Search results for: opening and closing shear stresses
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2558

Search results for: opening and closing shear stresses

2438 Assessment of the Interface Strength between High-Density Polyethylene Geomembrane and Expanded Polystyrene by the Direct Shear Test

Authors: Sergio Luiz da Costa Junior, Carolina Fofonka Palomino, Paulo Cesar Lodi

Abstract:

The use of light landfills is an effective solution for road works in soft ground sites, such as Rio de Janeiro (RJ) and Santos (SP) - the Southeastern Brazilian coast. The technique consists in replacing the topsoil by expandable polystyrene (EPS) geofoam, lined with geomembrane to prevent the attack of chemical products.Thus, knowing the interface shear strength of those materials is important in projects to avoid rupturing the system. The purpose of this paper is to compare the shear strength in the geomembrane-EPS interfaces by the direct shear test. The tests were performed under the dry and saturated condition, and four kind of high-density polyethylene (HDPE) 2,00mm geomembranes were used, smooth and texturized - manufactured in the flat die and blown film process. It was found that the shear strength is directly influenced by the roughness of the geomembrane, showed higher friction angle in the textured geomembrane. The direct shear test, in the saturated condition, also showed smaller friction angle than the now-wetted test.

Keywords: geofoam, geomembrane, soft ground, strength shear

Procedia PDF Downloads 317
2437 The Effect of Soil Binder and Gypsum to the Changes of the Expansive Soil Shear Strength Parameters

Authors: Yulia Hastuti, Ratna Dewi, Muhammad Sandi

Abstract:

Many methods of soil stabilization that can be done such as by mixing chemicals. In this research, stabilization by mixing the soil using two types of chemical admixture, those are gypsum with a variation of 5%, 10%, and 15% and Soil binder with a concentration of 20 gr / lot of water, 25 gr / lot of water, and 30 gr / lot of water aimed to determine the effect on the soil plasticity index values and comparing the value of shear strength parameters of the mixture with the original soil conditions using a Triaxial UU test. Based on research done shows that with increasing variations in the mix, then the value of plasticity index decreased, which was originally 42% (very high degree of swelling) becomes worth 11.24% (lower Swelling degree) when a mixture of gypsum 15% and 30 gr / Lt water soil binder. As for the value shear, strength parameters increased in all variations of mixture. Admixture with the highest shear strength parameter's value is at 15% the mixture of gypsum and 20 gr / litre of water of soil binder with the 14 day treatment period, which has enhanced the cohesion value of 559.01%, the friction angle by 1157.14%. And a shear strength value of 568.49%. It can be concluded that the admixture of gypsum and soil binder correctly, can increase the value of shear strength parameters significantly and decrease the value of plasticity index of the soil.

Keywords: expansive soil, gypsum, soil binder, shear strength

Procedia PDF Downloads 475
2436 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 138
2435 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 283
2434 Analysis and Modeling of Stresses and Creeps Resulting from Soil Mechanics in Southern Plains of Kerman Province

Authors: Kourosh Nazarian

Abstract:

Many of the engineering materials, such as behavioral metals, have at least a certain level of linear behavior. It means that if the stresses are doubled, the deformations would be also doubled. In fact, these materials have linear elastic properties. Soils do not follow this law, for example, when compressed, soils become gradually tighter. On the surface of the ground, the sand can be easily deformed with a finger, but in high compressive stresses, they gain considerable hardness and strength. This is mainly due to the increase in the forces among the separate particles. Creeps also deform the soils under a constant load over time. Clay and peat soils have creep behavior. As a result of this phenomenon, structures constructed on such soils will continue their collapse over time. In this paper, the researchers analyzed and modeled the stresses and creeps in the southern plains of Kerman province in Iran through library-documentary, quantitative and software techniques, and field survey. The results of the modeling showed that these plains experienced severe stresses and had a collapse of about 26 cm in the last 15 years and also creep evidence was discovered in an area with a gradient of 3-6 degrees.

Keywords: Stress, creep, faryab, surface runoff

Procedia PDF Downloads 180
2433 Analysis of Cyclic Elastic-Plastic Loading of Shaft Based on Kinematic Hardening Model

Authors: Isa Ahmadi, Ramin Khamedi

Abstract:

In this paper, the elasto-plastic and cyclic torsion of a shaft is studied using a finite element method. The Prager kinematic hardening theory of plasticity with the Ramberg and Osgood stress-strain equation is used to evaluate the cyclic loading behavior of the shaft under the torsional loading. The material of shaft is assumed to follow the non-linear strain hardening property based on the Prager model. The finite element method with C1 continuity is developed and used for solution of the governing equations of the problem. The successive substitution iterative method is used to calculate the distribution of stresses and plastic strains in the shaft due to cyclic loads. The shear stress, effective stress, residual stress and elastic and plastic shear strain distribution are presented in the numerical results.

Keywords: cyclic loading, finite element analysis, Prager kinematic hardening model, torsion of shaft

Procedia PDF Downloads 410
2432 Investigate the Mechanical Effect of Different Root Analogue Models to Soil Strength

Authors: Asmaa Al Shafiee, Erdin Ibraim

Abstract:

Stabilizing slopes by using vegetation is considered as a cost-effective and eco-friendly alternative to the conventional methods. The main aim of this study is to investigate the mechanical effect of analogue root systems on the shear strength of different soil types. Three objectives were defined to achieve the main aim of this paper. Firstly, explore the effect of root architectural design to shear strength parameters. Secondly, study the effect of root area ratio (RAR) on the shear strength of two different soil types. Finally, to investigate how different kinds of soil can affect the behavior of the roots during shear failure. 3D printing tool was used to develop different analogue tap root models with different architectural designs. Direct shear tests were performed on Leighton Buzzard (LB) fraction B sand, which represents a coarse sand and Huston sand, which represent medium-coarse sand. All tests were done with the same relative density for both kinds of sand. The results of the direct shear test indicated that using plant roots will increase both friction angle and cohesion of soil. Additionally, different root designs affected differently the shear strength of the soil. Furthermore, the directly proportional relationship was found between root area ratio for the same root design and shear strength parameters of soil. Finally, the root area ratio effect should be combined with branches penetrating the shear plane to get the highest results.

Keywords: leighton buzzard sand, root area ratio, rooted soil, shear strength, slope stabilization

Procedia PDF Downloads 152
2431 Mechanical Properties of a Soil Stabilized With a Portland Cement

Authors: Ahmed Emad Ahmed, Mostafa El Abd, Ahmed Wakeb, Moahmmed Eissa

Abstract:

Soil modification and reinforcing aims to increase soil shear strength and stiffness. In this report, different amounts of cement were added to the soil to explore its effect on shear strength and penetration using 3 tests. The first test is proctor compaction test which was conducted to determine the optimal moisture content and maximum dry density. The second test was direct shear test which was conducted to measure shear strength of soil. The third experiment was California bearing ratio test which was done to measure the penetration in soil. Each test was done different amount of times using different amounts of cement. The results from every test show that cement improve soil shear strength properties and stiffness.

Keywords: soil stabilized, soil, mechanical properties of soil, soil stabilized with a portland cement

Procedia PDF Downloads 135
2430 An Efficient Approach for Shear Behavior Definition of Plant Stalk

Authors: M. R. Kamandar, J. Massah

Abstract:

The information of the impact cutting behavior of plants stalk plays an important role in the design and fabrication of plants cutting equipment. It is difficult to investigate a theoretical method for defining cutting properties of plants stalks because the cutting process is complex. Thus, it is necessary to set up an experimental approach to determine cutting parameters for a single stalk. To measure the shear force, shear energy and shear strength of plant stalk, a special impact cutting tester was fabricated. It was similar to an Izod impact cutting tester for metals but a cutting blade and data acquisition system were attached to the end of pendulum's arm. The apparatus was included four strain gages and a digital indicator to show the real-time cutting force of plant stalk. To measure the shear force and also testing the apparatus, two plants’ stalks, like buxus and privet, were selected. The samples (buxus and privet stalks) were cut under impact cutting process at four loading rates 1, 2, 3 and 4 m.s-1 and three internodes fifth, tenth and fifteenth by the apparatus. At buxus cutting analysis: the minimum value of cutting energy was obtained at fifth internode and loading rate 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate 1 m.s-1. At privet cutting analysis: the minimum value of shear consumption energy was obtained at fifth internode and loading rate: 4 m.s-1 and the maximum value of shear energy was obtained at fifteenth internode and loading rate: 1 m.s-1. The statistical analysis at both plants showed that the increase of impact cutting speed would decrease the shear consumption energy and shear strength. In two scenarios, the results showed that with increase the cutting speed, shear force would decrease.

Keywords: Buxus, Privet, impact cutting, shear energy

Procedia PDF Downloads 126
2429 Numerical Evaluation of Shear Strength for Cold-Formed Steel Shear Wall Panel

Authors: Rouaz Idriss, Bourahla Nour-Eddine, Kahlouche Farah, Rafa Sid Ali

Abstract:

The stability of structures made of light-gauge steel depends highly on the contribution of Shear Wall Panel (SWP) systems under horizontal forces due to wind or earthquake loads. Steel plate sheathing is often used with these panels made of cold formed steel (CFS) to improve its shear strength. In order to predict the shear strength resistance, two methods are presented in this paper. In the first method, the steel plate sheathing is modeled with plats strip taking into account only the tension and compression force due to the horizontal load, where both track and stud are modeled according to the geometrical and mechanical characteristics of the specimen used in the experiments. The theoretical background and empirical formulations of this method are presented in this paper. However, the second method is based on a micro modeling of the cold formed steel Shear Wall Panel “CFS-SWP” using Abaqus software. A nonlinear analysis was carried out with an in-plan monotonic load. Finally, the comparison between these two methods shows that the micro modeling with Abaqus gives better prediction of shear resistance of SWP than strips method. However, the latter is easier and less time consuming than the micro modeling method.

Keywords: cold formed steel 'CFS', shear wall panel, strip method, finite elements

Procedia PDF Downloads 310
2428 The Influence of Shear Wall Position on Seismic Performance in Buildings

Authors: Akram Khelaifia, Nesreddine Djafar Henni

Abstract:

Reinforced concrete shear walls are essential components in protecting buildings from seismic forces by providing both strength and stiffness. This study focuses on optimizing the placement of shear walls in a high seismic zone. Through nonlinear analyses conducted on an eight-story building, various scenarios of shear wall positions are investigated to evaluate their impact on seismic performance. Employing a performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria related to inter-story drift ratio and damage levels. The findings emphasize the importance of concentrating shear walls in the central area of the building during the design phase. This strategic placement proves more effective compared to peripheral distributions, resulting in reduced inter-story drift and mitigated potential damage during seismic events. Additionally, the research explores the use of shear walls that completely infill the frame, forming compound shapes like Box configurations. It is discovered that incorporating such complete shear walls significantly enhances the structure's reliability concerning inter-story drift. Conversely, the absence of complete shear walls within the frame leads to reduced stiffness and the potential deterioration of short beams.

Keywords: performance level, pushover analysis, shear wall, plastic hinge, nonlinear analyses

Procedia PDF Downloads 54
2427 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear

Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek

Abstract:

Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.

Keywords: distributed optical strain sensing, rock bolt, bedding shear, sandstone tunnel

Procedia PDF Downloads 161
2426 A Study on Shear Field Test Method in Timber Shear Modulus Determination Using Stereo Vision System

Authors: Niaz Gharavi, Hexin Zhang

Abstract:

In the structural timber design, the shear modulus of the timber beam is an important factor that needs to be determined accurately. According to BS EN 408, shear modulus can be determined using torsion test or shear field test method. Although torsion test creates pure shear status in the beam, it does not represent the real-life situation when the beam is in the service. On the other hand, shear field test method creates similar loading situation as in reality. The latter method is based on shear distortion measurement of the beam at the zone with the constant transverse load in the standardized four-point bending test as indicated in BS EN 408. Current testing practice code advised using two metallic arms act as an instrument to measure the diagonal displacement of the constructing square. Timber is not a homogenous material, but a heterogeneous and this characteristic makes timber to undergo a non-uniform deformation. Therefore, the dimensions and the location of the constructing square in the area with the constant transverse force might alter the shear modulus determination. This study aimed to investigate the impact of the shape, size, and location of the square in the shear field test method. A binocular stereo vision system was developed to capture the 3D displacement of a grid of target points. This approach is an accurate and non-contact method to extract the 3D coordination of targeted object using two cameras. Two group of three glue laminated beams were produced and tested by the mean of four-point bending test according to BS EN 408. Group one constructed using two materials, laminated bamboo lumber and structurally graded C24 timber and group two consisted only structurally graded C24 timber. Analysis of Variance (ANOVA) was performed on the acquired data to evaluate the significance of size and location of the square in the determination of shear modulus of the beam. The results have shown that the size of the square is an affecting factor in shear modulus determination. However, the location of the square in the area with the constant shear force does not affect the shear modulus.

Keywords: shear field test method, BS EN 408, timber shear modulus, photogrammetry approach

Procedia PDF Downloads 213
2425 Shear Strengthening of Reinforced Concrete Deep Beams Using Carbon Fiber Reinforced Polymers

Authors: Hana' Al-Ghanim, Mu'tasim Abdel-Jaber, Maha Alqam

Abstract:

This experimental investigation deals with shear strengthening of reinforced concrete (RC) deep beams using the externally bonded carbon fiber-reinforced polymer (CFRP) composites. The current study, therefore, evaluates the effectiveness of four various configurations for shear strengthening of deep beams with two different types of CFRP materials including sheets and laminates. For this purpose, a total of 10 specimens of deep beams were cast and tested. The shear performance of the strengthened beams is assessed with respect to the cracks’ formation, modes of failure, ultimate strength and the overall stiffness. The obtained results demonstrate the effectiveness of using the CFRP technique on enhancing the shear capacity of deep beams; however, the efficiency varies depending on the material used and the strengthening scheme adopted. Among the four investigated schemes, the highest increase in the ultimate strength is recorded by using the continuous wrap of two layers of CFRP sheets, exceeding a value of 86%, whereas an enhancement of about 36% is achieved by the inclined CFRP laminates.

Keywords: deep beams, laminates, shear strengthening, sheets

Procedia PDF Downloads 360
2424 Evaluation for Punching Shear Strength of Slab-Column Connections with Ultra High Performance Fiber-Reinforced Concrete Overlay

Authors: H. S. Youm, S. G. Hong

Abstract:

This paper presents the test results on 5 slab-column connection specimens with Ultra High Performance Fiber-Reinforced Concrete (UHPFRC) overlay including 1 control specimen to investigate retrofitting effect of UHPFRC overlay on the punching shear capacity. The test parameters were the thickness of the UHPFRC overlay and the amount of steel re-bars in it. All specimens failed in punching shear mode with abrupt failure aspect. The test results showed that by adding a thin layer of UHPFRC over the Reinforced Concrete (RC) substrates, considerable increases in global punching shear resistance up to 82% and structural rigidity were achieved. Furthermore, based on the cracking patterns the composite systems appeared to be governed by two failure modes: 1) diagonal shear failure in RC section and 2) debonding failure at the interface.

Keywords: punching shear strength, retrofit, slab-column connection, UHPFRC, UHPFRC overlay

Procedia PDF Downloads 259
2423 The Interaction between Blood-Brain Barrier and the Cerebral Lymphatics Proposes Therapeutic Method for Alzheimer’S Disease

Authors: M. Klimova, O. Semyachkina-Glushkovskaya, J. Kurts, E. Zinchenko, N. Navolokin, A. Shirokov, A. Dubrovsky, A. Abdurashitov, A. Terskov, A. Mamedova, I. Agranovich, T. Antonova, I. Blokhina

Abstract:

The direction for research of Alzheimer's disease is to find an effective non-invasive and non-pharmacological way of treatment. Here we tested our hypothesis that the opening of the blood-brain barrier (BBB) induces activation of lymphatic drainage and clearing functions that can be used as a method for non-invasive stimulation of clearance of beta-amyloid and therapy of Alzheimer’s disease (AD). To test our hypothesis, in this study on healthy male mice we analyzed the interaction between BBB opening by repeated loud music (100-10000 Hz, 100 dB, duration 2 h: 60 sec – sound; 60 sec - pause) and functional changes in the meningeal lymphatic vessels (MLVs). We demonstrate clearance of dextran 70 kDa (i.v. injection), fluorescent beta-amyloid (intrahippocampal injection) and gold nanorods (intracortical injection) via MLV that significantly increased after the opening of BBB. Our studies also demonstrate that the BBB opening was associated with the improvement of neurocognitive status in mice with AD. Thus, we uncover therapeutic effects of BBB opening by loud music, such as non-invasive stimulation of lymphatic clearance of beta-amyloid in mice with AD, accompanied by improvement of their neurocognitive status. Our data are consistent with other results suggesting the therapeutic effect of BBB opening by focused ultrasound without drugs for patients with AD. This research was supported by a grant from RSF 18-75-10033

Keywords: Alzheimer's disease, beta-amyloid, blood-brain barrier, meningeal lymphatic vessels, repeated loud music

Procedia PDF Downloads 142
2422 Final Account Closing in Construction Project: The Use of Supply Chain Management to Reduce the Delays

Authors: Zarabizan Zakaria, Syuhaida Ismail, Aminah Md. Yusof

Abstract:

Project management process starts from the planning stage up to the stage of completion (handover of buildings, preparation of the final accounts and the closing balance). This process is not easy to implement efficiently and effectively. The issue of delays in construction is a major problem for construction projects. These delays have been blamed mainly on inefficient traditional construction practices that continue to dominate the current industry. This is due to several factors, such as environments of construction technology, sophisticated design and customer demands that are constantly changing and influencing, either directly or indirectly, the practice of management. Among the identified influences are physical environment, social environment, information environment, political and moral atmosphere. Therefore, this paper is emerged to determine the problem and issues in the final account closing in construction projects, and it establishes the need to embrace Supply Chain Management (SCM) and then elucidates the need and strategies for the development of a delay reduction framework. At the same time, this paper provides effective measures to avoid or at least reduce the delay to the optimum level. Allowing problems in the closure declaration to occur without proper monitoring and control can leave negative impact on the cost and time of delivery to the end user. Besides, it can also affect the reputation or image of the agency/department that manages the implementation of a contract and consequently may reduce customer's trust towards the agencies/departments. It is anticipated that the findings reported in this paper could address root delay contributors and apply SCM tools for their mitigation for the better development of construction project.

Keywords: final account closing, construction project, construction delay, supply chain management

Procedia PDF Downloads 369
2421 An Atomic Finite Element Model for Mechanical Properties of Graphene Sheets

Authors: Win-Jin Chang, Haw-Long Lee, Yu-Ching Yang

Abstract:

In this study, we use the atomic-scale finite element method to investigate the mechanical behavior of the armchair- and zigzag-structured nanoporous graphene sheets with the clamped-free-free-free boundary condition under tension and shear loadings. The effect of porosity on Young’s modulus and shear modulus of nanoporous graphene sheets is obvious. For the armchair- and zigzag-structured nanoporous graphene sheets, Young’s modulus and shear modulus decreases with increasing porosity. Young’s modulus and shear modulus of zigzag graphene are larger than that of armchair one for the same porosity. The results are useful for application in the design of nanoporous graphene sheets.

Keywords: graphene, nanoporous, Young's modulus, shear modulus

Procedia PDF Downloads 400
2420 Non-Homogeneity in a Thick Walled Rotating Circular Cylinder under Varying Pressure

Authors: Jatinder Kaur, Pankaj Thakur

Abstract:

The effect of pressure and temperature in non-homogeneous circular cylinder by taking non-homogeneity of material in terms of compressibility c=c₀r⁻ᵏ has been observed. From the results, it could be seen that for K<0, high pressure is required in the initial yielding state than for the case K >0. Under thermal conditions for value K<0, lesser amount of pressure is required for initial yielding, and further, the amount keeps on decreasing with an increase in temperature. Curves are drawn between pressure and radii ratio for initial and fully plastic state with and without temperature conditions. Further graphs between stresses (hoop and radial) and radii ratio for fully plastic state with and without temperature conditions are also drawn and concluded that hoop stresses become minimum with the increase in temperature as compared to radial stresses.

Keywords: cylinder, elastic, plastic, copper, steel, stresses, pressure, load

Procedia PDF Downloads 83
2419 Stress Analysis of Vertebra Using Photoelastic and Finite Element Methods

Authors: Jamal A. Hassan, Ali Q. Abdulrazzaq, Sadiq J. Abass

Abstract:

In this study, both the photoelastic, as well as the finite element methods, are used to study the stress distribution within human vertebra (L4) under forces similar to those that occur during normal life. Two & three dimensional models of vertebra were created by the software AutoCAD. The coordinates obtained were fed into a computer numerical control (CNC) tensile machine to fabricate the models from photoelastic sheets. Completed models were placed in a transmission polariscope and loaded with static force (up to 1500N). Stresses can be quantified and localized by counting the number of fringes. In both methods the Principle stresses were calculated at different regions. The results noticed that the maximum von-mises stress on the area of the extreme superior vertebral body surface and the facet surface with high normal stress (σ) and shear stress (τ). The facets and other posterior elements have a load-bearing function to help support the weight of the upper body and anything that it carries, and are also acted upon by spinal muscle forces. The numerical FE results have been compared with the experimental method using photoelasticity which shows good agreement between experimental and simulation results.

Keywords: photoelasticity, stress, load, finite element

Procedia PDF Downloads 286
2418 Prediction and Optimization of Machining Induced Residual Stresses in End Milling of AISI 1045 Steel

Authors: Wajid Ali Khan

Abstract:

Extensive experimentation and numerical investigation are performed to predict the machining-induced residual stresses in the end milling of AISI 1045 steel, and an optimization code has been developed using the particle swarm optimization technique. Experiments were conducted using a single factor at a time and design of experiments approach. Regression analysis was done, and a mathematical model of the cutting process was developed, thus predicting the machining-induced residual stress with reasonable accuracy. The mathematical model served as the objective function to be optimized using particle swarm optimization. The relationship between the different cutting parameters and the output variables, force, and residual stresses has been studied. The combined effect of the process parameters, speed, feed, and depth of cut was examined, and it is understood that 85% of the variation of these variables can be attributed to these machining parameters under research. A 3D finite element model is developed to predict the cutting forces and the machining-induced residual stresses in end milling operation. The results were validated experimentally and against the Johnson-cook model available in the literature.

Keywords: residual stresses, end milling, 1045 steel, optimization

Procedia PDF Downloads 106
2417 Evaluation of Prestressed Reinforced Concrete Slab Punching Shear Using Finite Element Method

Authors: Zhi Zhang, Liling Cao, Seyedbabak Momenzadeh, Lisa Davey

Abstract:

Reinforced concrete (RC) flat slab-column systems are commonly used in residential or office buildings, as the flat slab provides efficient clearance resulting in more stories at a given height than regular reinforced concrete beam-slab system. Punching shear of slab-column joints is a critical component of two-way reinforced concrete flat slab design. The unbalanced moment at the joint is transferred via slab moment and shear forces. ACI 318 provides an equation to evaluate the punching shear under the design load. It is important to note that the design code considers gravity and environmental load when considering the design load combinations, while it does not consider the effect from differential foundation settlement, which may be a governing load condition for the slab design. This paper describes how prestressed reinforced concrete slab punching shear is evaluated based on ACI 318 provisions and finite element analysis. A prestressed reinforced concrete slab under differential settlements is studied using the finite element modeling methodology. The punching shear check equation is explained. The methodology to extract data for punching shear check from the finite element model is described and correlated with the corresponding code provisions. The study indicates that the finite element analysis results should be carefully reviewed and processed in order to perform accurate punching shear evaluation. Conclusions are made based on the case studies to help engineers understand the punching shear behavior in prestressed and non-prestressed reinforced concrete slabs.

Keywords: differential settlement, finite element model, prestressed reinforced concrete slab, punching shear

Procedia PDF Downloads 130
2416 Comparative Safety Performance Evaluation of Profiled Deck Composite Slab from the Use of Slope-Intercept and Partial Shear Methods

Authors: Izian Abd. Karim, Kachalla Mohammed, Nora Farah Abd Aznieta Aziz, Law Teik Hua

Abstract:

The economic use and ease of construction of profiled deck composite slab is marred with the complex and un-economic strength verification required for the serviceability and general safety considerations. Beside these, albeit factors such as shear span length, deck geometries and mechanical frictions greatly influence the longitudinal shear strength, that determines the ultimate strength of profiled deck composite slab, and number of methods available for its determination; partial shear and slope-intercept are the two methods according to Euro-code 4 provision. However, the complexity associated with shear behavior of profiled deck composite slab, the use of these methods in determining the load carrying capacities of such slab yields different and conflicting values. This couple with the time and cost constraint associated with the strength verification is a source of concern that draws more attentions nowadays, the issue is critical. Treating some of these known shear strength influencing factors as random variables, the load carrying capacity violation of profiled deck composite slab from the use of the two-methods defined according to Euro-code 4 are determined using reliability approach, and comparatively studied. The study reveals safety values from the use of m-k method shows good standing compared with that from the partial shear method.

Keywords: composite slab, first order reliability method, longitudinal shear, partial shear connection, slope-intercept

Procedia PDF Downloads 356
2415 Evaluation of Cooperative Hand Movement Capacity in Stroke Patients Using the Cooperative Activity Stroke Assessment

Authors: F. A. Thomas, M. Schrafl-Altermatt, R. Treier, S. Kaufmann

Abstract:

Stroke is the main cause of adult disability. Especially upper limb function is affected in most patients. Recently, cooperative hand movements have been shown to be a promising type of upper limb training in stroke rehabilitation. In these movements, which are frequently found in activities of daily living (e.g. opening a bottle, winding up a blind), the force of one upper limb has to be equally counteracted by the other limb to successfully accomplish a task. The use of standardized and reliable clinical assessments is essential to evaluate the efficacy of therapy and the functional outcome of a patient. Many assessments for upper limb function or impairment are available. However, the evaluation of cooperative hand movement tasks are rarely included in those. Thus, the aim of this study was (i) to develop a novel clinical assessment (CASA - Cooperative Activity Stroke Assessment) for the evaluation of patients’ capacity to perform cooperative hand movements and (ii) to test its inter- and interrater reliability. Furthermore, CASA scores were compared to current gold standard assessments for upper extremity in stroke patients (i.e. Fugl-Meyer Assessment, Box & Blocks Test). The CASA consists of five cooperative activities of daily living including (1) opening a jar, (2) opening a bottle, (3) open and closing of a zip, (4) unscrew a nut and (5) opening a clipbox. Here, the goal is to accomplish the tasks as fast as possible. In addition to the quantitative rating (i.e. time) which is converted to a 7-point scale, also the quality of the movement is rated in a 4-point scale. To test the reliability of CASA, fifteen stroke subjects were tested within a week twice by the same two raters. Intra-and interrater reliability was calculated using the intraclass correlation coefficient (ICC) for total CASA score and single items. Furthermore, Pearson-correlation was used to compare the CASA scores to the scores of Fugl-Meyer upper limb assessment and the box and blocks test, which were assessed in every patient additionally to the CASA. ICC scores of the total CASA score indicated an excellent- and single items established a good to excellent inter- and interrater reliability. Furthermore, the CASA score was significantly correlated to the Fugl-Meyer and Box & Blocks score. The CASA provides a reliable assessment for cooperative hand movements which are crucial for many activities of daily living. Due to its non-costly setup, easy and fast implementation, we suggest it to be well suitable for clinical application. In conclusion, the CASA is a useful tool in assessing the functional status and therapy related recovery in cooperative hand movement capacity in stroke patients.

Keywords: activitites of daily living, clinical assessment, cooperative hand movements, reliability, stroke

Procedia PDF Downloads 320
2414 Improving the Method for Characterizing Structural Fabrics for Shear Resistance and Formability

Authors: Dimitrios Karanatsis

Abstract:

Non-crimp fabrics (NCFs) allow for high mechanical performance of a manufacture composite component by maintaining the fibre reinforcements parallel to each other. The handling of NCFs is enabled by the stitching of the tows. Although the stitching material has negligible influence to the performance of the manufactured part, it can affect the ability of the structural fabric to shear and drape over the part’s geometry. High resistance to shearing is attributed to the high tensile strain of the stitching yarn and can cause defects in the fabric. In the current study, a correlation based on the stitch tension and shear behaviour is examined. The purpose of the research is to investigate the upper and lower limits of non-crimp fabrics manufacture and how these affect the shear behaviour of the fabrics. Experimental observations show that shear behaviour of the fabrics is significantly affected by the stitch tension, and there is a linear effect to the degree of shear they experience. It was found that the lowest possible stitch tension on the manufacturing line settings produces an NCF that exhibits very low tensile strain on it’s yarns and that has shear properties similar to a woven fabric. Moreover, the highest allowable stitch tension results in reduced formability of the fabric, as the stitch thread rearranges the fibre filaments where these become packed in a tight formation with constricted movement.

Keywords: carbon fibres, composite manufacture, shear testing, textiles

Procedia PDF Downloads 146
2413 Immediate and Long-Term Effect of the Sawdust Usage on Shear Strength of the Clayey Silt Soil

Authors: Dogan Cetin, Omar Hamdi Jasim

Abstract:

Using some additives is very common method to improve the soil properties such as shear strength, bearing capacity; and to reduce the settlement and lateral deformation. Soil reinforcement with natural materials is an attractive method to improve the soil properties because of their low cost. However, the studies conducted by using natural additive are very limited. This paper presents the results of an investigation on the immediate and long-term effects of the sawdust on the shear strength behavior of a clayey silt soil obtained in Arnavutkoy in Istanbul with sawdust. Firstly, compaction tests were conducted to be able to optimum moisture content for every percentage of sawdust. The samples were obtained from compacted soil at optimum moisture content. UU Triaxial Tests were conducted to evaluate the response of randomly distributed sawdust on the strength of low plasticity clayey silt soil. The specimens were tested with 1%, 2% and 3% content of sawdust. It was found that the undrained shear strength of clay soil with 1%, 2% and 3% sawdust were increased respectively 4.65%, 27.9% and 39.5% higher than the soil without additive. At 5%, shear strength of clay soil decreased by 3.8%. After 90 days cure period, the shear strength of the soil with 1%, 2%, 3% and %5 increased respectively 251%, 302%, 260% and 153%. It can be said that the effect of the sawdust usage has a remarkable effect on the undrained shear strength of the soil. Besides the increasing undrained shear strength, it was also found that the sawdust decreases the liquid limit, plastic limit and plasticity index by 5.5%, 2.9 and 10.9% respectively.

Keywords: compaction test, sawdust, shear strength, UU Triaxial Test

Procedia PDF Downloads 354
2412 Geotechnical Characterization of an Industrial Waste Landfill: Stability and Environmental Study

Authors: Maria Santana, Jose Estaire

Abstract:

Even though recycling strategies are becoming more important in recent years, there is still a huge amount of industrial by-products that are the disposal of at landfills. Due to the size, possible dangerous composition, and heterogeneity, most of the wastes are located at landfills without a basic geotechnical characterization. This lack of information may have an important influence on the correct stability calculations. This paper presents the results of geotechnical characterization of some industrial wastes disposed at one landfill. The shear strength parameters were calculated based on direct shear test results carried out in a large shear box owned by CEDEX, which has a shear plane of 1 x 1 m. These parameters were also compared with the results obtained in a 30 x 30 cm shear box. The paper includes a sensitive analysis of the global safety factor of the landfill's overall stability as a function of shear strength variation. The stability calculations were assessed for various hydrological scenarios to simulate the design and performance of the leachate drainage system. The characterization was completed with leachate tests to study the potential impact on the environment.

Keywords: industrial wastes, landfill, leachate tests, stability

Procedia PDF Downloads 195
2411 Low Plastic Deformation Energy to Induce High Superficial Strain on AZ31 Magnesium Alloy Sheet

Authors: Emigdio Mendoza, Patricia Fernandez, Cristian Gomez

Abstract:

Magnesium alloys have generated great interest for several industrial applications because their high specific strength and low density make them a very attractive alternative for the manufacture of various components; however, these alloys present a limitation with their hexagonal crystal structure that limits the deformation mechanisms at room temperature likewise the molding components alternatives, it is for this reason that severe plastic deformation processes have taken a huge relevance recently because these, allow high deformation rates to be applied that induce microstructural changes where the deficiency in the sliding systems is compensated with crystallographic grains reorientations or crystal twinning. The present study reports a statistical analysis of process temperature, number of passes and shear angle with respect to the shear stress in severe plastic deformation process denominated 'Equal Channel Angular Sheet Drawing (ECASD)' applied to the magnesium alloy AZ31B through Python Statsmodels libraries, additionally a Post-Hoc range test is performed using the Tukey statistical test. Statistical results show that each variable has a p-value lower than 0.05, which allows comparing the average values of shear stresses obtained, which are in the range of 7.37 MPa to 12.23 MPa, lower values in comparison to others severe plastic deformation processes reported in the literature, considering a value of 157.53 MPa as the average creep stress for AZ31B alloy. However, a higher stress level is required when the sheets are processed using a shear angle of 150°, due to a higher level of adjustment applied for the shear die of 150°. Temperature and shear passes are important variables as well, but there is no significant impact on the level of stress applied during the ECASD process. In the processing of AZ31B magnesium alloy sheets, ECASD technique is evidenced as a viable alternative in the modification of the elasto-plastic properties of this alloy, promoting the weakening of the basal texture, which means, a better response to deformation, whereby, during the manufacture of parts by drawing or stamping processes the formation of cracks on the surface can be reduced, presenting an adequate mechanical performance.

Keywords: plastic deformation, strain, sheet drawing, magnesium

Procedia PDF Downloads 110
2410 Structural Behavior of Non-Prismatic Mono-Symmetric Beam

Authors: Nandini B. Nagaraju, Punya D. Gowda, S. Aishwarya, Benjamin Rohit

Abstract:

This paper attempts to understand the structural behavior of non-prismatic channel beams subjected to bending through finite element (FE) analysis. The present study aims at shedding some light on how tapered channel beams behave by studying the effect of taper ratio on structural behavior. As a weight reduction is always desired in aerospace structures beams are tapered in order to obtain highest structural efficiency. FE analysis has been performed to study the effect of taper ratio on linear deflection, lateral torsional buckling, non-linear parameters, stresses and dynamic parameters. Taper ratio tends to affect the mechanics of tapered beams innocuously and adversely. Consequently, it becomes important to understand and document the mechanics of channel tapered beams. Channel beams generally have low torsional rigidity due to the off-shear loading. The effect of loading type and location of applied load have been studied for flange taper, web taper and symmetric taper for different conditions. Among these, as the taper ratio is increased, the torsional angular deflection increases but begins to decrease when the beam is web tapered and symmetrically tapered for a mid web loaded beam. But when loaded through the shear center, an increase in the torsional angular deflection can be observed with increase in taper ratio. It should be considered which parameter is tapered to obtain the highest efficiency.

Keywords: channel beams, tapered beams, lateral torsional bucking, shear centre

Procedia PDF Downloads 439
2409 Computation of Residual Stresses in Human Face Due to Growth

Authors: M. A. Askari, M. A. Nazari, P. Perrier, Y. Payan

Abstract:

Growth and remodeling of biological structures have gained lots of attention over the past decades. Determining the response of the living tissues to the mechanical loads is necessary for a wide range of developing fields such as, designing of prosthetics and optimized surgery operations. It is a well-known fact that biological structures are never stress-free, even when externally unloaded. The exact origin of these residual stresses is not clear, but theoretically growth and remodeling is one of the main sources. Extracting body organs from medical imaging, does not produce any information regarding the existing residual stresses in that organ. The simplest cause of such stresses is the gravity since an organ grows under its influence from its birth. Ignoring such residual stresses might cause erroneous results in numerical simulations. Accounting for residual stresses due to tissue growth can improve the accuracy of mechanical analysis results. In this paper, we have implemented a computational framework based on fixed-point iteration to determine the residual stresses due to growth. Using nonlinear continuum mechanics and the concept of fictitious configuration we find the unknown stress-free reference configuration which is necessary for mechanical analysis. To illustrate the method, we apply it to a finite element model of healthy human face whose geometry has been extracted from medical images. We have computed the distribution of residual stress in facial tissues, which can overcome the effect of gravity and cause that tissues remain firm. Tissue wrinkles caused by aging could be a consequence of decreasing residual stress and not counteracting the gravity. Considering these stresses has important application in maxillofacial surgery. It helps the surgeons to predict the changes after surgical operations and their consequences.

Keywords: growth, soft tissue, residual stress, finite element method

Procedia PDF Downloads 356