Search results for: long term peak demand forecasting
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11924

Search results for: long term peak demand forecasting

11804 Analysis of Multilayer Neural Network Modeling and Long Short-Term Memory

Authors: Danilo López, Nelson Vera, Luis Pedraza

Abstract:

This paper analyzes fundamental ideas and concepts related to neural networks, which provide the reader a theoretical explanation of Long Short-Term Memory (LSTM) networks operation classified as Deep Learning Systems, and to explicitly present the mathematical development of Backward Pass equations of the LSTM network model. This mathematical modeling associated with software development will provide the necessary tools to develop an intelligent system capable of predicting the behavior of licensed users in wireless cognitive radio networks.

Keywords: neural networks, multilayer perceptron, long short-term memory, recurrent neuronal network, mathematical analysis

Procedia PDF Downloads 420
11803 Widely Diversified Macroeconomies in the Super-Long Run Casts a Doubt on Path-Independent Equilibrium Growth Model

Authors: Ichiro Takahashi

Abstract:

One of the major assumptions of mainstream macroeconomics is the path independence of capital stock. This paper challenges this assumption by employing an agent-based approach. The simulation results showed the existence of multiple "quasi-steady state" equilibria of the capital stock, which may cast serious doubt on the validity of the assumption. The finding would give a better understanding of many phenomena that involve hysteresis, including the causes of poverty. The "market-clearing view" has been widely shared among major schools of macroeconomics. They understand that the capital stock, the labor force, and technology, determine the "full-employment" equilibrium growth path and demand/supply shocks can move the economy away from the path only temporarily: the dichotomy between the short-run business cycles and the long-run equilibrium path. The view then implicitly assumes the long-run capital stock to be independent of how the economy has evolved. In contrast, "Old Keynesians" have recognized fluctuations in output as arising largely from fluctuations in real aggregate demand. It will then be an interesting question to ask if an agent-based macroeconomic model, which is known to have path dependence, can generate multiple full-employment equilibrium trajectories of the capital stock in the super-long run. If the answer is yes, the equilibrium level of capital stock, an important supply-side factor, would no longer be independent of the business cycle phenomenon. This paper attempts to answer the above question by using the agent-based macroeconomic model developed by Takahashi and Okada (2010). The model would serve this purpose well because it has neither population growth nor technology progress. The objective of the paper is twofold: (1) to explore the causes of long-term business cycle, and (2) to examine the super-long behaviors of the capital stock of full-employment economies. (1) The simulated behaviors of the key macroeconomic variables such as output, employment, real wages showed widely diversified macro-economies. They were often remarkably stable but exhibited both short-term and long-term fluctuations. The long-term fluctuations occur through the following two adjustments: the quantity and relative cost adjustments of capital stock. The first one is obvious and assumed by many business cycle theorists. The reduced aggregate demand lowers prices, which raises real wages, thereby decreasing the relative cost of capital stock with respect to labor. (2) The long-term business cycles/fluctuations were synthesized with the hysteresis of real wages, interest rates, and investments. In particular, a sequence of the simulation runs with a super-long simulation period generated a wide range of perfectly stable paths, many of which achieved full employment: all the macroeconomic trajectories, including capital stock, output, and employment, were perfectly horizontal over 100,000 periods. Moreover, the full-employment level of capital stock was influenced by the history of unemployment, which was itself path-dependent. Thus, an experience of severe unemployment in the past kept the real wage low, which discouraged a relatively costly investment in capital stock. Meanwhile, a history of good performance sometimes brought about a low capital stock due to a high-interest rate that was consistent with a strong investment.

Keywords: agent-based macroeconomic model, business cycle, hysteresis, stability

Procedia PDF Downloads 210
11802 Hydrogen Production at the Forecourt from Off-Peak Electricity and Its Role in Balancing the Grid

Authors: Abdulla Rahil, Rupert Gammon, Neil Brown

Abstract:

The rapid growth of renewable energy sources and their integration into the grid have been motivated by the depletion of fossil fuels and environmental issues. Unfortunately, the grid is unable to cope with the predicted growth of renewable energy which would lead to its instability. To solve this problem, energy storage devices could be used. Electrolytic hydrogen production from an electrolyser is considered a promising option since it is a clean energy source (zero emissions). Choosing flexible operation of an electrolyser (producing hydrogen during the off-peak electricity period and stopping at other times) could bring about many benefits like reducing the cost of hydrogen and helping to balance the electric systems. This paper investigates the price of hydrogen during flexible operation compared with continuous operation, while serving the customer (hydrogen filling station) without interruption. The optimization algorithm is applied to investigate the hydrogen station in both cases (flexible and continuous operation). Three different scenarios are tested to see whether the off-peak electricity price could enhance the reduction of the hydrogen cost. These scenarios are: Standard tariff (1 tier system) during the day (assumed 12 p/kWh) while still satisfying the demand for hydrogen; using off-peak electricity at a lower price (assumed 5 p/kWh) and shutting down the electrolyser at other times; using lower price electricity at off-peak times and high price electricity at other times. This study looks at Derna city, which is located on the coast of the Mediterranean Sea (32° 46′ 0 N, 22° 38′ 0 E) with a high potential for wind resource. Hourly wind speed data which were collected over 24½ years from 1990 to 2014 were in addition to data on hourly radiation and hourly electricity demand collected over a one-year period, together with the petrol station data.

Keywords: hydrogen filling station off-peak electricity, renewable energy, off-peak electricity, electrolytic hydrogen

Procedia PDF Downloads 231
11801 Impacts and Implications: Exploring the Long-Term Health Benefits of Regular Physical Activity

Authors: Muhammad Wahb

Abstract:

Physical activity is increasingly recognized as a significant factor in maintaining optimal health and preventing chronic diseases. This research scrutinizes the long-term health benefits of sustained physical activity, employing a systematic review of epidemiological studies and randomized control trials conducted over the past decade. The study illuminates the protective effects of regular physical activity against cardiovascular disease, obesity, diabetes, and mental health disorders, with a special focus on the mechanisms involved. Furthermore, the paper provides insights into how public health initiatives can effectively promote physical activity among diverse populations, contributing to improved community health outcomes.

Keywords: physical activity, long-term health benefits, chronic disease prevention, public health

Procedia PDF Downloads 97
11800 Forecasting of Grape Juice Flavor by Using Support Vector Regression

Authors: Ren-Jieh Kuo, Chun-Shou Huang

Abstract:

The research of juice flavor forecasting has become more important in China. Due to the fast economic growth in China, many different kinds of juices have been introduced to the market. If a beverage company can understand their customers’ preference well, the juice can be served more attractively. Thus, this study intends to introduce the basic theory and computing process of grapes juice flavor forecasting based on support vector regression (SVR). Applying SVR, BPN and LR to forecast the flavor of grapes juice in real data, the result shows that SVR is more suitable and effective at predicting performance.

Keywords: flavor forecasting, artificial neural networks, Support Vector Regression, China

Procedia PDF Downloads 492
11799 Effective Supply Chain Coordination with Hybrid Demand Forecasting Techniques

Authors: Gurmail Singh

Abstract:

Effective supply chain is the main priority of every organization which is the outcome of strategic corporate investments with deliberate management action. Value-driven supply chain is defined through development, procurement and by configuring the appropriate resources, metrics and processes. However, responsiveness of the supply chain can be improved by proper coordination. So the Bullwhip effect (BWE) and Net stock amplification (NSAmp) values were anticipated and used for the control of inventory in organizations by both discrete wavelet transform-Artificial neural network (DWT-ANN) and Adaptive Network-based fuzzy inference system (ANFIS). This work presents a comparative methodology of forecasting for the customers demand which is non linear in nature for a multilevel supply chain structure using hybrid techniques such as Artificial intelligence techniques including Artificial neural networks (ANN) and Adaptive Network-based fuzzy inference system (ANFIS) and Discrete wavelet theory (DWT). The productiveness of these forecasting models are shown by computing the data from real world problems for Bullwhip effect and Net stock amplification. The results showed that these parameters were comparatively less in case of discrete wavelet transform-Artificial neural network (DWT-ANN) model and using Adaptive network-based fuzzy inference system (ANFIS).

Keywords: bullwhip effect, hybrid techniques, net stock amplification, supply chain flexibility

Procedia PDF Downloads 127
11798 Research on Integrating Adult Learning and Practice into Long-Term Care Education

Authors: Liu Yi Hui, Chun-Liang Lai, Jhang Yu Cih, He You Jing, Chiu Fan-Yun, Lin Yu Fang

Abstract:

For universities offering long-term care education, the inclusion of adulting learning and practices in professional courses as appropriate based on holistic design and evaluation could improve talent empowerment by leveraging social capital. Moreover, it could make the courses and materials used in long-term care education responsive to real-life needs. A mixed research method was used in the research design. A quantitative study was also conducted using a questionnaire survey, and the data were analyzed by SPSS 22.0 Chinese version. The qualitative data included students’ learning files (learning reflection notes, course reports, and experience records).

Keywords: adult learning, community empowerment, social capital, mixed research

Procedia PDF Downloads 154
11797 A Conv-Long Short-term Memory Deep Learning Model for Traffic Flow Prediction

Authors: Ali Reza Sattarzadeh, Ronny J. Kutadinata, Pubudu N. Pathirana, Van Thanh Huynh

Abstract:

Traffic congestion has become a severe worldwide problem, affecting everyday life, fuel consumption, time, and air pollution. The primary causes of these issues are inadequate transportation infrastructure, poor traffic signal management, and rising population. Traffic flow forecasting is one of the essential and effective methods in urban congestion and traffic management, which has attracted the attention of researchers. With the development of technology, undeniable progress has been achieved in existing methods. However, there is a possibility of improvement in the extraction of temporal and spatial features to determine the importance of traffic flow sequences and extraction features. In the proposed model, we implement the convolutional neural network (CNN) and long short-term memory (LSTM) deep learning models for mining nonlinear correlations and their effectiveness in increasing the accuracy of traffic flow prediction in the real dataset. According to the experiments, the results indicate that implementing Conv-LSTM networks increases the productivity and accuracy of deep learning models for traffic flow prediction.

Keywords: deep learning algorithms, intelligent transportation systems, spatiotemporal features, traffic flow prediction

Procedia PDF Downloads 171
11796 Grid and Market Integration of Large Scale Wind Farms using Advanced Predictive Data Mining Techniques

Authors: Umit Cali

Abstract:

The integration of intermittent energy sources like wind farms into the electricity grid has become an important challenge for the utilization and control of electric power systems, because of the fluctuating behaviour of wind power generation. Wind power predictions improve the economic and technical integration of large amounts of wind energy into the existing electricity grid. Trading, balancing, grid operation, controllability and safety issues increase the importance of predicting power output from wind power operators. Therefore, wind power forecasting systems have to be integrated into the monitoring and control systems of the transmission system operator (TSO) and wind farm operators/traders. The wind forecasts are relatively precise for the time period of only a few hours, and, therefore, relevant with regard to Spot and Intraday markets. In this work predictive data mining techniques are applied to identify a statistical and neural network model or set of models that can be used to predict wind power output of large onshore and offshore wind farms. These advanced data analytic methods helps us to amalgamate the information in very large meteorological, oceanographic and SCADA data sets into useful information and manageable systems. Accurate wind power forecasts are beneficial for wind plant operators, utility operators, and utility customers. An accurate forecast allows grid operators to schedule economically efficient generation to meet the demand of electrical customers. This study is also dedicated to an in-depth consideration of issues such as the comparison of day ahead and the short-term wind power forecasting results, determination of the accuracy of the wind power prediction and the evaluation of the energy economic and technical benefits of wind power forecasting.

Keywords: renewable energy sources, wind power, forecasting, data mining, big data, artificial intelligence, energy economics, power trading, power grids

Procedia PDF Downloads 518
11795 Horizon Scanning of Disruptive Technology Trends in Marine for 2030 Horizon

Authors: Jose Gonzalez, Fai Cheng, Ivy Fan

Abstract:

Shipping has a mature and ever expanding worldwide market. The future of the marine industry itself is not only irrevocably linked with the global economic, social, and political landscape; it is also subject to the technological developments in different fields. Some of them may have never been linked to the marine industry before. Companies in the marine sector are getting more dependent on technologies to achieve competitive advantage in an increasing open market. Technologies can be fused across different business functions and geopolitical influences. A successful marine business should be prepared to embrace such potential changes that lie ahead. The present paper intends to articulate long-term marine technology strategies from an industrial perspective. Methodology and current development are introduced. The paper will also provide insight into future technological trends demand for major commercial ship types. It may also assist different stakeholders in tailoring their long-term strategies to achieve a Sea Change and to uncap opportunity.

Keywords: commercial sector, marine, trends, technology

Procedia PDF Downloads 409
11794 Domestic Solar Hot Water Systems in Order to Reduce the Electricity Peak Demand in Assalouyeh

Authors: Roya Moradifar, Bijan Honarvar, Masoumeh Zabihi

Abstract:

The personal residential camps of South Pars gas complex are one of the few places where electric energy is used for the bath water heating. The widespread use of these devices is mainly responsible for the high peak of the electricity demand in the residential sector. In an attempt to deal with this issue, to reduce the electricity usage of the hot water, as an option, solar hot water systems have been proposed. However, despite the high incidence of solar radiation on the Assaloyeh about 20 MJ/m²/day, currently, there is no technical assessment quantifying the economic benefits on the region. The present study estimates the economic impacts resulting by the deployment of solar hot water systems in residential camp. Hence, the feasibility study allows assessing the potential of solar water heating as an alternative to reduce the peak on the electricity demand. In order to examine the potential of using solar energy in Bidkhoon residential camp two solar water heater packages as pilots were installed for restaurant and building. Restaurant package was damaged due to maintenance problems, but for the building package, we achieved the result of the solar fraction total 83percent and max energy saving 2895 kWh, the maximum reduction in CO₂ emissions calculated as 1634.5 kg. The results of this study can be used as a support tool to spread the use solar water heaters and create policies for South Pars Gas Complex.

Keywords: electrical energy, hot water, solar, South Pars Gas complex

Procedia PDF Downloads 202
11793 Benchmarking Machine Learning Approaches for Forecasting Hotel Revenue

Authors: Rachel Y. Zhang, Christopher K. Anderson

Abstract:

A critical aspect of revenue management is a firm’s ability to predict demand as a function of price. Historically hotels have used simple time series models (regression and/or pick-up based models) owing to the complexities of trying to build casual models of demands. Machine learning approaches are slowly attracting attention owing to their flexibility in modeling relationships. This study provides an overview of approaches to forecasting hospitality demand – focusing on the opportunities created by machine learning approaches, including K-Nearest-Neighbors, Support vector machine, Regression Tree, and Artificial Neural Network algorithms. The out-of-sample performances of above approaches to forecasting hotel demand are illustrated by using a proprietary sample of the market level (24 properties) transactional data for Las Vegas NV. Causal predictive models can be built and evaluated owing to the availability of market level (versus firm level) data. This research also compares and contrast model accuracy of firm-level models (i.e. predictive models for hotel A only using hotel A’s data) to models using market level data (prices, review scores, location, chain scale, etc… for all hotels within the market). The prospected models will be valuable for hotel revenue prediction given the basic characters of a hotel property or can be applied in performance evaluation for an existed hotel. The findings will unveil the features that play key roles in a hotel’s revenue performance, which would have considerable potential usefulness in both revenue prediction and evaluation.

Keywords: hotel revenue, k-nearest-neighbors, machine learning, neural network, prediction model, regression tree, support vector machine

Procedia PDF Downloads 132
11792 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation

Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha

Abstract:

Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.

Keywords: mesenchymal stem cells, cryopreservation, stemness, senescence

Procedia PDF Downloads 235
11791 A Case Study of Typhoon Tracks: Insights from the Interaction between Typhoon Hinnamnor and Ocean Currents in 2022

Authors: Wei-Kuo Soong

Abstract:

The forecasting of typhoon tracks remains a formidable challenge, primarily attributable to the paucity of observational data in the open sea and the intricate influence of weather systems at varying scales. This study investigates the case of Typhoon Hinnamnor in 2022, examining its trajectory and intensity fluctuations in relation to the interaction with a concurrent tropical cyclone and sea surface temperatures (SST). Utilizing the Weather Research and Forecasting Model (WRF), to simulate and analyze the interaction between Typhoon Hinnamnor and its environmental factors, shedding light on the mechanisms driving typhoon development and enhancing forecasting capabilities.

Keywords: typhoon, sea surface temperature, forecasting, WRF

Procedia PDF Downloads 52
11790 IPO Price Performance and Signaling

Authors: Chih-Hsiang Chang, I-Fan Ho

Abstract:

This study examines the credibility of the signaling as explanation for IPO initial underpricing. Findings reveal the initial underpricing and the long-term underperformance of IPOs in Taiwan. However, we only find weak support for signaling as explanation of IPO underpricing.

Keywords: signaling, IPO initial underpricing, IPO long-term underperformance, Taiwan’s stock market

Procedia PDF Downloads 461
11789 Analysis of Real Time Seismic Signal Dataset Using Machine Learning

Authors: Sujata Kulkarni, Udhav Bhosle, Vijaykumar T.

Abstract:

Due to the closeness between seismic signals and non-seismic signals, it is vital to detect earthquakes using conventional methods. In order to distinguish between seismic events and non-seismic events depending on their amplitude, our study processes the data that come from seismic sensors. The authors suggest a robust noise suppression technique that makes use of a bandpass filter, an IIR Wiener filter, recursive short-term average/long-term average (STA/LTA), and Carl short-term average (STA)/long-term average for event identification (LTA). The trigger ratio used in the proposed study to differentiate between seismic and non-seismic activity is determined. The proposed work focuses on significant feature extraction for machine learning-based seismic event detection. This serves as motivation for compiling a dataset of all features for the identification and forecasting of seismic signals. We place a focus on feature vector dimension reduction techniques due to the temporal complexity. The proposed notable features were experimentally tested using a machine learning model, and the results on unseen data are optimal. Finally, a presentation using a hybrid dataset (captured by different sensors) demonstrates how this model may also be employed in a real-time setting while lowering false alarm rates. The planned study is based on the examination of seismic signals obtained from both individual sensors and sensor networks (SN). A wideband seismic signal from BSVK and CUKG station sensors, respectively located near Basavakalyan, Karnataka, and the Central University of Karnataka, makes up the experimental dataset.

Keywords: Carl STA/LTA, features extraction, real time, dataset, machine learning, seismic detection

Procedia PDF Downloads 124
11788 Electric Load Forecasting Based on Artificial Neural Network for Iraqi Power System

Authors: Afaneen Anwer, Samara M. Kamil

Abstract:

Load Forecast required prediction accuracy based on optimal operation and maintenance. A good accuracy is the basis of economic dispatch, unit commitment, and system reliability. A good load forecasting system fulfilled fast speed, automatic bad data detection, and ability to access the system automatically to get the needed data. In this paper, the formulation of the load forecasting is discussed and the solution is obtained by using artificial neural network method. A MATLAB environment has been used to solve the load forecasting schedule of Iraqi super grid network considering the daily load for three years. The obtained results showed a good accuracy in predicting the forecasted load.

Keywords: load forecasting, neural network, back-propagation algorithm, Iraqi power system

Procedia PDF Downloads 583
11787 The Role of Business Survey Measures in Forecasting Croatian Industrial Production

Authors: M. Cizmesija, N. Erjavec, V. Bahovec

Abstract:

While the European Union (EU) harmonized methodology is a benchmark of worldwide used business survey (BS) methodology, the choice of variables that are components of the confidence indicators, as the leading indicators, is not strictly determined and unique. Therefore, the aim of this paper is to investigate and to quantify the relationship between all business survey variables in manufacturing industry and industrial production as a reference macroeconomic series in Croatia. The assumption is that there are variables in the business survey, that are not components of Industrial Confidence Indicator (ICI) and which can accurately (and sometimes better then ICI) predict changes in Croatian industrial production. Empirical analyses are conducted using quarterly data of BS variables in manufacturing industry and Croatian industrial production over the period from the first quarter 2005 to the first quarter 2013. Research results confirmed the assumption: three BS variables which is not components of ICI (competitive position, demand and liquidity) are the best leading indicator then ICI, in forecasting changes in Croatian industrial production instantaneously, with one, two or three quarter ahead.

Keywords: balance, business survey, confidence indicators, industrial production, forecasting

Procedia PDF Downloads 474
11786 Long Term Variability of Temperature in Armenia in the Context of Climate Change

Authors: Hrachuhi Galstyan, Lucian Sfîcă, Pavel Ichim

Abstract:

The purpose of this study is to analyze the temporal and spatial variability of thermal conditions in the Republic of Armenia. The paper describes annual fluctuations in air temperature. Research has been focused on case study region of Armenia and surrounding areas, where long–term measurements and observations of weather conditions have been performed within the National Meteorological Service of Armenia and its surrounding areas. The study contains yearly air temperature data recorded between 1961-2012. Mann-Kendal test and the autocorrelation function were applied to detect the change trend of annual mean temperature, as well as other parametric and non-parametric tests searching to find the presence of some breaks in the long term evolution of temperature. The analysis of all records reveals a tendency mostly towards warmer years, with increased temperatures especially in valleys and inner basins. The maximum temperature increase is up to 1,5 °C. Negative results have not been observed in Armenia. The patterns of temperature change have been observed since the 1990’s over much of the Armenian territory. The climate in Armenia was influenced by global change in the last 2 decades, as results from the methods employed within the study.

Keywords: air temperature, long-term variability, trend, climate change

Procedia PDF Downloads 298
11785 Artificial Neural Network for Forecasting of Daily Reservoir Inflow: Case Study of the Kotmale Reservoir in Sri Lanka

Authors: E. U. Dampage, Ovindi D. Bandara, Vinushi S. Waraketiya, Samitha S. R. De Silva, Yasiru S. Gunarathne

Abstract:

The knowledge of water inflow figures is paramount in decision making on the allocation for consumption for numerous purposes; irrigation, hydropower, domestic and industrial usage, and flood control. The understanding of how reservoir inflows are affected by different climatic and hydrological conditions is crucial to enable effective water management and downstream flood control. In this research, we propose a method using a Long Short Term Memory (LSTM) Artificial Neural Network (ANN) to assist the aforesaid decision-making process. The Kotmale reservoir, which is the uppermost reservoir in the Mahaweli reservoir complex in Sri Lanka, was used as the test bed for this research. The ANN uses the runoff in the Kotmale reservoir catchment area and the effect of Sea Surface Temperatures (SST) to make a forecast for seven days ahead. Three types of ANN are tested; Multi-Layer Perceptron (MLP), Convolutional Neural Network (CNN), and LSTM. The extensive field trials and validation endeavors found that the LSTM ANN provides superior performance in the aspects of accuracy and latency.

Keywords: convolutional neural network, CNN, inflow, long short-term memory, LSTM, multi-layer perceptron, MLP, neural network

Procedia PDF Downloads 151
11784 Exposure Analysis of GSM Base Stations in Industrial Area

Authors: A. D. Usman, W. F. Wan Ahmad, H. H. Danjuma

Abstract:

Exposure due to GSM frequencies is subject of daily debate. Though regulatory bodies provide guidelines for exposure, people still exercise fear on the possible health hazard that may result due to long term usage. In this study, exposure due to electromagnetic field emitted by GSM base stations in industrial areas was investigated. The aimed was to determine whether industrial area exposure is higher as compared to residential as well as compliance with ICNIRP guidelines. Influence of reflection and absorption with respect to inverse square law was also investigated. Measurements from GSM base stations were performed at various distances in far field region. The highest measured peak power densities as well as the calculated values at GSM 1.8 GHz were 6.05 and 90 mW/m2 respectively. This corresponds to 0.07 and 1% of ICNIRP guidelines. The highest peak power densities as well as the calculated values at GSM 0.9 GHz were 11.92 and 49.7 mW/m2 respectively. These values were 0.3 and 1.1% of ICNIRP guidelines.

Keywords: Global System for Mobile Communications (GSM), Electromagnetic Field (EMF), far field, power density, Radiofrequency (RF)

Procedia PDF Downloads 482
11783 Long-Term Otitis Media with Effusion and Related Hearing Loss and Its Impact on Developmental Outcomes

Authors: Aleema Rahman

Abstract:

Introduction: This study aims to estimate the prevalence of long-term otitis media with effusion (OME) and hearing loss in a prospective longitudinal cohort studyand to study the relationship between the condition and educational and psychosocial outcomes. Methods: Analysis of data from the Avon Longitudinal Study of Parents and Children (ALSPAC) will be undertaken. ALSPAC is a longitudinal birth cohort study carried out in the UK, which has collected detailed measures of hearing on ~7000 children from the age of seven. A descriptive analysis of the data will be undertaken to estimate the prevalence of OME and hearing loss (defined as having average hearing levels > 20dB and type B tympanogram) at 7, 9, 11, and 15 years as well as that of long-term OME and hearing loss. Logistic and linear regression analyses will be conducted to examine associations between long-term OME and hearing loss and educational outcomes (grades obtained from standardised national attainment tests) and psychosocial outcomes such as anxiety, social fears, and depression at ages 10-11 and 15-16 years. Results: Results will be presented in terms of the prevalence of OME and hearing loss in the population at each age. The prevalence of long-term OME and hearing loss, defined as having OME and hearing loss at two or more time points, will also be reported. Furthermore, any associations between long-term OME and hearing loss and the educational and psychosocial outcomes will be presented. Analyses will take into account demographic factors such as sex and social deprivation and relevant confounders, including socioeconomic status, ethnicity, and IQ. Discussion: Findings from this study will provide new epidemiological information on the prevalence of long-term OME and hearing loss. The research will provide new knowledge on the impact of OME for the small group of children who do not grow out of condition by age 7 but continue to have hearing loss and need clinical care through later childhood. The study could have clinical implications and may influence service delivery for this group of children.

Keywords: educational attainment, hearing loss, otitis media with effusion, psychosocial development

Procedia PDF Downloads 138
11782 Feasibility Conditions for Wind and Hydraulic Energy Coupling

Authors: Antonin Jolly, Bertrand Aubry, Corentin Michel, Rebecca Freva

Abstract:

Wind energy depends on wind strength and varies largely in time. When it is above the demand, it generates a loss while in the opposite case; energy needs are not fully satisfied. To overcome this problem specific to irregular energies, the process of pumped-storage hydroelectricity (PSH) is studied in present paper. A combination of wind turbine and pumped storage system is more predictable and is more compliant to provide electricity supply according to daily demand. PSH system is already used in several countries to accumulate electricity by pumping water during off-peak times into a storage reservoir, and to use it during peak times to produce energy. Present work discusses a feasibility study on size and financial productivity of PSH system actuated with wind turbines specific power.

Keywords: wind turbine, hydroelectricity, energy storage, pumped-storage hydroelectricity

Procedia PDF Downloads 379
11781 Heuristic Methods for the Capacitated Location- Allocation Problem with Stochastic Demand

Authors: Salinee Thumronglaohapun

Abstract:

The proper number and appropriate locations of service centers can save cost, raise revenue and gain more satisfaction from customers. Establishing service centers is high-cost and difficult to relocate. In long-term planning periods, several factors may affect the service. One of the most critical factors is uncertain demand of customers. The opened service centers need to be capable of serving customers and making a profit although the demand in each period is changed. In this work, the capacitated location-allocation problem with stochastic demand is considered. A mathematical model is formulated to determine suitable locations of service centers and their allocation to maximize total profit for multiple planning periods. Two heuristic methods, a local search and genetic algorithm, are used to solve this problem. For the local search, five different chances to choose each type of moves are applied. For the genetic algorithm, three different replacement strategies are considered. The results of applying each method to solve numerical examples are compared. Both methods reach to the same best found solution in most examples but the genetic algorithm provides better solutions in some cases.

Keywords: location-allocation problem, stochastic demand, local search, genetic algorithm

Procedia PDF Downloads 124
11780 Characteristics of the Long-Term Regional Tourism Development in Georgia

Authors: Valeri Arghutashvili, Mari Gogochuri

Abstract:

Tourism industry development is one of the key priorities in Georgia, as it has positive influence on economic activities. Its contribution is very important for the different regions, as well as for the national economy. Benefits of the tourism industry include new jobs, service development, and increasing tax revenues, etc. The main aim of this research is to review and analyze the potential of the Georgian tourism industry with its long-term strategy and current challenges. To plan activities in a long-term development, it is required to evaluate several factors on the regional and on the national level. Factors include activities, transportation, services, lodging facilities, infrastructure and institutions. The major research contributions are practical estimates about regional tourism development which plays an important role in the integration process with global markets.

Keywords: regional tourism, tourism industry, tourism in Georgia, tourism benefits

Procedia PDF Downloads 831
11779 Determining Factors Influencing the Total Funding in Islamic Banking of Indonesia

Authors: Euphrasia Susy Suhendra, Lies Handrijaningsih

Abstract:

The banking sector as an intermediary party or intermediaries occupies a very important position in bridging the needs of working capital investment in the real sector with funds owner. This will certainly make money more effectively to improve the economic value added. As an intermediary, Islamic banks raise funds from the public and then distribute in the form of financing. In practice, the distribution of funding that is run by Islamic Banking is not as easy as, in theory, because, in fact, there are many financing problems; some are caused by lacking the assessment and supervision of banks to customers. This study aims to analyze the influence of the Third Party Funds, Return on Assets (ROA), Non Performing Financing (NPF), and Financing Deposit Ratio (FDR) to Total Financing provided to the Community by Islamic Banks in Indonesia. The data used is monthly data released by Bank of Indonesia in Islamic Banking Statistics in the time period of January 2009 - December 2013. This study uses cointegration test to see the long-term relationship, and use error correction models to examine the relationship of short-term. The results of this study indicate that the Third Party Fund has a short-term effect on total funding, Return on Assets has a long term effect on the total financing, Non Performing Financing has long-term effects of total financing, and Financing deposit ratio has the effect of short-term and long-term of the total financing provided by Islamic Banks in Indonesia.

Keywords: Islamic banking, third party fund, return on asset, non-performing financing, financing deposit ratio

Procedia PDF Downloads 466
11778 Assessment of Hydrogen Demand for Different Technological Pathways to Decarbonise the Aviation Sector in Germany

Authors: Manish Khanra, Shashank Prabhu

Abstract:

The decarbonization of hard-to-abate sectors is currently high on the agenda in the EU and its member states, as these sectors have substantial shares in overall GHG emissions while it is facing serious challenges to decarbonize. In particular, the aviation sector accounts for 2.8% of global anthropogenic CO₂ emissions. These emissions are anticipated to grow dramatically unless immediate mitigating efforts are implemented. Hydrogen and its derivatives based on renewable electricity can have a key role in the transition towards CO₂-neutral flights. The substantial shares of energy carriers in the form of drop-in fuel, direct combustion and Hydrogen-to-Electric are promising in most scenarios towards 2050. For creating appropriate policies to ramp up the production and utilisation of hydrogen commodities in the German aviation sector, a detailed analysis of the spatial distribution of supply-demand sites is essential. The objective of this research work is to assess the demand for hydrogen-based alternative fuels in the German aviation sector to achieve the perceived goal of the ‘Net Zero’ scenario by 2050. Here, the analysis of the technological pathways for the production and utilisation of these fuels in various aircraft options is conducted for reaching mitigation targets. Our method is based on data-driven bottom-up assessment, considering production and demand sites and their spatial distribution. The resulting energy demand and its spatial distribution with consideration of technology diffusion lead to a possible transition pathway of the aviation sector to meet short-term and long-term mitigation targets. Additionally, to achieve mitigation targets in this sector, costs and policy aspects are discussed, which would support decision-makers from airline industries, policymakers and the producers of energy commodities.

Keywords: the aviation sector, hard-to-abate sectors, hydrogen demand, alternative fuels, technological pathways, data-driven approach

Procedia PDF Downloads 129
11777 An Integration of Genetic Algorithm and Particle Swarm Optimization to Forecast Transport Energy Demand

Authors: N. R. Badurally Adam, S. R. Monebhurrun, M. Z. Dauhoo, A. Khoodaruth

Abstract:

Transport energy demand is vital for the economic growth of any country. Globalisation and better standard of living plays an important role in transport energy demand. Recently, transport energy demand in Mauritius has increased significantly, thus leading to an abuse of natural resources and thereby contributing to global warming. Forecasting the transport energy demand is therefore important for controlling and managing the demand. In this paper, we develop a model to predict the transport energy demand. The model developed is based on a system of five stochastic differential equations (SDEs) consisting of five endogenous variables: fuel price, population, gross domestic product (GDP), number of vehicles and transport energy demand and three exogenous parameters: crude birth rate, crude death rate and labour force. An interval of seven years is used to avoid any falsification of result since Mauritius is a developing country. Data available for Mauritius from year 2003 up to 2009 are used to obtain the values of design variables by applying genetic algorithm. The model is verified and validated for 2010 to 2012 by substituting the values of coefficients obtained by GA in the model and using particle swarm optimisation (PSO) to predict the values of the exogenous parameters. This model will help to control the transport energy demand in Mauritius which will in turn foster Mauritius towards a pollution-free country and decrease our dependence on fossil fuels.

Keywords: genetic algorithm, modeling, particle swarm optimization, stochastic differential equations, transport energy demand

Procedia PDF Downloads 369
11776 Detecting Financial Bubbles Using Gap between Common Stocks and Preferred Stocks

Authors: Changju Lee, Seungmo Ku, Sondo Kim, Woojin Chang

Abstract:

How to detecting financial bubble? Addressing this simple question has been the focus of a vast amount of empirical research spanning almost half a century. However, financial bubble is hard to observe and varying over the time; there needs to be more research on this area. In this paper, we used abnormal difference between common stocks price and those preferred stocks price to explain financial bubble. First, we proposed the ‘W-index’ which indicates spread between common stocks and those preferred stocks in stock market. Second, to prove that this ‘W-index’ is valid for measuring financial bubble, we showed that there is an inverse relationship between this ‘W-index’ and S&P500 rate of return. Specifically, our hypothesis is that when ‘W-index’ is comparably higher than other periods, financial bubbles are added up in stock market and vice versa; according to our hypothesis, if investors made long term investments when ‘W-index’ is high, they would have negative rate of return; however, if investors made long term investments when ‘W-index’ is low, they would have positive rate of return. By comparing correlation values and adjusted R-squared values of between W-index and S&P500 return, VIX index and S&P500 return, and TED index and S&P500 return, we showed only W-index has significant relationship between S&P500 rate of return. In addition, we figured out how long investors should hold their investment position regard the effect of financial bubble. Using this W-index, investors could measure financial bubble in the market and invest with low risk.

Keywords: financial bubble detection, future return, forecasting, pairs trading, preferred stocks

Procedia PDF Downloads 368
11775 Electricity Price Forecasting: A Comparative Analysis with Shallow-ANN and DNN

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Electricity prices have sophisticated features such as high volatility, nonlinearity and high frequency that make forecasting quite difficult. Electricity price has a volatile and non-random character so that, it is possible to identify the patterns based on the historical data. Intelligent decision-making requires accurate price forecasting for market traders, retailers, and generation companies. So far, many shallow-ANN (artificial neural networks) models have been published in the literature and showed adequate forecasting results. During the last years, neural networks with many hidden layers, which are referred to as DNN (deep neural networks) have been using in the machine learning community. The goal of this study is to investigate electricity price forecasting performance of the shallow-ANN and DNN models for the Turkish day-ahead electricity market. The forecasting accuracy of the models has been evaluated with publicly available data from the Turkish day-ahead electricity market. Both shallow-ANN and DNN approach would give successful result in forecasting problems. Historical load, price and weather temperature data are used as the input variables for the models. The data set includes power consumption measurements gathered between January 2016 and December 2017 with one-hour resolution. In this regard, forecasting studies have been carried out comparatively with shallow-ANN and DNN models for Turkish electricity markets in the related time period. The main contribution of this study is the investigation of different shallow-ANN and DNN models in the field of electricity price forecast. All models are compared regarding their MAE (Mean Absolute Error) and MSE (Mean Square) results. DNN models give better forecasting performance compare to shallow-ANN. Best five MAE results for DNN models are 0.346, 0.372, 0.392, 0,402 and 0.409.

Keywords: deep learning, artificial neural networks, energy price forecasting, turkey

Procedia PDF Downloads 292