Search results for: multi-agent reinforcement learning (MARL)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7714

Search results for: multi-agent reinforcement learning (MARL)

7594 Aluminum Matrix Composites Reinforced by Glassy Carbon-Titanium Spatial Structure

Authors: B. Hekner, J. Myalski, P. Wrzesniowski

Abstract:

This study presents aluminum matrix composites reinforced by glassy carbon (GC) and titanium (Ti). In the first step, the heterophase (GC+Ti), spatial form (similar to skeleton) of reinforcement was obtained via own method. The polyurethane foam (with spatial, open-cells structure) covered by suspension of Ti particles in phenolic resin was pyrolyzed. In the second step, the prepared heterogeneous foams were infiltrated by aluminium alloy. The manufactured composites are designated to industrial application, especially as a material used in tribological field. From this point of view, the glassy carbon was applied to stabilise a coefficient of friction on the required value 0.6 and reduce wear. Furthermore, the wear can be limited due to titanium phase application, which reveals high mechanical properties. Moreover, fabrication of thin titanium layer on the carbon skeleton leads to reduce contact between aluminium alloy and carbon and thus aluminium carbide phase creation. However, the main modification involves the manufacturing of reinforcement in the form of 3D, skeleton foam. This kind on reinforcement reveals a few important advantages compared to classical form of reinforcement-particles: possibility to control homogeneity of reinforcement phase in composite material; low-advanced technique of composite manufacturing- infiltration; possibility to application the reinforcement only in required places of material; strict control of phase composition; High quality of bonding between components of material. This research is founded by NCN in the UMO-2016/23/N/ST8/00994.

Keywords: metal matrix composites, MMC, glassy carbon, heterophase composites, tribological application

Procedia PDF Downloads 116
7593 Impact of Butt Joints on Flexural Properties of Nail Laminated Timber

Authors: Mohammad Mehdi Bagheri, Tianying Ma, Meng Gong

Abstract:

Nail laminated timber (NLT) is widely used for constructing timber bridge decks in North America. Butt joints usually exist due to the length limits of lumber, leading to concerns about the decrease of structural performance of NLT. This study aimed at investigating the provisions incorporated in Canadian highway bridge design code on the use of but joints in wooden bridge decks. Three and five layers NLT specimens with various configurations were tested under 3-point bending test. It was found that the standard equation is capable of predicting the bending stiffness reduction due to butt joints and 1-m band limit in which, one but joint in every three adjacent lamination is allowed, sounds reasonable. The strength reduction also followed a pattern similar to stiffness reduction. Also reinforcement of the butt joint through nails and steel side plates was attempted. It was found that nail reinforcement recovers the stiffness slightly. In contrast, reinforcing the butt joint through steel side plate improved the flexural performance significantly when compared to the nail reinforcement.

Keywords: nail laminated timber, butt joint, bending stiffness, reinforcement

Procedia PDF Downloads 178
7592 Structural Performance of Concrete Beams Reinforced with Steel Plates: Experimental Study

Authors: Mazin Mohammed S. Sarhan

Abstract:

This study presents the performance of concrete beams reinforced with steel plates as a technique of reinforcement. Three reinforced concrete beams with the dimensions of 200 mm x 300 mm x 4000 mm (width x height x length, respectively) were experimentally investigated under flexural loading. The deformed steel bars were used as the main reinforcement for the first beam. A steel plate placed horizontally was used as the main reinforcement for the second beam. The bond between the steel plate and the surrounding concrete was enhanced by using steel bolts (with a diameter of 20 mm and length of 100 mm) welded to the steel plate at a regular distance of 200 mm. A pair of steel plates placed vertically was used as the main reinforcement for the third beam. The bond between the pair steel plates and the surrounding concrete was enhanced by using 4 equal steel angles (with the dimensions of 75 mm x 75 mm and the thickness of 8 mm) for each vertical steel plate. Two steel angles were welded at each end of the steel plate. The outcomes revealed that the bending stiffness of the beams reinforced with steel plates was higher than that reinforced with deformed steel bars. Also, the flexural ductile behavior of the second beam was much higher than the rest beams.

Keywords: concrete beam, deflection, ductility, plate

Procedia PDF Downloads 157
7591 Deflection Behaviour of Retaining Wall with Pile for Pipeline on Slope of Soft Soil

Authors: Mutadi

Abstract:

Pipes laying on an unstable slope of soft soil are prone to movement. Pipelines that are buried in unstable slope areas will move due to lateral loads from soil movement, which can cause damage to the pipeline. A small-scale laboratory model of the reinforcement system of piles supported by retaining walls was conducted to investigate the effect of lateral load on the reinforcement. In this experiment, the lateral forces of 0.3 kN, 0.35 kN, and 0.4 kN and vertical force of 0.05 kN, 0.1 kN, and 0.15 kN were used. Lateral load from the electric jack is equipped with load cell and vertical load using the cement-steel box. To validate the experimental result, a finite element program named 2-D Plaxis was used. The experimental results showed that with an increase in lateral loading, the displacement of the reinforcement system increased. For a Vertical Load, 0.1 kN and versus a lateral load of 0.3 kN causes a horizontal displacement of 0.35 mm and an increase of 2.94% for loading of 0.35 kN and an increase of 8.82% for loading 0.4 kN. The pattern is the same in the finite element method analysis, where there was a 6.52% increase for 0.35 kN loading and an increase to 23.91 % for 0.4 kN loading. In the same Load, the Reinforcement System is reliable, as shown in Safety Factor on dry conditions were 3.3, 2.824 and 2.474, and on wet conditions were 2.98, 2.522 and 2.235.

Keywords: soft soil, deflection, wall, pipeline

Procedia PDF Downloads 161
7590 Case Study: Hybrid Mechanically Stabilized Earth Wall System Built on Basal Reinforced Raft

Authors: S. Kaymakçı, D. Gündoğdu, H. Özçelik

Abstract:

The truck park of a warehouse for a chain of supermarket was going to be constructed on a poor ground. Rather than using a piled foundation, the client was convinced that a ground improvement using a reinforced foundation raft also known as “basal reinforcement” shall work. The retaining structures supporting the truck park area were designed using a hybrid structure made up of the Terramesh® Wall System and MacGrid™ high strength geogrids. The total wall surface area is nearly 2740 sq.m , reaching a maximum height of 13.00 meters. The area is located in the first degree seismic zone of Turkey and the design seismic acceleration is high. The design of walls has been carried out using pseudo-static method (limit equilibrium) taking into consideration different loading conditions using Eurocode 7. For each standard approach stability analysis in seismic condition were performed. The paper presents the detailed design of the reinforced soil structure, basal reinforcement and the construction methods; advantages of using such system for the project are discussed.

Keywords: basal reinforcement, geogrid, reinforced soil raft, reinforced soil wall, soil reinforcement

Procedia PDF Downloads 295
7589 OSEME: A Smart Learning Environment for Music Education

Authors: Konstantinos Sofianos, Michael Stefanidakis

Abstract:

Nowadays, advances in information and communication technologies offer a range of opportunities for new approaches, methods, and tools in the field of education and training. Teacher-centered learning has changed to student-centered learning. E-learning has now matured and enables the design and construction of intelligent learning systems. A smart learning system fully adapts to a student's needs and provides them with an education based on their preferences, learning styles, and learning backgrounds. It is a wise friend and available at any time, in any place, and with any digital device. In this paper, we propose an intelligent learning system, which includes an ontology with all elements of the learning process (learning objects, learning activities) and a massive open online course (MOOC) system. This intelligent learning system can be used in music education.

Keywords: intelligent learning systems, e-learning, music education, ontology, semantic web

Procedia PDF Downloads 307
7588 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 118
7587 Development of Plantar Insoles Reinforcement Using Biocomposites

Authors: A. C. Vidal, D. R. Mulinari, C. F. Bandeira, S. R. Montoro

Abstract:

Due to the great effort suffered by foot during movement, is of great importance to count on a shoe that has a proper structure and excellent support tread to prevent the immediate and long-term consequences in all parts of the body. In this sense, new reinforcements of insoles with high impact absorption were developed in this work, from a polyurethane (PU) biocomposite derived from castor oil reinforced or not with palm fibers. These insoles have been obtained from the mixture with polyol prepolymer (diisocyanate) and subsequently were evaluated morphologically, mechanically and by thermal analysis. The results revealed that the biocomposites showed lower flexural strength, higher impact strength and open interconnected pores in their microstructure, but with smaller cells and degradation temperature slightly higher compared to the marketed material, showing interesting properties for a possible application as reinforcement of insoles.

Keywords: composite, polyurethane insole, palm fibers, plantar insoles reinforcement

Procedia PDF Downloads 416
7586 Path Planning for Unmanned Aerial Vehicles in Constrained Environments for Locust Elimination

Authors: Aadiv Shah, Hari Nair, Vedant Mittal, Alice Cheeran

Abstract:

Present-day agricultural practices such as blanket spraying not only lead to excessive usage of pesticides but also harm the overall crop yield. This paper introduces an algorithm to optimize the traversal of an unmanned aerial vehicle (UAV) in constrained environments. The proposed system focuses on the agricultural application of targeted spraying for locust elimination. Given a satellite image of a farm, target zones that are prone to locust swarm formation are detected through the calculation of the normalized difference vegetation index (NDVI). This is followed by determining the optimal path for traversal of a UAV through these target zones using the proposed algorithm in order to perform pesticide spraying in the most efficient manner possible. Unlike the classic travelling salesman problem involving point-to-point optimization, the proposed algorithm determines an optimal path for multiple regions, independent of its geometry. Finally, the paper explores the idea of implementing reinforcement learning to model complex environmental behaviour and make the path planning mechanism for UAVs agnostic to external environment changes. This system not only presents a solution to the enormous losses incurred due to locust attacks but also an efficient way to automate agricultural practices across the globe in order to improve farmer ergonomics.

Keywords: locust, NDVI, optimization, path planning, reinforcement learning, UAV

Procedia PDF Downloads 246
7585 Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam

Authors: Juan C. Domínguez, Belén Del Saz-Orozco, María V. Alonso, Mercedes Oliet, Francisco Rodríguez

Abstract:

In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement.

Keywords: kinetics, lignin, phenolic foam, thermal degradation

Procedia PDF Downloads 481
7584 Comparing the Behaviour of the FRP and Steel Reinforced Shear Walls under Cyclic Seismic Loading in Aspect of the Energy Dissipation

Authors: H. Rahman, T. Donchev, D. Petkova

Abstract:

Earthquakes claim thousands of lives around the world annually due to inadequate design of lateral load resisting systems particularly shear walls. Additionally, corrosion of the steel reinforcement in concrete structures is one of the main challenges in construction industry. Fibre Reinforced Polymer (FRP) reinforcement can be used as an alternative to traditional steel reinforcement. FRP has several excellent mechanical properties than steel such as high resistance to corrosion, high tensile strength and light self-weight; additionally, it has electromagnetic neutrality advantageous to the structures where it is important such as hospitals, some laboratories and telecommunications. This paper is about results of experimental research and it is incorporating experimental testing of two medium-scale concrete shear wall samples; one reinforced with Basalt FRP (BFRP) bar and one reinforced with steel bars as a control sample. The samples are tested under quasi-static-cyclic loading following modified ATC-24 protocol standard seismic loading. The results of both samples are compared to allow a judgement about performance of BFRP reinforced against steel reinforced concrete shear walls. The results of the conducted researches show a promising momentum toward utilisation of the BFRP as an alternative to traditional steel reinforcement with the aim of improving durability with suitable energy dissipation in the reinforced concrete shear walls.  

Keywords: shear walls, internal fibre reinforced polymer reinforcement, cyclic loading, energy dissipation, seismic behaviour

Procedia PDF Downloads 124
7583 A Study on the Reinforced Earth Walls Using Sandwich Backfills under Seismic Loads

Authors: Kavitha A.S., L.Govindaraju

Abstract:

Reinforced earth walls offer excellent solution to many problems associated with earth retaining structures especially under seismic conditions. Use of cohesive soils as backfill material reduces the cost of reinforced soil walls if proper drainage measures are taken. This paper presents a numerical study on the application of a new technique called sandwich technique in reinforced earth walls. In this technique, a thin layer of granular soil is placed above and below the reinforcement layer to initiate interface friction and the remaining portion of the backfill is filled up using the existing insitu cohesive soil. A 6 m high reinforced earth wall has been analysed as a two-dimensional plane strain finite element model. Three types of reinforcing elements such as geotextile, geogrid and metallic strips were used. The horizontal wall displacements and the tensile loads in the reinforcement were used as the criteria to evaluate the results at the end of construction and dynamic excitation phases. Also to verify the effectiveness of sandwich layer on the performance of the wall, the thickness of sand fill surrounding the reinforcement was varied. At the end of construction stage it is found that the wall with sandwich type backfill yielded lower displacements when compared to the wall with cohesive soil as backfill. Also with sandwich backfill, the reinforcement loads reduced substantially when compared to the wall with cohesive soil as backfill. Further, it is found that sandwich technique as backfill and geogrid as reinforcement is a good combination to reduce the deformations of geosynthetic reinforced walls during seismic loading.

Keywords: geogrid, geotextile, reinforced earth, sandwich technique

Procedia PDF Downloads 282
7582 Performance Evaluation of Cement Mortar with Crushed Stone Dust as Fine Aggregates

Authors: Pradeep Kumar

Abstract:

The present work is based on application of cement mortar with natural sand and discontinuous steel fiber through which bending behavior of skinny beam was evaluated. This research is to study the effects of combining reinforcing steel meshes (continuous steel reinforcement) with discontinuous fibers as reinforcement in skinny walled Portland cement based cement mortar with crushed stone dust as a fine aggregate. The term ‘skinny’ means thickness of the beams is less than 25 mm. The main idea behind this combination is to satisfy the ultimate strength limit state through the steel mesh reinforcement (as a main reinforcement) and to control the cracking under service loads through fiber (Recron 3s) reinforcement (as secondary reinforcement). The main object of this study is to carry out the bending behavior of mortar reinforced thin beam with only one layer of steel mesh (with various transfer wire spacing) and with a recron 3s (Reliance) fifers. The wide experimental program with bending tests is undertaken. The following variables are investigated: (a) the reference mesh size - 25.4 x 25.4 mm and 50.8 x 50.8 mm; (b) the transverse wire spacing - 25.4 mm, 50.8 mm, and no transverse wires; (c) the type of fibers – Reliance (Recron 3s, 6mm length); and (d) the fiber volume fraction – 0.1% and 0.25%. Some of the main conclusions are: (a) the use of recron 3s fibers leads to a little better overall performance than that with no fiber; (b) an increase in equivalent stress is observed when 0.1% RF,0.25% R Fibers are used; (c) when 25.4 x 50.8 size steel mesh is used, no noticeable change in behavior is observed in comparison to specimens without fibers; and (d) for no fibers 0.1% and o.1% RF the transverse wire spacing has some little effect on the equivalent stress for RF fibers, the transverse wire has no influence but the equivalent stress are increased.

Keywords: cement mortar, crushed stone dust, fibre, steel mesh

Procedia PDF Downloads 311
7581 How to Guide Students from Surface to Deep Learning: Applied Philosophy in Management Education

Authors: Lihong Wu, Raymond Young

Abstract:

The ability to learn is one of the most critical skills in the information age. However, many students do not have a clear understanding of what learning is, what they are learning, and why they are learning. Many students study simply to pass rather than to learn something useful for their career and their life. They have a misconception about learning and a wrong attitude towards learning. This research explores student attitudes to study in management education and explores how to intercede to lead students from shallow to deeper modes of learning.

Keywords: knowledge, surface learning, deep learning, education

Procedia PDF Downloads 494
7580 Facies Sedimentology and Astronomic Calibration of the Reinech Member (Lutetian)

Authors: Jihede Haj Messaoud, Hamdi Omar, Hela Fakhfakh Ben Jemia, Chokri Yaich

Abstract:

The Upper Lutetian alternating marl–limestone succession of Reineche Member was deposited over a warm shallow carbonate platform that permits Nummulites proliferation. High-resolution studies of 30 meters thick Nummulites-bearing Reineche Member, cropping out in Central Tunisia (Jebel Siouf), have been undertaken, regarding pronounced cyclical sedimentary sequences, in order to investigate the periodicity of cycles and their related orbital-scale oceanic and climatic changes. The palaeoenvironmental and palaeoclimatic data are preserved in several proxies obtainable through high-resolution sampling and laboratories measurement and analysis as magnetic susceptibility (MS) and carbonates contents in conjunction with a wireline logging tools. The time series analysis of proxies permits to establish cyclicity orders present in the studied intervals which could be linked to the orbital cycles. MS records provide high-resolution proxies for relative sea level change in Late Lutetian strata. The spectral analysis of MS fluctuations confirmed the orbital forcing by the presence of the complete suite of orbital frequencies in the precession of 23 ka, the obliquity of 41 ka, and notably the two modes of eccentricity of 100 and 405 ka. Regarding the two periodic sedimentary cycles detected by wavelet analysis of proxy fluctuations which coincide with the long-term 405 ka eccentricity cycle, the Reineche Member spanned 0,8 Myr. Wireline logging tools as gamma ray and sonic were used as a proxies to decipher cyclicity and trends in sedimentation and contribute to identifying and correlate units. There are used to constraint the highest frequency cyclicity modulated by a long term wavelength cycling apparently controlled by clay content. Interpreted as a result of variations in carbonate productivity, it has been suggested that the marl-limestone couplets, represent the sedimentary response to the orbital forcing. The calculation of cycle durations through Reineche Member, is used as a geochronometer and permit the astronomical calibration of the geologic time scale. Furthermore, MS coupled with carbonate contents, and fossil occurrences provide strong evidence for combined detrital inputs and marine surface carbonate productivity cycles. These two synchronous processes were driven by the precession index and ‘fingerprinted’ in the basic marl–limestone couplets, modulated by orbital eccentricity.

Keywords: magnetic susceptibility, cyclostratigraphy, orbital forcing, spectral analysis, Lutetian

Procedia PDF Downloads 290
7579 An Application for Risk of Crime Prediction Using Machine Learning

Authors: Luis Fonseca, Filipe Cabral Pinto, Susana Sargento

Abstract:

The increase of the world population, especially in large urban centers, has resulted in new challenges particularly with the control and optimization of public safety. Thus, in the present work, a solution is proposed for the prediction of criminal occurrences in a city based on historical data of incidents and demographic information. The entire research and implementation will be presented start with the data collection from its original source, the treatment and transformations applied to them, choice and the evaluation and implementation of the Machine Learning model up to the application layer. Classification models will be implemented to predict criminal risk for a given time interval and location. Machine Learning algorithms such as Random Forest, Neural Networks, K-Nearest Neighbors and Logistic Regression will be used to predict occurrences, and their performance will be compared according to the data processing and transformation used. The results show that the use of Machine Learning techniques helps to anticipate criminal occurrences, which contributed to the reinforcement of public security. Finally, the models were implemented on a platform that will provide an API to enable other entities to make requests for predictions in real-time. An application will also be presented where it is possible to show criminal predictions visually.

Keywords: crime prediction, machine learning, public safety, smart city

Procedia PDF Downloads 107
7578 Experimental Study on Weak Cohesion Less Soil Using Granular Piles with Geogrid Reinforcement

Authors: Sateesh Kumar Pisini, Swetha Priya Pisini

Abstract:

Granular piles are becoming popular as a technique of deep ground improvement not only in soft cohesive soils but also in loose cohesionless deposits. The present experimental study has been carried out on granular piles in sand (loose sand and medium dense sand i.e. relative density at 15% and 30%) with geogrid reinforcement. In this experimental study, a group of five piles installed in sand (at different spacing i.e s = 2d, 3d and 4d) the length and diameter of the pile (L = 0.4 m and d= 50 mm) kept as same for all series of experiments. Geogrid reinforcement is provided on granular piles with a limited number of laboratory tests. It has been conducted in laboratory to study the behavior of a granular pile with reinforced geogrid layers supporting a square footing at different s/d ratios. The influence of geogrid layers providing on granular piles investigated through model tests. In this paper the experimental study carried out results in significant increase in load carrying capacity and decrease in settlement reduction of the weak cohesionless soil. Also, the behavior of load carrying capacity and settlement with changing the s/d ratio has been carried out through a parametric study.

Keywords: granular piles, cohesionless soil, geogrid reinforcement, load carrying capacity

Procedia PDF Downloads 253
7577 The Effect of Artificial Intelligence on Mobile Phones and Communication Systems

Authors: Ibram Khalafalla Roshdy Shokry

Abstract:

This paper gives service feel multiple get entry to (CSMA) verbal exchange model based totally totally on SoC format method. Such model can be used to guide the modelling of the complex c084d04ddacadd4b971ae3d98fecfb2a communique systems, consequently use of such communication version is an crucial method in the creation of excessive general overall performance conversation. SystemC has been selected as it gives a homogeneous format drift for complicated designs (i.e. SoC and IP based format). We use a swarm device to validate CSMA designed version and to expose how advantages of incorporating communication early within the layout process. The wireless conversation created via the modeling of CSMA protocol that may be used to attain conversation among all of the retailers and to coordinate get proper of entry to to the shared medium (channel).The device of automobiles with wi-fiwireless communique abilities is expected to be the important thing to the evolution to next era intelligent transportation systems (ITS). The IEEE network has been continuously operating at the development of an wireless vehicular communication protocol for the enhancement of wi-fi get admission to in Vehicular surroundings (WAVE). Vehicular verbal exchange systems, known as V2X, help car to car (V2V) and automobile to infrastructure (V2I) communications. The wi-ficiencywireless of such communication systems relies upon on several elements, amongst which the encircling surroundings and mobility are prominent. as a result, this observe makes a speciality of the evaluation of the actual performance of vehicular verbal exchange with unique cognizance on the effects of the actual surroundings and mobility on V2X verbal exchange. It begins by wi-fi the actual most range that such conversation can guide and then evaluates V2I and V2V performances. The Arada LocoMate OBU transmission device changed into used to check and evaluate the effect of the transmission range in V2X verbal exchange. The evaluation of V2I and V2V communique takes the real effects of low and excessive mobility on transmission under consideration.Multiagent systems have received sizeable attention in numerous wi-fields, which include robotics, independent automobiles, and allotted computing, where a couple of retailers cooperate and speak to reap complicated duties. wi-figreen communication among retailers is a critical thing of these systems, because it directly influences their usual performance and scalability. This scholarly work gives an exploration of essential communication factors and conducts a comparative assessment of diverse protocols utilized in multiagent systems. The emphasis lies in scrutinizing the strengths, weaknesses, and applicability of those protocols across diverse situations. The studies additionally sheds light on rising tendencies within verbal exchange protocols for multiagent systems, together with the incorporation of device mastering strategies and the adoption of blockchain-based totally solutions to make sure comfy communique. those developments offer valuable insights into the evolving landscape of multiagent structures and their verbal exchange protocols.

Keywords: communication, multi-agent systems, protocols, consensussystemC, modelling, simulation, CSMA

Procedia PDF Downloads 16
7576 Numerical Simulation of Punching Shear of Flat Plates with Low Reinforcement

Authors: Fatema-Tuz-Zahura, Raquib Ahsan

Abstract:

Punching shear failure is usually the governing failure mode of flat plate structures. Punching failure is brittle in nature which induces more vulnerability to this type of structure. In the present study, a 3D finite element model of a flat plate with low reinforcement ratio and without any transverse reinforcement has been developed. Punching shear stress and the deflection data were obtained on the surface of the flat plate as well as through the thickness of the model from numerical simulations. The obtained data were compared with the experimental results. Variation of punching stress with respect to deflection as obtained from numerical results is found to be in good agreement with the experimental results; the range of variation of punching stress is within 5%. The numerical simulation shows an early and gradual onset of nonlinearity, whereas the same is late and abrupt as observed in the experimental results. The range of variation of punching stress for different slab thicknesses between experimental and numerical results is less than 15%. The developed numerical model is useful to complement available punching test series performed in the past. The results obtained from the numerical model will be helpful for designing retrofitting schemes of flat plates.

Keywords: flat plate, finite element model, punching shear, reinforcement ratio

Procedia PDF Downloads 254
7575 Diagonal Crack Width of RC Members with High Strength Materials

Authors: J. Y. Lee, H. S. Lim, S. H. Yoon

Abstract:

This paper presents an analysis of the diagonal crack widths of RC members with various types of materials by simulating a compatibility-aided truss model. The analytical results indicated that the diagonal crack width was influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. The yield strength of shear reinforcement and the compressive strength of concrete decreased the diagonal shear crack width of RC members for the same shear force because of the change of shear failure modes. However, regarding the maximum shear crack width at shear failure, the shear crack width of the beam with high strength materials was greater than that of the beam with normal strength materials.

Keywords: diagonal crack width, high strength stirrups, high strength concrete, RC members, shear behavior

Procedia PDF Downloads 303
7574 Evaluation of Applicability of High Strength Stirrup for Prestressed Concrete Members

Authors: J.-Y. Lee, H.-S. Lim, S.-E. Kim

Abstract:

Recently, the use of high-strength materials is increasing as the construction of large structures and high-rise structures increases. This paper presents an analysis of the shear behavior of prestressed concrete members with various types of materials by simulating a finite element (FE) analysis. The analytical results indicated that the shear strength and shear failure mode were strongly influenced by not only the shear reinforcement ratio but also the yield strength of shear reinforcement and the compressive strength of concrete. Though the yield strength of shear reinforcement increased the shear strength of prestressed concrete members, there was a limit to the increase in strength because of the change of shear failure modes. According to the results of FE analysis on various parameters, the maximum yield strength of the steel stirrup that can be applied to prestressed concrete members was about 860 MPa.

Keywords: prestressed concrete members, high strength reinforcing bars, high strength concrete, shear behavior

Procedia PDF Downloads 295
7573 Blended Learning through Google Classroom

Authors: Lee Bih Ni

Abstract:

This paper discusses that good learning involves all academic groups in the school. Blended learning is learning outside the classroom. Google Classroom is a free service learning app for schools, non-profit organizations and anyone with a personal Google account. Facilities accessed through computers and mobile phones are very useful for school teachers and students. Blended learning classrooms using both traditional and technology-based methods for teaching have become the norm for many educators. Using Google Classroom gives students access to online learning. Even if the teacher is not in the classroom, the teacher can provide learning. This is the supervision of the form of the teacher when the student is outside the school.

Keywords: blended learning, learning app, google classroom, schools

Procedia PDF Downloads 141
7572 Soil Reinforcement by Fibers Using Triaxial Compression Test

Authors: Negadi Kheira, Arab Ahmed, Kamal Elbokl Mohamed, Setti Fatima

Abstract:

In order to evaluate influences of roots on soil shear strength, monotonic drained and undrained triaxial laboratory tests were carried out on reconstituted specimens at various confining pressure (σc’=50, 100, 200, 300, 400 kPa) and a constant relative density (Dr = 50%). Reinforcement of soil by fibrous roots is crucial for preventing soil erosion and degradation. Therefore, we investigated soil reinforcement by roots of acacia planted in the area of Chlef where shallow landslides and slope instability are frequent. These roots were distributed in soil in two forms: vertically and horizontally. The monotonic test results showed that roots have more impacts on the soil shear strength than the friction angle, and the presence of roots in soil substantially increased the soil shear strength. Also, the results showed that the contribution of roots on the shear strength mobilized increases with increase in the confining pressure.

Keywords: soil, monotonic, triaxial test, root fiber, undrained

Procedia PDF Downloads 411
7571 The Design of the Blended Learning System via E-Media and Online Learning for the Asynchronous Learning: Case Study of Process Management Subject

Authors: Pimploi Tirastittam, Suppara Charoenpoom

Abstract:

Nowadays the asynchronous learning has granted the permission to the anywhere and anything learning via the technology and E-media which give the learner more convenient. This research is about the design of the blended and online learning for the asynchronous learning of the process management subject in order to create the prototype of this subject asynchronous learning which will create the easiness and increase capability in the learning. The pattern of learning is the integration between the in-class learning and online learning via the internet. This research is mainly focused on the online learning and the online learning can be divided into 5 parts which are virtual classroom, online content, collaboration, assessment and reference material. After the system design was finished, it was evaluated and tested by 5 experts in blended learning design and 10 students which the user’s satisfaction level is good. The result is as good as the assumption so the system can be used in the process management subject for a real usage.

Keywords: blended learning, asynchronous learning, design, process management

Procedia PDF Downloads 402
7570 Reduction of Differential Column Shortening in Tall Buildings

Authors: Hansoo Kim, Seunghak Shin

Abstract:

The differential column shortening in tall buildings can be reduced by improving material and structural characteristics of the structural systems. This paper proposes structural methods to reduce differential column shortening in reinforced concrete tall buildings; connecting columns with rigidly jointed horizontal members, using outriggers, and placing additional reinforcement at the columns. The rigidly connected horizontal members including outriggers reduce the differential shortening between adjacent vertical members. The axial stiffness of columns with greater shortening can be effectively increased by placing additional reinforcement at the columns, thus the differential column shortening can be reduced in the design stage. The optimum distribution of additional reinforcement can be determined by applying a gradient based optimization technique.

Keywords: column shortening, long-term behavior, optimization, tall building

Procedia PDF Downloads 246
7569 Research for Hollow Reinforced Concrete Bridge Piers in Korea

Authors: Ho Young Kim, Jae Hoon Lee, Do Kyu Hwang, Im Jong Kwahk, Tae Hoon Kim, Seung Hoon Lee

Abstract:

Hollow section for bridge columns has some advantages. However, current seismic design codes do not provide design regulations for hollow bridge piers. There have been many experimental studied for hollow reinforced concrete piers in the world. But, Study for hollow section for bridge piers in Korea has been begun with approximately 2000s. There has been conducted experimental study for hollow piers of flexural controlled sections by Yeungnam University, Sung kyunkwan University, Korea Expressway Corporation in 2009. This study concluded that flexural controlled sections for hollow piers showed the similar behavior to solid sections. And there have been conducted experimental study for hollow piers of compression controlled sections by Yeungnam University, Korea Institute of Construction Technology in 2012. This study concluded that compression controlled sections for hollow piers showed compression fracture of concrete in inside wall face. Samsung C&T Engineering & Construction Group has been conducted study with Yeungnam University for reduce the quantity of reinforcement details about hollow piers. Reduce the quantity of reinforcement details are triangular cross tie. This study concluded that triangular reinforcement details showed the similar behavior as compared with existing reinforcement details.

Keywords: hollow pier, flexural controlled section, compression controlled section, reduce the quantity of reinforcement, details

Procedia PDF Downloads 415
7568 Ground Improvement with Basal Reinforcement with High Strength Geogrids and PVDs for Embankment over Soft Soils

Authors: Ratnakar Mahajan, Matteo Lelli, Kinjal Parmar

Abstract:

Ground improvement is a very important aspect of infrastructure development, especially when it comes to deep-ground improvement. The use of various geosynthetic applications is very common these days for ground improvement. This paper presents a case study where the combination of two geosynthetic applications was used in order to optimize the design as well as to control the settlements through uniform load distribution. The Agartala-Akaura rail project was made to help increase railway connectivity between India and Bangladesh. Both countries have started the construction of the same. The project requires high railway embankments to be built for the rail link. However, the challenge was to design a proper ground improvement solution as the entire area comprises very soft soil for an average depth of 15m. After due diligence, a combination of two methods was worked out by Maccaferri. PVDs were provided for the consolidation, and on top of that, a layer of high-strength geogrids (Paralink) was proposed as a basal reinforcement. The design approach was followed as described in Indian standards as well as British standards. By introducing a basal reinforcement, the spacing of PVDs could be increased, which allowed quick installation and less material consumption while keeping the consolidation time within the project duration.

Keywords: ground improvement, basal reinforcement, PVDs, high strength geogrids, Paralink

Procedia PDF Downloads 68
7567 A Study on the HTML5 Based Multi Media Contents Authority Tool

Authors: Heesuk Seo, Yongtae Kim

Abstract:

Online learning started in the 1990s, the spread of the Internet has been through the era of e-learning paradigm of online education in the era of smart learning change. Reflecting the different nature of the mobile to anywhere anytime, anywhere was also allows the form of learning, it was also available through the learning content and interaction. We are developing a cloud system, 'TLINKS CLOUD' that allows you to configure the environment of the smart learning without the need for additional infrastructure. Using the big-data analysis for e-learning contents, we provide an integrated solution for e-learning tailored to individual study.

Keywords: authority tool, big data analysis, e-learning, HTML5

Procedia PDF Downloads 402
7566 Testing of Infill Walls with Joint Reinforcement Subjected to in Plane Lateral Load

Authors: J. Martin Leal-Graciano, Juan J. Pérez-Gavilán, A. Reyes-Salazar, J. H. Castorena, J. L. Rivera-Salas

Abstract:

The experimental results about the global behavior of twelve 1:2 scaled reinforced concrete frame subject to in-plane lateral load are presented. The main objective was to generate experimental evidence about the use of steel bars within mortar bed-joints as shear reinforcement in infill walls. Similar to the Canadian and New Zealand standards, the Mexican code includes specifications for this type of reinforcement. However, these specifications were obtained through experimental studies of load-bearing walls, mainly confined walls. Little information is found in the existing literature about the effects of joint reinforcement on the seismic behavior of infill masonry walls. Consequently, the Mexican code establishes the same equations to estimate the contribution of joint reinforcement for both confined walls and infill walls. A confined masonry construction and a reinforced concrete frame infilled with masonry walls have similar appearances. However, substantial differences exist between these two construction systems, which are mainly related to the sequence of construction and to how these structures support vertical and lateral loads. To achieve the objective established, ten reinforced concrete frames with masonry infill walls were built and tested in pairs, having both specimens in the pair identical characteristics except that one of them included joint reinforcement. The variables between pairs were the type of units, the size of the columns of the frame and the aspect ratio of the wall. All cases included tie-columns and tie-beams on the perimeter of the wall to anchor the joint reinforcement. Also, two bare frame with identical characteristic to the infilled frames were tested. The purpose was to investigate the effects of the infill wall on the behavior of the system to in-plane lateral load. In addition, the experimental results were compared with the prediction of the Mexican code. All the specimens were tested in cantilever under reversible cyclic lateral load. To simulate gravity load, constant vertical load was applied on the top of the columns. The results indicate that the contribution of the joint reinforcement to lateral strength depends on the size of the columns of the frame. Larger size columns produce a failure mode that is predominantly a sliding mode. Sliding inhibits the production of new inclined cracks, which are necessary to activate (deform) the joint reinforcement. Regarding the effects of joint reinforcement in the performance of confined masonry walls, many facts were confirmed for infill walls: this type of reinforcement increases the lateral strength of the wall, produces a more distributed cracking and reduces the width of the cracks. Moreover, it reduces the ductility demand of the system at maximum strength. The prediction of the lateral strength provided by the Mexican code is property in some cases; however, the effect of the size of the columns on the contribution of joint reinforcement needs to be better understood.

Keywords: experimental study, Infill wall, Infilled frame, masonry wall

Procedia PDF Downloads 74
7565 Strengthening of Concrete Slabs with Steel Beams

Authors: Mizam Doğan

Abstract:

In service life; structures can be damaged if they are subjected to dead and live loads which are greater than design values. For preventing this case; possible loads must be correctly calculated, structure must be designed according to determined loads, and structure must not be used out of its function. If loading case of the structure changes when its function changes; it must be reinforced for continuing it is new function. Reinforcement is a process that is made by increasing the existing strengths of structural system elements of the structure as reinforced concrete walls, beams, and slabs. Reinforcement can be done by casting reinforced concrete, placing steel and fiber structural elements. In this paper, reinforcing of columns and slabs of a structure of which function is changed is studied step by step. This reinforcement is made for increasing vertical and lateral load carrying capacity of the building. Not for repairing damaged structural system.

Keywords: strengthening, RC slabs, seismic load, steel beam, structural irregularity

Procedia PDF Downloads 252