Search results for: method of integral equations
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20536

Search results for: method of integral equations

20416 Investigation of Flexural – Torsion Instability of Struts Using Modified Newmark Method

Authors: Seyed Amin Vakili, Sahar Sadat Vakili, Seyed Ehsan Vakili, Nader Abdoli Yazdi

Abstract:

Differential equations are of fundamental importance in engineering and applied mathematics, since many physical laws and relations appear mathematically in the form of such equations. The equilibrium state of structures consisting of one-dimensional elements can be described by an ordinary differential equation. The response of these kinds of structures under the loading, namely relationship between the displacement field and loading field, can be predicted by the solution of these differential equations and on satisfying the given boundary conditions. When the effect of change of geometry under loading is taken into account in modeling of equilibrium state, then these differential equations are partially integrable in quartered. They also exhibit instability characteristics when the structures are loaded compressively. The purpose of this paper is to represent the ability of the Modified Newmark Method in analyzing flexural-torsional instability of struts for both bifurcation and non-bifurcation structural systems. The results are shown to be very accurate with only a small number of iterations. The method is easily programmed, and has the advantages of simplicity and speeds of convergence and easily is extended to treat material and geometric nonlinearity including no prismatic members and linear and nonlinear spring restraints that would be encountered in frames. In this paper, these abilities of the method will be extended to the system of linear differential equations that govern strut flexural torsional stability.

Keywords: instability, torsion, flexural, buckling, modified newmark method stability

Procedia PDF Downloads 360
20415 Hypergeometric Solutions to Linear Nonhomogeneous Fractional Equations with Spherical Bessel Functions of the First Kind

Authors: Pablo Martin, Jorge Olivares, Fernando Maass

Abstract:

The use of fractional derivatives to different problems in Engineering and Physics has been increasing in the last decade. For this reason, we have here considered partial derivatives when the integral is a spherical Bessel function of the first kind in both regular and modified ones simple initial conditions have been also considered. In this way, the solution has been found as a combination of hypergeometric functions. The case of a general rational value for α of the fractional derivative α has been solved in a general way for alpha between zero and two. The modified spherical Bessel functions of the first kind have been also considered and how to go from the regular case to the modified one will be also shown.

Keywords: caputo fractional derivatives, hypergeometric functions, linear differential equations, spherical Bessel functions

Procedia PDF Downloads 328
20414 Symbolic Computation for the Multi-Soliton Solutions of a Class of Fifth-Order Evolution Equations

Authors: Rafat Alshorman, Fadi Awawdeh

Abstract:

By employing a simplified bilinear method, a class of generalized fifth-order KdV (gfKdV) equations which arise in nonlinear lattice, plasma physics and ocean dynamics are investigated. With the aid of symbolic computation, both solitary wave solutions and multiple-soliton solutions are obtained. These new exact solutions will extend previous results and help us explain the properties of nonlinear solitary waves in many physical models in shallow water. Parametric analysis is carried out in order to illustrate that the soliton amplitude, width and velocity are affected by the coefficient parameters in the equation.

Keywords: multiple soliton solutions, fifth-order evolution equations, Cole-Hopf transformation, Hirota bilinear method

Procedia PDF Downloads 323
20413 Hermite–Hadamard Type Integral Inequalities Involving k–Riemann–Liouville Fractional Integrals and Their Applications

Authors: Artion Kashuri, Rozana Liko

Abstract:

In this paper, some generalization integral inequalities of Hermite–Hadamard type for functions whose derivatives are s–convex in modulus are given by using k–fractional integrals. Some applications to special means are obtained as well. Some known versions are recovered as special cases from our results. We note that our inequalities can be viewed as new refinements of the previous results. Finally, our results have a deep connection with various fractional integral operators and interested readers can find new interesting results using our idea and technique as well.

Keywords: Hermite-Hadamard's inequalities, Hölder's inequality, k-Riemann-Liouville fractional integral, special means

Procedia PDF Downloads 129
20412 3D Microbubble Dynamics in a Weakly Viscous Fluid Near a Rigid Boundary Subject to Ultrasound

Authors: K. Manmi, Q. X. Wang

Abstract:

This paper investigates microbubble dynamics subject to ultrasound in a weakly viscous fluid near a rigid boundary. The phenomenon is simulated using a boundary integral method. The weak viscous effects are incorporated into the model through the normal stress balance across the bubble surface. The model agrees well with the Rayleigh-Plesset equation for a spherical bubble for several cycles. The effects of the fluid viscosity in the bubble dynamics are analyzed, including jet development, centroid movement and bubble volume.

Keywords: microbubble dynamics, bubble jetting, viscous effect, boundary integral method

Procedia PDF Downloads 484
20411 Optimization Approach to Estimate Hammerstein–Wiener Nonlinear Blocks in Presence of Noise and Disturbance

Authors: Leili Esmaeilani, Jafar Ghaisari, Mohsen Ahmadian

Abstract:

Hammerstein–Wiener model is a block-oriented model where a linear dynamic system is surrounded by two static nonlinearities at its input and output and could be used to model various processes. This paper contains an optimization approach method for analysing the problem of Hammerstein–Wiener systems identification. The method relies on reformulate the identification problem; solve it as constraint quadratic problem and analysing its solutions. During the formulation of the problem, effects of adding noise to both input and output signals of nonlinear blocks and disturbance to linear block, in the emerged equations are discussed. Additionally, the possible parametric form of matrix operations to reduce the equation size is presented. To analyse the possible solutions to the mentioned system of equations, a method to reduce the difference between the number of equations and number of unknown variables by formulate and importing existing knowledge about nonlinear functions is presented. Obtained equations are applied to an instance H–W system to validate the results and illustrate the proposed method.

Keywords: identification, Hammerstein-Wiener, optimization, quantization

Procedia PDF Downloads 257
20410 Adomian’s Decomposition Method to Generalized Magneto-Thermoelasticity

Authors: Hamdy M. Youssef, Eman A. Al-Lehaibi

Abstract:

Due to many applications and problems in the fields of plasma physics, geophysics, and other many topics, the interaction between the strain field and the magnetic field has to be considered. Adomian introduced the decomposition method for solving linear and nonlinear functional equations. This method leads to accurate, computable, approximately convergent solutions of linear and nonlinear partial and ordinary differential equations even the equations with variable coefficients. This paper is dealing with a mathematical model of generalized thermoelasticity of a half-space conducting medium. A magnetic field with constant intensity acts normal to the bounding plane has been assumed. Adomian’s decomposition method has been used to solve the model when the bounding plane is taken to be traction free and thermally loaded by harmonic heating. The numerical results for the temperature increment, the stress, the strain, the displacement, the induced magnetic, and the electric fields have been represented in figures. The magnetic field, the relaxation time, and the angular thermal load have significant effects on all the studied fields.

Keywords: Adomian’s decomposition method, magneto-thermoelasticity, finite conductivity, iteration method, thermal load

Procedia PDF Downloads 150
20409 Strict Stability of Fuzzy Differential Equations by Lyapunov Functions

Authors: Mustafa Bayram Gücen, Coşkun Yakar

Abstract:

In this study, we have investigated the strict stability of fuzzy differential systems and we compare the classical notion of strict stability criteria of ordinary differential equations and the notion of strict stability of fuzzy differential systems. In addition that, we present definitions of stability and strict stability of fuzzy differential equations and also we have some theorems and comparison results. Strict Stability is a different stability definition and this stability type can give us an information about the rate of decay of the solutions. Lyapunov’s second method is a standard technique used in the study of the qualitative behavior of fuzzy differential systems along with a comparison result that allows the prediction of behavior of a fuzzy differential system when the behavior of the null solution of a fuzzy comparison system is known. This method is a usefull for investigating strict stability of fuzzy systems. First of all, we present definitions and necessary background material. Secondly, we discuss and compare the differences between the classical notion of stability and the recent notion of strict stability. And then, we have a comparison result in which the stability properties of the null solution of the comparison system imply the corresponding stability properties of the fuzzy differential system. Consequently, we give the strict stability results and a comparison theorem. We have used Lyapunov second method and we have proved a comparison result with scalar differential equations.

Keywords: fuzzy systems, fuzzy differential equations, fuzzy stability, strict stability

Procedia PDF Downloads 252
20408 Method for Tuning Level Control Loops Based on Internal Model Control and Closed Loop Step Test Data

Authors: Arnaud Nougues

Abstract:

This paper describes a two-stage methodology derived from internal model control (IMC) for tuning a proportional-integral-derivative (PID) controller for levels or other integrating processes in an industrial environment. Focus is the ease of use and implementation speed which are critical for an industrial application. Tuning can be done with minimum effort and without the need for time-consuming open-loop step tests on the plant. The first stage of the method applies to levels only: the vessel residence time is calculated from equipment dimensions and used to derive a set of preliminary proportional-integral (PI) settings with IMC. The second stage, re-tuning in closed-loop, applies to levels as well as other integrating processes: a tuning correction mechanism has been developed based on a series of closed-loop simulations with model errors. The tuning correction is done from a simple closed-loop step test and the application of a generic correlation between observed overshoot and integral time correction. A spin-off of the method is that an estimate of the vessel residence time (levels) or open-loop process gain (other integrating process) is obtained from the closed-loop data.

Keywords: closed-loop model identification, IMC-PID tuning method, integrating process control, on-line PID tuning adaptation

Procedia PDF Downloads 223
20407 The Analysis of the Two Dimensional Huxley Equation Using the Galerkin Method

Authors: Pius W. Molo Chin

Abstract:

Real life problems such as the Huxley equation are always modeled as nonlinear differential equations. These problems need accurate and reliable methods for their solutions. In this paper, we propose a nonstandard finite difference method in time and the Galerkin combined with the compactness method in the space variables. This coupled method, is used to analyze a two dimensional Huxley equation for the existence and uniqueness of the continuous solution of the problem in appropriate spaces to be defined. We proceed to design a numerical scheme consisting of the aforementioned method and show that the scheme is stable. We further show that the stable scheme converges with the rate which is optimal in both the L2 as well as the H1-norms. Furthermore, we show that the scheme replicates the decaying qualities of the exact solution. Numerical experiments are presented with the help of an example to justify the validity of the designed scheme.

Keywords: Huxley equations, non-standard finite difference method, Galerkin method, optimal rate of convergence

Procedia PDF Downloads 217
20406 Stability and Boundedness Theorems of Solutions of Certain Systems of Differential Equations

Authors: Adetunji A. Adeyanju., Mathew O. Omeike, Johnson O. Adeniran, Biodun S. Badmus

Abstract:

In this paper, we discuss certain conditions for uniform asymptotic stability and uniform ultimate boundedness of solutions to some systems of Aizermann-type of differential equations by means of second method of Lyapunov. In achieving our goal, some Lyapunov functions are constructed to serve as basic tools. The stability results in this paper, extend some stability results for some Aizermann-type of differential equations found in literature. Also, we prove some results on uniform boundedness and uniform ultimate boundedness of solutions of systems of equations study.

Keywords: Aizermann, boundedness, first order, Lyapunov function, stability

Procedia PDF Downloads 87
20405 On the Relation between λ-Symmetries and μ-Symmetries of Partial Differential Equations

Authors: Teoman Ozer, Ozlem Orhan

Abstract:

This study deals with symmetry group properties and conservation laws of partial differential equations. We give a geometrical interpretation of notion of μ-prolongations of vector fields and of the related concept of μ-symmetry for partial differential equations. We show that these are in providing symmetry reduction of partial differential equations and systems and invariant solutions.

Keywords: λ-symmetry, μ-symmetry, classification, invariant solution

Procedia PDF Downloads 319
20404 Symbolic Computation on Variable-Coefficient Non-Linear Dispersive Wave Equations

Authors: Edris Rawashdeh, I. Abu-Falahah, H. M. Jaradat

Abstract:

The variable-coefficient non-linear dispersive wave equation is investigated with the aid of symbolic computation. By virtue of a newly developed simplified bilinear method, multi-soliton solutions for such an equation have been derived. Effects of the inhomogeneities of media and nonuniformities of boundaries, depicted by the variable coefficients, on the soliton behavior are discussed with the aid of the characteristic curve method and graphical analysis.

Keywords: dispersive wave equations, multiple soliton solution, Hirota Bilinear Method, symbolic computation

Procedia PDF Downloads 458
20403 Three Dimensional Vibration Analysis of Carbon Nanotubes Embedded in Elastic Medium

Authors: M. Shaban, A. Alibeigloo

Abstract:

This paper studies free vibration behavior of single-walled carbon nanotubes (SWCNTs) embedded on elastic medium based on three-dimensional theory of elasticity. To accounting the size effect of carbon nanotubes, nonlocal theory is adopted to shell model. The nonlocal parameter is incorporated into all constitutive equations in three dimensions. The surrounding medium is modeled as two-parameter elastic foundation. By using Fourier series expansion in axial and circumferential direction, the set of coupled governing equations are reduced to the ordinary differential equations in thickness direction. Then, the state-space method as an efficient and accurate method is used to solve the resulting equations analytically. Comprehensive parametric studies are carried out to show the influences of the nonlocal parameter, radial and shear elastic stiffness, thickness-to-radius ratio and radius-to-length ratio.

Keywords: carbon nanotubes, embedded, nonlocal, free vibration

Procedia PDF Downloads 452
20402 Fractional Euler Method and Finite Difference Formula Using Conformable Fractional Derivative

Authors: Ramzi B. Albadarneh

Abstract:

In this paper, we use the new definition of fractional derivative called conformable fractional derivative to derive some finite difference formulas and its error terms which are used to solve fractional differential equations and fractional partial differential equations, also to derive fractional Euler method and its error terms which can be applied to solve fractional differential equations. To provide the contribution of our work some applications on finite difference formulas and Euler Method are given.

Keywords: conformable fractional derivative, finite difference formula, fractional derivative, finite difference formula

Procedia PDF Downloads 439
20401 A Modified Decoupled Semi-Analytical Approach Based On SBFEM for Solving 2D Elastodynamic Problems

Authors: M. Fakharian, M. I. Khodakarami

Abstract:

In this paper, a new trend for improvement in semi-analytical method based on scale boundaries in order to solve the 2D elastodynamic problems is provided. In this regard, only the boundaries of the problem domain discretization are by specific sub-parametric elements. Mapping functions are uses as a class of higher-order Lagrange polynomials, special shape functions, Gauss-Lobatto -Legendre numerical integration, and the integral form of the weighted residual method, the matrix is diagonal coefficients in the equations of elastodynamic issues. Differences between study conducted and prior research in this paper is in geometry production procedure of the interpolation function and integration of the different is selected. Validity and accuracy of the present method are fully demonstrated through two benchmark problems which are successfully modeled using a few numbers of DOFs. The numerical results agree very well with the analytical solutions and the results from other numerical methods.

Keywords: 2D elastodynamic problems, lagrange polynomials, G-L-Lquadrature, decoupled SBFEM

Procedia PDF Downloads 444
20400 Equations of Pulse Propagation in Three-Layer Structure of As2S3 Chalcogenide Plasmonic Nano-Waveguides

Authors: Leila Motamed-Jahromi, Mohsen Hatami, Alireza Keshavarz

Abstract:

This research aims at obtaining the equations of pulse propagation in nonlinear plasmonic waveguides created with As2S3 chalcogenide materials. Via utilizing Helmholtz equation and first-order perturbation theory, two components of electric field are determined within frequency domain. Afterwards, the equations are formulated in time domain. The obtained equations include two coupled differential equations that considers nonlinear dispersion.

Keywords: nonlinear optics, plasmonic waveguide, chalcogenide, propagation equation

Procedia PDF Downloads 421
20399 Neural Network Supervisory Proportional-Integral-Derivative Control of the Pressurized Water Reactor Core Power Load Following Operation

Authors: Derjew Ayele Ejigu, Houde Song, Xiaojing Liu

Abstract:

This work presents the particle swarm optimization trained neural network (PSO-NN) supervisory proportional integral derivative (PID) control method to monitor the pressurized water reactor (PWR) core power for safe operation. The proposed control approach is implemented on the transfer function of the PWR core, which is computed from the state-space model. The PWR core state-space model is designed from the neutronics, thermal-hydraulics, and reactivity models using perturbation around the equilibrium value. The proposed control approach computes the control rod speed to maneuver the core power to track the reference in a closed-loop scheme. The particle swarm optimization (PSO) algorithm is used to train the neural network (NN) and to tune the PID simultaneously. The controller performance is examined using integral absolute error, integral time absolute error, integral square error, and integral time square error functions, and the stability of the system is analyzed by using the Bode diagram. The simulation results indicated that the controller shows satisfactory performance to control and track the load power effectively and smoothly as compared to the PSO-PID control technique. This study will give benefit to design a supervisory controller for nuclear engineering research fields for control application.

Keywords: machine learning, neural network, pressurized water reactor, supervisory controller

Procedia PDF Downloads 157
20398 Algebras over an Integral Domain and Immediate Neighbors

Authors: Shai Sarussi

Abstract:

Let S be an integral domain with field of fractions F and let A be an F-algebra. An S-subalgebra R of A is called S-nice if R∩F = S and the localization of R with respect to S \{0} is A. Denoting by W the set of all S-nice subalgebras of A, and defining a notion of open sets on W, one can view W as a T0-Alexandroff space. A characterization of the property of immediate neighbors in an Alexandroff topological space is given, in terms of closed and open subsets of appropriate subspaces. Moreover, two special subspaces of W are introduced, and a way in which their closed and open subsets induce W is presented.

Keywords: integral domains, Alexandroff topology, immediate neighbors, valuation domains

Procedia PDF Downloads 178
20397 New Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator

Authors: Wedad Albalawi

Abstract:

The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques, and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then, dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is an arbitrary nonempty closed subset of the real numbers. Then, the dynamic inequalities on time scales have received a lot of attention in the literature and has become a major field in pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on Hardy and Coposon inequalities, using Steklov operator on time scale in double integrals to obtain special cases of time-scale inequalities of Hardy and Copson on high dimensions. The advantage of this study is that it uses the one-dimensional classical Hardy inequality to obtain higher dimensional on time scale versions that will be applied in the solution of the Cauchy problem for the wave equation. In addition, the obtained inequalities have various applications involving discontinuous domains such as bug populations, phytoremediation of metals, wound healing, maximization problems. The proof can be done by introducing restriction on the operator in several cases. The concepts in time scale version such as time scales calculus will be used that allows to unify and extend many problems from the theories of differential and of difference equations. In addition, using chain rule, and some properties of multiple integrals on time scales, some theorems of Fubini and the inequality of H¨older.

Keywords: time scales, inequality of hardy, inequality of coposon, steklov operator

Procedia PDF Downloads 97
20396 Large Amplitude Vibration of Sandwich Beam

Authors: Youssef Abdelli, Rachid Nasri

Abstract:

The large amplitude free vibration analysis of three-layered symmetric sandwich beams is carried out using two different approaches. The governing nonlinear partial differential equations of motion in free natural vibration are derived using Hamilton's principle. The formulation leads to two nonlinear partial differential equations that are coupled both in axial and binding deformations. In the first approach, the method of multiple scales is applied directly to the governing equation that is a nonlinear partial differential equation. In the second approach, we discretize the governing equation by using Galerkin's procedure and then apply the shooting method to the obtained ordinary differential equations. In order to check the validity of the solutions obtained by the two approaches, they are compared with the solutions obtained by two approaches; they are compared with the solutions obtained numerically by the finite difference method.

Keywords: finite difference method, large amplitude vibration, multiple scales, nonlinear vibration

Procedia PDF Downloads 463
20395 Trajectory Tracking of a Redundant Hybrid Manipulator Using a Switching Control Method

Authors: Atilla Bayram

Abstract:

This paper presents the trajectory tracking control of a spatial redundant hybrid manipulator. This manipulator consists of two parallel manipulators which are a variable geometry truss (VGT) module. In fact, each VGT module with 3-degress of freedom (DOF) is a planar parallel manipulator and their operational planes of these VGT modules are arranged to be orthogonal to each other. Also, the manipulator contains a twist motion part attached to the top of the second VGT module to supply the missing orientation of the endeffector. These three modules constitute totally 7-DOF hybrid (parallel-parallel) redundant spatial manipulator. The forward kinematics equations of this manipulator are obtained, then, according to these equations, the inverse kinematics is solved based on an optimization with the joint limit avoidance. The dynamic equations are formed by using virtual work method. In order to test the performance of the redundant manipulator and the controllers presented, two different desired trajectories are followed by using the computed force control method and a switching control method. The switching control method is combined with the computed force control method and genetic algorithm. In the switching control method, the genetic algorithm is only used for fine tuning in the compensation of the trajectory tracking errors.

Keywords: computed force method, genetic algorithm, hybrid manipulator, inverse kinematics of redundant manipulators, variable geometry truss

Procedia PDF Downloads 348
20394 Implicit Off-Grid Block Method for Solving Fourth and Fifth Order Ordinary Differential Equations Directly

Authors: Olusola Ezekiel Abolarin, Gift E. Noah

Abstract:

This research work considered an innovative procedure to numerically approximate higher-order Initial value problems (IVP) of ordinary differential equations (ODE) using the Legendre polynomial as the basis function. The proposed method is a half-step, self-starting Block integrator employed to approximate fourth and fifth order IVPs without reduction to lower order. The method was developed through a collocation and interpolation approach. The basic properties of the method, such as convergence, consistency and stability, were well investigated. Several test problems were considered, and the results compared favorably with both exact solutions and other existing methods.

Keywords: initial value problem, ordinary differential equation, implicit off-grid block method, collocation, interpolation

Procedia PDF Downloads 85
20393 Serious Digital Video Game for Solving Algebraic Equations

Authors: Liliana O. Martínez, Juan E González, Manuel Ramírez-Aranda, Ana Cervantes-Herrera

Abstract:

A serious game category mobile application called Math Dominoes is presented. The main objective of this applications is to strengthen the teaching-learning process of solving algebraic equations and is based on the board game "Double 6" dominoes. Math Dominoes allows the practice of solving first, second-, and third-degree algebraic equations. This application is aimed to students who seek to strengthen their skills in solving algebraic equations in a dynamic, interactive, and fun way, to reduce the risk of failure in subsequent courses that require mastery of this algebraic tool.

Keywords: algebra, equations, dominoes, serious games

Procedia PDF Downloads 132
20392 Discontinuous Galerkin Method for Higher-Order Ordinary Differential Equations

Authors: Helmi Temimi

Abstract:

In this paper, we study the super-convergence properties of the discontinuous Galerkin (DG) method applied to one-dimensional mth-order ordinary differential equations without introducing auxiliary variables. We found that nth−derivative of the DG solution exhibits an optimal O (hp+1−n) convergence rates in the L2-norm when p-degree piecewise polynomials with p≥1 are used. We further found that the odd-derivatives and the even derivatives are super convergent, respectively, at the upwind and downwind endpoints.

Keywords: discontinuous, galerkin, superconvergence, higherorder, error, estimates

Procedia PDF Downloads 478
20391 Third Party Logistics (3PL) Selection Criteria for an Indian Heavy Industry Using SEM

Authors: Nadama Kumar, P. Parthiban, T. Niranjan

Abstract:

In the present paper, we propose an incorporated approach for 3PL supplier choice that suits the distinctive strategic needs of the outsourcing organization in southern part of India. Four fundamental criteria have been used in particular Performance, IT, Service and Intangible. These are additionally subdivided into fifteen sub-criteria. The proposed strategy coordinates Structural Equation Modeling (SEM) and Non-additive Fuzzy Integral strategies. The presentation of fluffiness manages the unclearness of human judgments. The SEM approach has been used to approve the determination criteria for the proposed show though the Non-additive Fuzzy Integral approach uses the SEM display contribution to assess a supplier choice score. The case organization has a exclusive vertically integrated assembly that comprises of several companies focusing on a slight array of the value chain. To confirm manufacturing and logistics proficiency, it significantly relies on 3PL suppliers to attain supply chain superiority. However, 3PL supplier selection is an intricate decision-making procedure relating multiple selection criteria. The goal of this work is to recognize the crucial 3PL selection criteria by using the non-additive fuzzy integral approach. Unlike the outmoded multi criterion decision-making (MCDM) methods which frequently undertake independence among criteria and additive importance weights, the nonadditive fuzzy integral is an effective method to resolve the dependency among criteria, vague information, and vital fuzziness of human judgment. In this work, we validate an empirical case that engages the nonadditive fuzzy integral to assess the importance weight of selection criteria and indicate the most suitable 3PL supplier.

Keywords: 3PL, non-additive fuzzy integral approach, SEM, fuzzy

Procedia PDF Downloads 282
20390 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems

Authors: Nadaniela Egidi, Pierluigi Maponi

Abstract:

The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.

Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem

Procedia PDF Downloads 105
20389 Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis

Authors: Alireza Abbasi Moshaii, Shaghayegh Nasiri, Mehdi Tale Masouleh

Abstract:

The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3-RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. Mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, their CAD model has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis.

Keywords: robotic, static analysis, 3-RCC, 3-RRS

Procedia PDF Downloads 385
20388 Solution for Thick Plate Resting on Winkler Foundation by Symplectic Geometry Method

Authors: Mei-Jie Xu, Yang Zhong

Abstract:

Based on the symplectic geometry method, the theory of Hamilton system can be applied in the analysis of problem solved using the theory of elasticity and in the solution of elliptic partial differential equations. With this technique, this paper derives the theoretical solution for a thick rectangular plate with four free edges supported on a Winkler foundation by variable separation method. In this method, the governing equation of thick plate was first transformed into state equations in the Hamilton space. The theoretical solution of this problem was next obtained by applying the method of variable separation based on the Hamilton system. Compared with traditional theoretical solutions for rectangular plates, this method has the advantage of not having to assume the form of deflection functions in the solution process. Numerical examples are presented to verify the validity of the proposed solution method.

Keywords: symplectic geometry method, Winkler foundation, thick rectangular plate, variable separation method, Hamilton system

Procedia PDF Downloads 306
20387 Parametric Study on the Development of Earth Pressures Behind Integral Bridge Abutments Under Cyclic Translational Movements

Authors: Lila D. Sigdel, Chin J. Leo, Samanthika Liyanapathirana, Pan Hu, Minghao Lu

Abstract:

Integral bridges are a class of bridges with integral or semi-integral abutments, designed without expansion joints in the bridge deck of the superstructure. Integral bridges are economical alternatives to conventional jointed bridges with lower maintenance costs and greater durability, thereby improving social and economic stability for the community. Integral bridges have also been proven to be effective in lowering the overall construction cost compared to the conventional type of bridges. However, there is significant uncertainty related to the design and analysis of integral bridges in response to cyclic thermal movements induced due to deck expansion and contraction. The cyclic thermal movements of the abutments increase the lateral earth pressures on the abutment and its foundation, leading to soil settlement and heaving of the backfill soil. Thus, the primary objective of this paper is to investigate the soil-abutment interaction under the cyclic translational movement of the abutment. Results from five experiments conducted to simulate different magnitudes of cyclic translational movements of abutments induced by thermal changes are presented, focusing on lateral earth pressure development at the abutment-soil interface. Test results show that the cycle number and magnitude of cyclic translational movements have significant effects on the escalation of lateral earth pressures. Experimentally observed earth pressure distributions behind the integral abutment were compared with the current design approaches, which shows that the most of the practices has under predicted the lateral earth pressure.

Keywords: integral bridge, cyclic thermal movement, lateral earth pressure, soil-structure interaction

Procedia PDF Downloads 114