downloads 263
1315 Difference and Haeccities: On the Religious Foundations of Deleuze’s Philosophy of Difference

Authors: Tony See

Abstract:

Although much has been devoted to Deleuze’s ethics of difference, relatively little has been focused on how his political perspective is informed by his appropriation of religious ideas and theological concepts. The bulk of the scholarly works have examined his political views with the assumption that they have little or nothing to do with his ideas of religions at all. This is in spite of the fact that Deleuze has drawn heavily from religious and theological thinkers such as Duns Scotus, Spinoza and Nietzsche. This dimension can also be traced in Deleuze’s later works, when he collaborated with Felix Guattari in creating an anti-Oedipal philosophy of difference after May 68. This paper seeks to reverse the tendency in contemporary scholarship ignore Deleuze’s ‘religious’ framework in his understanding of the ethical and the political. Towards this aim, we will refer to key texts in Deleuze’s corpus such as Expressionism in Philosophy, A Thousand Plateaus and others.

Keywords: difference, haeccities, identity, religion, theology

Procedia PDF Downloads 340
1314 Resonant Fluorescence in a Two-Level Atom and the Terahertz Gap

Authors: Nikolai N. Bogolubov, Andrey V. Soldatov

Abstract:

Terahertz radiation occupies a range of frequencies somewhere from 100 GHz to approximately 10 THz, just between microwaves and infrared waves. This range of frequencies holds promise for many useful applications in experimental applied physics and technology. At the same time, reliable, simple techniques for generation, amplification, and modulation of electromagnetic radiation in this range are far from been developed enough to meet the requirements of its practical usage, especially in comparison to the level of technological abilities already achieved for other domains of the electromagnetic spectrum. This situation of relative underdevelopment of this potentially very important range of electromagnetic spectrum is known under the name of the 'terahertz gap.' Among other things, technological progress in the terahertz area has been impeded by the lack of compact, low energy consumption, easily controlled and continuously radiating terahertz radiation sources. Therefore, development of new techniques serving this purpose as well as various devices based on them is of obvious necessity. No doubt, it would be highly advantageous to employ the simplest of suitable physical systems as major critical components in these techniques and devices. The purpose of the present research was to show by means of conventional methods of non-equilibrium statistical mechanics and the theory of open quantum systems, that a thoroughly studied two-level quantum system, also known as an one-electron two-level 'atom', being driven by external classical monochromatic high-frequency (e.g. laser) field, can radiate continuously at much lower (e.g. terahertz) frequency in the fluorescent regime if the transition dipole moment operator of this 'atom' possesses permanent non-equal diagonal matrix elements. This assumption contradicts conventional assumption routinely made in quantum optics that only the non-diagonal matrix elements persist. The conventional assumption is pertinent to natural atoms and molecules and stems from the property of spatial inversion symmetry of their eigenstates. At the same time, such an assumption is justified no more in regard to artificially manufactured quantum systems of reduced dimensionality, such as, for example, quantum dots, which are often nicknamed 'artificial atoms' due to striking similarity of their optical properties to those ones of the real atoms. Possible ways to experimental observation and practical implementation of the predicted effect are discussed too.

Keywords: terahertz gap, two-level atom, resonant fluorescence, quantum dot, resonant fluorescence, two-level atom

Procedia PDF Downloads 254
1313 Finite Element Method as a Solution Procedure for Problems in Tissue Biomechanics

Authors: Momoh Omeiza Sheidu

Abstract:

Finite element method as a method of providing solutions to problems in computational bio mechanics provides a framework for modeling the function of tissues that integrates structurally from cell to organ system and functionally across the physiological processes that affect tissue mechanics or are regulated by mechanical forces. In this paper, we present an integrative finite element strategy for solution to problems in tissue bio mechanics as a case study.

Keywords: finite element, biomechanics, modeling, computational biomechanics

Procedia PDF Downloads 485
1312 Gaia (Earth) Education Philosophy – A Journey Back to the Future

Authors: Darius Singh

Abstract:

This study adopts a research, develop, and deploy methodology to create a state-of-the-art forest preschool environment using technology and the Gaia (Earth) Education Philosophy as design support. The new philosophy adopts an ancient Greek terminology, “Gaia,” meaning “Mother Earth”, and it take its principle to model everything with the oldest living and breathing entity that it know – Earth. This includes using nature and biomimicry-based principles in building design, environments, curricula, teaching, learning, values and outcomes for children. The study highlights the potential effectiveness of the Gaia (Earth) Education Philosophy as a means of designing Earth-inspired environments for children’s learning. The discuss the strengths of biomimicry-based design principles and propose a curriculum that emphasizes natural outcomes for early childhood learning. Theoretical implications of the study are that the Gaia (Earth) Education Philosophy could serve as a strong foundation for educating young learners.it present a unique approach that promotes connections with Earth-principles and lessons that can contribute to the development of social and environmental consciousness among children and help educate generations to come into a stable and balanced future.

Keywords: earth science, nature education, sustainability, gaia, forest school, nature, inspirational teaching and learning

Procedia PDF Downloads 48
1311 Using Squeezed Vacuum States to Enhance the Sensitivity of Ground Based Gravitational Wave Interferometers beyond the Standard Quantum Limit

Authors: Giacomo Ciani

Abstract:

This paper reviews the impact of quantum noise on modern gravitational wave interferometers and explains how squeezed vacuum states are used to push the noise below the standard quantum limit. With the first detection of gravitational waves from a pair of colliding black holes in September 2015 and subsequent detections including that of gravitational waves from a pair of colliding neutron stars, the ground-based interferometric gravitational wave observatories LIGO and VIRGO have opened the era of gravitational-wave and multi-messenger astronomy. Improving the sensitivity of the detectors is of paramount importance to increase the number and quality of the detections, fully exploiting this new information channel about the universe. Although still in the commissioning phase and not at nominal sensitivity, these interferometers are designed to be ultimately limited by a combination of shot noise and quantum radiation pressure noise, which define an envelope known as the standard quantum limit. Despite the name, this limit can be beaten with the use of advanced quantum measurement techniques, with the use of squeezed vacuum states being currently the most mature and promising. Different strategies for implementation of the technology in the large-scale detectors, in both their frequency-independent and frequency-dependent variations, are presented, together with an analysis of the main technological issues and expected sensitivity gain.

Keywords: gravitational waves, interferometers, squeezed vacuum, standard quantum limit

Procedia PDF Downloads 137
1310 Trions in Semiconductor Quantum Dot System

Authors: Jayden Leonard, Nguyen Que Huong

Abstract:

In this work, we study the Trion state in a spherical quantum dot of a direct band gap semiconductor with a shell of organic material. The electronic structure of the Trion due to degenerate valence band will be considered. The coupling between the wannier exciton inside the dot and the Frenkel exciton in the shell will make the Trion state become hybrid. The competition between “semiconductor” and “organic” phases of the Trion and the transitions between them depend on Parameters of the system such as the materials, the size of the dot and the thickness of the shell, etc… and could be manipulated using those parameters.

Keywords: trion, exciton, quantum dot, heterostructure

Procedia PDF Downloads 161
1309 Non-Interactive XOR Quantum Oblivious Transfer: Optimal Protocols and Their Experimental Implementations

Authors: Lara Stroh, Nikola Horová, Robert Stárek, Ittoop V. Puthoor, Michal Mičuda, Miloslav Dušek, Erika Andersson

Abstract:

Oblivious transfer (OT) is an important cryptographic primitive. Any multi-party computation can be realised with OT as a building block. XOR oblivious transfer (XOT) is a variant where the sender Alice has two bits, and a receiver, Bob, obtains either the first bit, the second bit, or their XOR. Bob should not learn anything more than this, and Alice should not learn what Bob has learned. Perfect quantum OT with information-theoretic security is known to be impossible. We determine the smallest possible cheating probabilities for unrestricted dishonest parties in non-interactive quantum XOT protocols using symmetric pure states and present an optimal protocol which outperforms classical protocols. We also "reverse" this protocol so that Bob becomes the sender of a quantum state and Alice the receiver who measures it while still implementing oblivious transfer from Alice to Bob. Cheating probabilities for both parties stay the same as for the unreversed protocol. We optically implemented both the unreversed and the reversed protocols and cheating strategies, noting that the reversed protocol is easier to implement.

Keywords: oblivious transfer, quantum protocol, cryptography, XOR

Procedia PDF Downloads 100
1308 Understanding the Architecture of Hindu Temples: A Philosophical Interpretation

Authors: A. Bandyopadhyay

Abstract:

Vedic philosophy is one of the oldest existing philosophies of the world. Started around 6500 BC, in Western Indian subcontinent, the Indus valley Civilizations developed a theology which, gradually developed into a well-established philosophy of beliefs, popularly known as ‘Hindu religion’. In Vedic theology, the abstract concept of God was formulated mostly by close observation of the dynamicity and the recurrence of natural and universal phenomena. Through the ages, the philosophy of this theology went through various discursions, debates, and questionings and the abstract concept of God was, in time, formalized into more representational forms by the means of various signs and symbols. Often, these symbols were used in more subtle ways in the construction of “sacred” sculptures and structures. Apparently, two different philosophies were developed from the Vedic philosophy and these two philosophies are mostly seen in the northern part and southern part of the Indian subcontinent. This paper tries to summarize the complex philosophical treaties of Hinduism of northern and southern India and seeks to understand the meanings of the various signs and symbolisms that were incorporated in the architecture of Hindu temples, including the names given to various parts of the temples. The Hindu temples are not only places of worship or ‘houses of Gods’ like the Greek and Roman temples but are also structures that symbolize the dynamicity and also spiritual upliftment of human beings.

Keywords: Hindu, philosophy, temple, Vedic

Procedia PDF Downloads 124
1307 Generalized Hyperbolic Functions: Exponential-Type Quantum Interactions

Authors: Jose Juan Peña, J. Morales, J. García-Ravelo

Abstract:

In the search of potential models applied in the theoretical treatment of diatomic molecules, some of them have been constructed by using standard hyperbolic functions as well as from the so-called q-deformed hyperbolic functions (sc q-dhf) for displacing and modifying the shape of the potential under study. In order to transcend the scope of hyperbolic functions, in this work, a kind of generalized q-deformed hyperbolic functions (g q-dhf) is presented. By a suitable transformation, through the q deformation parameter, it is shown that these g q-dhf can be expressed in terms of their corresponding standard ones besides they can be reduced to the sc q-dhf. As a useful application of the proposed approach, and considering a class of exactly solvable multi-parameter exponential-type potentials, some new q-deformed quantum interactions models that can be used as interesting alternative in quantum physics and quantum states are presented. Furthermore, due that quantum potential models are conditioned on the q-dependence of the parameters that characterize to the exponential-type potentials, it is shown that many specific cases of q-deformed potentials are obtained as particular cases from the proposal.

Keywords: diatomic molecules, exponential-type potentials, hyperbolic functions, q-deformed potentials

Procedia PDF Downloads 168
1306 Consideration of Magnetic Lines of Force as Magnets Produced by Percussion Waves

Authors: Angel Pérez Sánchez

Abstract:

Background: Consider magnetic lines of force as a vector magnetic current was introduced by convention around 1830. But this leads to a dead end in traditional physics, and quantum explanations must be referred to explain the magnetic phenomenon. However, a study of magnetic lines as percussive waves leads to other paths capable of interpreting magnetism through traditional physics. Methodology: Brick used in the experiment: two parallel electric current cables attract each other if current goes in the same direction and its application at a microscopic level inside magnets. Significance: Consideration of magnetic lines as magnets themselves would mean a paradigm shift in the study of magnetism and open the way to provide solutions to mysteries of magnetism until now only revealed by quantum mechanics. Major findings: discover how a magnetic field is created, as well as reason how magnetic attraction and repulsion work, understand how magnets behave when splitting them, and reveal the impossibility of a Magnetic Monopole. All of this is presented as if it were a symphony in which all the notes fit together perfectly to create a beautiful, smart, and simple work.

Keywords: magnetic lines of force, magnetic field, magnetic attraction and repulsion, magnet split, magnetic monopole, magnetic lines of force as magnets, magnetic lines of force as waves

Procedia PDF Downloads 57
1305 Household Accounting for Expense Behavior Changing of Sufficiency Economy Philosophy in Samut Songkhram Province

Authors: Khajeerat Phumphruk

Abstract:

This research aims to study the knowledge, attitude toward household accounting philosophy of sufficiency economy and study the Expense Behavior Changing of household accounting in Banbolang Samut Songkhram Province. The samples of this research are chief of villages and householders in Banbolang Samut Songkhram. The sampling revealed that chief of villages and 60 of householders. The random sampling was used to collect the data. Tools of this research are structure interview and questionnaires that verified by specialist as the content validity and reliability. The result found that the reasons of doing the household accounting are finding the revenue and expenditure in order to in develop the wealthy of the family and follow the philosophy of sufficiency economy of His Majesty. The reasons of not doing the household accounting are less understanding of the household accounting, less time and useless. Moreover, there are householders who interesting in training about household accounting.

Keywords: expense behavior changing, household accounting, samut songkhram province, sufficiency economy philosophy

Procedia PDF Downloads 179
1304 Eco-Friendly Synthesis of Carbon Quantum Dots as an Effective Adsorbent

Authors: Hebat‑Allah S. Tohamy, Mohamed El‑Sakhawy, Samir Kamel

Abstract:

Fluorescent carbon quantum dots (CQDs) were prepared by an economical, green, and single-step procedure based on microwave heating of urea with sugarcane bagasse (SCB), cellulose (C), or carboxymethyl cellulose (CMC). The prepared CQDs were characterized using a series of spectroscopic techniques, and they had small size, strong absorption in the UV, and excitation wavelength-dependent fluorescence. The prepared CQDs were used for Pb(II) adsorption from an aqueous solution. The removal efficiency percentages (R %) were 99.16, 96.36, and 98.48 for QCMC, QC, and QSCB. The findings validated the efficiency of CQDs synthesized from CMC, cellulose, and SCB as excellent materials for further utilization in the environmental fields of wastewater pollution detection, adsorption, and chemical sensing applications. The kinetics and isotherms studied found that all CQD isotherms fit well with the Langmuir model than Freundlich and Temkin models. According to R², the pseudo-second-order fits the adsorption of QCMC, while the first-order one fits with QC and QSCB.

Keywords: carbon quantum dots, graphene quantum dots, fluorescence, quantum yield, water treatment, agricultural wastes

Procedia PDF Downloads 109
1303 A Real-World Roadmap and Exploration of Quantum Computers Capacity to Trivialise Internet Security

Authors: James Andrew Fitzjohn

Abstract:

This paper intends to discuss and explore the practical aspects of cracking encrypted messages with quantum computers. The theory of this process has been shown and well described both in academic papers and headline-grabbing news articles, but with all theory and hyperbole, we must be careful to assess the practicalities of these claims. Therefore, we will use real-world devices and proof of concept code to prove or disprove the notion that quantum computers will render the encryption technologies used by many websites unfit for purpose. It is time to discuss and implement the practical aspects of the process as many advances in quantum computing hardware/software have recently been made. This paper will set expectations regarding the useful lifespan of RSA and cipher lengths and propose alternative encryption technologies. We will set out comprehensive roadmaps describing when and how encryption schemes can be used, including when they can no longer be trusted. The cost will also be factored into our investigation; for example, it would make little financial sense to spend millions of dollars on a quantum computer to factor a private key in seconds when a commodity GPU could perform the same task in hours. It is hoped that the real-world results depicted in this paper will help influence the owners of websites who can take appropriate actions to improve the security of their provisions.

Keywords: quantum computing, encryption, RSA, roadmap, real world

Procedia PDF Downloads 112
1302 Theorization of Dalit Feminism: Critical Reflection on Caste

Authors: Sheetal Dinkar Kamble

Abstract:

The philosophy of Dalit women revolves around the question of how gender and caste inequality manifest itself in social institutions such as the workplace, home, community, rural economy, and the public and private spaces. On the other hand, Dalit feminism explains the range of untouchability related discriminatory practices and how they incorporate the factor of gender in all social relationships. Gender theories are needed to explain how the caste system works on gendered assumptions and are selectively subject to the notion of caste in established ways of life and the punishments for deviating from them. Dalit feminists working in the field of traditional philosophy, from anthropology to epistemology, have introduced new concepts and approaches that would have to form the basis of their philosophy. It also presents philosophical knowledge of caste, gender, religion, class, and sexuality. They are bringing a particularly feminist lens on the issues of globalization, human rights, popular culture, and caste. Dalit women’s philosophy leads to Dalit feminism and knowledge creation. It is an analysis of caste history, contributions, and the challenges faced by Dalit women in rural India. The researcher claims that the method of the case study, to understand caste and gender involved in the discussion of Dalit feminist philosophy, is important. This study will contribute towards the development of dynamic theoretical frameworks directed towards social justice and equality.

Keywords: caste, gender, class, religion

Procedia PDF Downloads 93
1301 The Incoherence of the Philosophers as a Defense of Philosophy against Theology

Authors: Edward R. Moad

Abstract:

Al-Ghazali’s Tahāfat al Falāsifa is widely construed as an attack on philosophy in favor of theological fideism. Consequently, he has been blamed for ‘death of philosophy’ in the Muslim world. ‘Falsifa’ however is not philosophy itself, but rather a range of philosophical doctrines mainly influenced by or inherited form Greek thought. In these terms, this work represents a defense of philosophy against what we could call ‘falsifical’ fideism. In the introduction, Ghazali describes his target audience as, not the falasifa, but a group of pretenders engaged in taqlid to a misconceived understanding of falasifa, including the belief that they were capable of demonstrative certainty in the field of metaphysics. He promises to use falsifa standards of logic (with which he independently agrees), to show that that the falasifa failed to demonstratively prove many of their positions. Whether or not he succeeds in that, the exercise of subjecting alleged proofs to critical scrutiny is quintessentially philosophical, while uncritical adherence to a doctrine, in the name of its being ‘philosophical’, is decidedly unphilosophical. If we are to blame the intellectual decline of the Muslim world on someone’s ‘bad’ way of thinking, rather than more material historical circumstances (which is already a mistake), then blame more appropriately rests with modernist Muslim thinkers who, under the influence of orientalism (and like Ghazali’s philosophical pretenders) mistook taqlid to the falasifa as philosophy itself. The discussion of the Tahāfut takes place in the context of an epistemic (and related social) hierarchy envisioned by the falasifa, corresponding to the faculties of the sense, the ‘estimative imagination’ (wahm), and the pure intellect, along with the respective forms of discourse – rhetoric, dialectic, and demonstration – appropriate to each category of that order. Al-Farabi in his Book of Letters describes a relation between dialectic and demonstration on the one hand, and theology and philosophy on the other. The latter two are distinguished by method rather than subject matter. Theology is that which proceeds dialectically, while philosophy is (or aims to be?) demonstrative. Yet, Al-Farabi tells us, dialectic precedes philosophy like ‘nourishment for the tree precedes its fruit.’ That is, dialectic is part of the process, by which we interrogate common and imaginative notions in the pursuit of clearly understood first principles that we can then deploy in the demonstrative argument. Philosophy is, therefore, something we aspire to through, and from a discursive condition of, dialectic. This stands in apparent contrast to the understanding of Ibn Sina, for whom one arrives at the knowledge of first principles through contact with the Active Intellect. It also stands in contrast to that of Ibn Rushd, who seems to think our knowledge of first principles can only come through reading Aristotle. In conclusion, based on Al-Farabi’s framework, Ghazali’s Tahafut is a truly an exercise in philosophy, and an effort to keep the door open for true philosophy in the Muslim mind, against the threat of a kind of developing theology going by the name of falsifa.

Keywords: philosophy, incoherence, theology, Tahafut

Procedia PDF Downloads 146
1300 Analysis of Tandem Detonator Algorithm Optimized by Quantum Algorithm

Authors: Tomasz Robert Kuczerski

Abstract:

The high complexity of the algorithm of the autonomous tandem detonator system creates an optimization problem due to the parallel operation of several machine states of the system. Many years of experience and classic analyses have led to a partially optimized model. Limitations on the energy resources of this class of autonomous systems make it necessary to search for more effective methods of optimisation. The use of the Quantum Approximate Optimization Algorithm (QAOA) in these studies shows the most promising results. With the help of multiple evaluations of several qubit quantum circuits, proper results of variable parameter optimization were obtained. In addition, it was observed that the increase in the number of assessments does not result in further efficient growth due to the increasing complexity of optimising variables. The tests confirmed the effectiveness of the QAOA optimization method.

Keywords: algorithm analysis, autonomous system, quantum optimization, tandem detonator

Procedia PDF Downloads 73
1299 Disclosure Extension of Oil and Gas Reserve Quantum

Authors: Ali Alsawayeh, Ibrahim Eldanfour

Abstract:

This paper examines the extent of disclosure of oil and gas reserve quantum in annual reports of international oil and gas exploration and production companies, particularly companies in untested international markets, such as Canada, the UK and the US, and seeks to determine the underlying factors that affect the level of disclosure on oil reserve quantum. The study is concerned with the usefulness of disclosure of oil and gas reserves quantum to investors and other users. Given the primacy of the annual report (10-k) as a source of supplemental reserves data about the company and as the channel through which companies disseminate information about their performance, the annual reports for one year (2009) were the central focus of the study. This comparative study seeks to establish whether differences exist between the sample companies, based on new disclosure requirements by the Securities and Exchange Commission (SEC) in respect of reserves classification and definition. The extent of disclosure of reserve is provided and compared among the selected companies. Statistical analysis is performed to determine whether any differences exist in the extent of disclosure of reserve under the determinant variables. This study shows that some factors would affect the extent of disclosure of reserve quantum in the above-mentioned countries, namely: company’s size, leverage and quality of auditor. Companies that provide reserves quantum in detail appear to display higher size. The findings also show that the level of leverage has affected companies’ reserves quantum disclosure. Indeed, companies that provide detailed reserves quantum disclosure tend to employ a ‘high-quality auditor’. In addition, the study found significant independent variable such as Profit Sharing Contracts (PSC). This factor could explain variations in the level of disclosure of oil reserve quantum between the contractor and host governments. The implementation of SEC oil and gas reporting requirements do not enhance companies’ valuation because the new rules are based only on past and present reserves information (proven reserves); hence, future valuation of oil and gas companies is missing for the market.

Keywords: comparison, company characteristics, disclosure, reserve quantum, regulation

Procedia PDF Downloads 390
1298 Stability of Stochastic Model Predictive Control for Schrödinger Equation with Finite Approximation

Authors: Tomoaki Hashimoto

Abstract:

Recent technological advance has prompted significant interest in developing the control theory of quantum systems. Following the increasing interest in the control of quantum dynamics, this paper examines the control problem of Schrödinger equation because quantum dynamics is basically governed by Schrödinger equation. From the practical point of view, stochastic disturbances cannot be avoided in the implementation of control method for quantum systems. Thus, we consider here the robust stabilization problem of Schrödinger equation against stochastic disturbances. In this paper, we adopt model predictive control method in which control performance over a finite future is optimized with a performance index that has a moving initial and terminal time. The objective of this study is to derive the stability criterion for model predictive control of Schrödinger equation under stochastic disturbances.

Keywords: optimal control, stochastic systems, quantum systems, stabilization

Procedia PDF Downloads 438
1297 Characteristics of Photoluminescence in Resonant Quasiperiodic Double-period Quantum Wells

Authors: C. H. Chang, R. Z. Qiu, C. W. Tsao, Y. H. Cheng, C. H. Chen, W. J. Hsueh

Abstract:

Characteristics of photoluminescence (PL) in a resonant quasi-periodic double-period quantum wells (DPQW) are demonstrated. The maximum PL intensity in the DPQW is remarkably greater than that in a traditional periodic QW (PQW) under the Bragg or anti-Bragg conditions. The optimal PL spectrum in the DPQW has an asymmetrical form instead of the symmetrical form in the PQW. Moreover, there are two large values of PL intensity in the DPQW, which also differs from the PQW.

Keywords: Photoluminescence, quantum wells, quasiperiodic structure

Procedia PDF Downloads 708
1296 Combining Laws of Mechanics and Hydrostatics in Non Inertial Reference Frames

Authors: M. Blokh

Abstract:

Method of combined teaching laws of classical mechanics and hydrostatics in non-inertial reference frames for undergraduate students is proposed. Pressure distribution in a liquid (or gas) moving with acceleration is considered. Combined effect of hydrostatic force and force of inertia on a body immersed in a liquid can lead to paradoxical results, in a motion of pendulum in particular. The body motion under Stokes force influence and forces in rotating reference frames are investigated as well. Problems and difficulties in student perceptions are analyzed.

Keywords: hydrodynamics, mechanics, non-inertial reference frames, teaching

Procedia PDF Downloads 365
1295 Management of Local Towns (Tambon) According to Philosophy of Sufficiency Economy

Authors: Wichian Sriprachan, Chutikarn Sriviboon

Abstract:

The objectives of this research were to study the management of local towns and to develop a better model of town management according to the Philosophy of Sufficiency Economy. This study utilized qualitative research, field research, as well as documentary research at the same time. A total of 10 local towns or Tambons of Supanburi province, Thailand were selected for an in-depth interview. The findings revealed that the model of local town management according to Philosophy of Sufficient Economy was in a level of “good” and the model of management has the five basic guidelines: 1) ability to manage budget information and keep it up-to-date, 2) ability to decision making according to democracy rules, 3) ability to use check and balance system, 4) ability to control, follow, and evaluation, and 5) ability to allow the general public to participate. In addition, the findings also revealed that the human resource management according to Philosophy of Sufficient Economy includes obeying laws, using proper knowledge, and having integrity in five areas: plan, recruit, select, train, and maintain human resources.

Keywords: management, local town (Tambon), principles of sufficiency economy, marketing management

Procedia PDF Downloads 329
1294 Biocompatibility and Sensing Ability of Highly Luminescent Synthesized Core-Shell Quantum Dots

Authors: Mohan Singh Mehata, R. K. Ratnesh

Abstract:

CdSe, CdSe/ZnS, and CdSe/CdS core-shell quantum dots (QDs) of 3-4 nm were developed by using chemical route and following successive ion layer adsorption and reaction (SILAR) methods. The prepared QDs have been examined by using X-ray diffraction, high-resolution electron microscopy and optical spectroscopy. The photoluminescence (PL) quantum yield (QY) of core-shell QDs increases with respect to the core, indicating that the radiative rate increases by the formation of shell around core, as evident by the measurement of PL lifetime. Further, the PL of bovine serum albumin is quenched strongly by the presence of core-shall QDs and follow the Stern-Volmer (S-V) relation, whereas the lifetime does not follow the S-V relation, demonstrating that the observed quenching is predominantly static in nature. Among all the QDs, the CdSe/ZnS QDs shows the least cytotoxicity hence most biocompatibility.

Keywords: biocompatibility, core-shell quantum dots, photoluminescence and lifetime, sensing ability

Procedia PDF Downloads 221
1293 Two-Photon Fluorescence in N-Doped Graphene Quantum Dots

Authors: Chi Man Luk, Ming Kiu Tsang, Chi Fan Chan, Shu Ping Lau

Abstract:

Nitrogen-doped graphene quantum dots (N-GQDs) were fabricated by microwave-assisted hydrothermal technique. The optical properties of the N-GQDs were studied. The luminescence of the N-GQDs can be tuned by varying the excitation wavelength. Furthermore, two-photon luminescence of the N-GQDs excited by near-infrared laser can be obtained. It is shown that N-doping play a key role on two-photon luminescence. The N-GQDs are expected to find application in biological applications including bioimaging and sensing.

Keywords: graphene quantum dots, nitrogen doping, photoluminescence, two-photon fluorescence

Procedia PDF Downloads 617