Search results for: label annotation
223 Provenance in Scholarly Publications: Introducing the provCite Ontology
Authors: Maria Joseph Israel, Ahmed Amer
Abstract:
Our work aims to broaden the application of provenance technology beyond its traditional domains of scientific workflow management and database systems by offering a general provenance framework to capture richer and extensible metadata in unstructured textual data sources such as literary texts, commentaries, translations, and digital humanities. Specifically, we demonstrate the feasibility of capturing and representing expressive provenance metadata, including more of the context for citing scholarly works (e.g., the authors’ explicit or inferred intentions at the time of developing his/her research content for publication), while also supporting subsequent augmentation with similar additional metadata (by third parties, be they human or automated). To better capture the nature and types of possible citations, in our proposed provenance scheme metaScribe, we extend standard provenance conceptual models to form our proposed provCite ontology. This provides a conceptual framework which can accurately capture and describe more of the functional and rhetorical properties of a citation than can be achieved with any current models.Keywords: knowledge representation, provenance architecture, ontology, metadata, bibliographic citation, semantic web annotation
Procedia PDF Downloads 117222 Chromatography Study of Fundamental Properties of Medical Radioisotope Astatine-211
Authors: Evgeny E. Tereshatov
Abstract:
Astatine-211 is considered one of the most promising radionuclides for Targeted Alpha Therapy. In order to develop reliable procedures to label biomolecules and utilize efficient delivery vehicle principles, one should understand the main chemical characteristics of astatine. The short half-life of 211At (~7.2 h) and absence of any stable isotopes of this element are limiting factors towards studying the behavior of astatine. Our team has developed a procedure for rapid and efficient isolation of astatine from irradiated bismuth material in nitric acid media based on 3-octanone and 1-octanol extraction chromatography resins. This process has been automated and it takes 20 min from the beginning of the target dissolution to the At-211 fraction elution. Our next step is to consider commercially available chromatography resins and their applicability in astatine purification in the same media. Results obtained along with the corresponding sorption mechanisms will be discussed.Keywords: astatine-211, chromatography, automation, mechanism, radiopharmaceuticals
Procedia PDF Downloads 89221 Identification of Genomic Mutations in Prostate Cancer and Cancer Stem Cells By Single Cell RNAseq Analysis
Authors: Wen-Yang Hu, Ranli Lu, Mark Maienschein-Cline, Danping Hu, Larisa Nonn, Toshi Shioda, Gail S. Prins
Abstract:
Background: Genetic mutations are highly associated with increased prostate cancer risk. In addition to whole genome sequencing, somatic mutations can be identified by aligning transcriptome sequences to the human genome. Here we analyzed bulk RNAseq and single cell RNAseq data of human prostate cancer cells and their matched non-cancer cells in benign regions from 4 individual patients. Methods: Sequencing raw reads were aligned to the reference genome hg38 using STAR. Variants were annotated using Annovar with respect to overlap gene annotation information, effect on gene and protein sequence, and SIFT annotation of nonsynonymous variant effect. We determined cancer-specific novel alleles by comparing variant calls in cancer cells to matched benign cells from the same individual by selecting unique alleles that were only detected in the cancer samples. Results: In bulk RNAseq data from 3 patients, the most common variants were the noncoding mutations at UTR3/UTR5, and the major variant types were single-nucleotide polymorphisms (SNP) including frameshift mutations. C>T transversion is the most frequently presented substitution of SNP. A total of 222 genes carrying unique exonic or UTR variants were revealed in cancer cells across 3 patients but not in benign cells. Among them, transcriptome levels of 7 genes (CITED2, YOD1, MCM4, HNRNPA2B1, KIF20B, DPYSL2, NR4A1) were significantly up or down regulated in cancer stem cells. Out of the 222 commonly mutated genes in cancer, 19 have nonsynonymous variants and 11 are damaged genes with variants including SIFT, frameshifts, stop gain/loss, and insertions/deletions (indels). Two damaged genes, activating transcription factor 6 (ATF6) and histone demethylase KDM3A are of particular interest; the former is a survival factor for certain cancer cells while the later positively activates androgen receptor target genes in prostate cancer. Further, single cell RNAseq data of cancer cells and their matched non-cancer benign cells from both primary 2D and 3D tumoroid cultures were analyzed. Similar to the bulk RNAseq data, single cell RNAseq in cancer demonstrated that the exonic mutations are less common than noncoding variants, with SNPs including frameshift mutations the most frequently presented types in cancer. Compared to cancer stem cell enriched-3D tumoroids, 2D cancer cells carried 3-times higher variants, 8-times more coding mutations and 10-times more nonsynonymous SNP. Finally, in both 2D primary and 3D tumoroid cultures, cancer stem cells exhibited fewer coding mutations and noncoding SNP or insertions/deletions than non-stem cancer cells. Summary: Our study demonstrates the usefulness of bulk and single cell RNAseaq data in identifying somatic mutations in prostate cancer, providing an alternative method in screening candidate genes for prostate cancer diagnosis and potential therapeutic targets. Cancer stem cells carry fewer somatic mutations than non-stem cancer cells due to their inherited immortal stand DNA from parental stem cells that explains their long-lived characteristics.Keywords: prostate cancer, stem cell, genomic mutation, RNAseq
Procedia PDF Downloads 15220 Social Data-Based Users Profiles' Enrichment
Authors: Amel Hannech, Mehdi Adda, Hamid Mcheick
Abstract:
In this paper, we propose a generic model of user profile integrating several elements that may positively impact the research process. We exploit the classical behavior of users and integrate a delimitation process of their research activities into several research sessions enriched with contextual and temporal information, which allows reflecting the current interests of these users in every period of time and infer data freshness. We argue that the annotation of resources gives more transparency on users' needs. It also strengthens social links among resources and users, and can so increase the scope of the user profile. Based on this idea, we integrate the social tagging practice in order to exploit the social users' behavior to enrich their profiles. These profiles are then integrated into a recommendation system in order to predict the interesting personalized items of users allowing to assist them in their researches and further enrich their profiles. In this recommendation, we provide users new research experiences.Keywords: user profiles, topical ontology, contextual information, folksonomies, tags' clusters, data freshness, association rules, data recommendation
Procedia PDF Downloads 263219 Advertising Incentives of National Brands against Private Labels: The Case of OTC Heartburn Drugs
Authors: Lu Liao
Abstract:
The worldwide expansion of private labels over the past two decades not only transformed the choice sets of consumers but also forced manufacturers of national brands to design new marketing strategies to maintain their market positions. This paper empirically analyzes the impact of private labels on advertising incentives of national brands. The paper first develops a consumer demand model that incorporates spillover effects of advertising and finds positive spillovers of national brands’ advertising on demand for private label products. With the demand estimates, the researcher simulates the equilibrium prices and advertising levels for leading national brands in a counterfactual where private labels are eliminated to quantify the changes in national brands’ advertising incentives in response to the rise of private labels.Keywords: advertising, demand estimation, spillover effect, structural model
Procedia PDF Downloads 22218 Membrane Spanning DNA Origami Nanopores for Protein Translocation
Authors: Genevieve Pugh, Johnathan Burns, Stefan Howorka
Abstract:
Single-molecule sensing via protein nanopores has achieved a step-change in portable and label-free DNA sequencing. However, protein pores of both natural or engineered origin are not able to produce the tunable diameters needed for effective protein sensing. Here, we describe a generic strategy to build synthetic DNA nanopores that are wide enough to accommodate folded protein. The pores are composed of interlinked DNA duplexes and carry lipid anchors to achieve the required membrane insertion. Our demonstrator pore has a contiguous cross-sectional channel area of 50 nm2 which is 6-times larger than the largest protein pore. Consequently, transport of folded protein across bilayers is possible. The modular design is amenable for different pore dimensions and can be adapted for protein sensing or to create molecular gates in synthetic biology.Keywords: biosensing, DNA nanotechnology, DNA origami, nanopore sensing
Procedia PDF Downloads 321217 A Web-Based Self-Learning Grammar for Spoken Language Understanding
Authors: S. Biondi, V. Catania, R. Di Natale, A. R. Intilisano, D. Panno
Abstract:
One of the major goals of Spoken Dialog Systems (SDS) is to understand what the user utters. In the SDS domain, the Spoken Language Understanding (SLU) Module classifies user utterances by means of a pre-definite conceptual knowledge. The SLU module is able to recognize only the meaning previously included in its knowledge base. Due the vastity of that knowledge, the information storing is a very expensive process. Updating and managing the knowledge base are time-consuming and error-prone processes because of the rapidly growing number of entities like proper nouns and domain-specific nouns. This paper proposes a solution to the problem of Name Entity Recognition (NER) applied to a SDS domain. The proposed solution attempts to automatically recognize the meaning associated with an utterance by using the PANKOW (Pattern based Annotation through Knowledge On the Web) method at runtime. The method being proposed extracts information from the Web to increase the SLU knowledge module and reduces the development effort. In particular, the Google Search Engine is used to extract information from the Facebook social network.Keywords: spoken dialog system, spoken language understanding, web semantic, name entity recognition
Procedia PDF Downloads 337216 EnumTree: An Enumerative Biclustering Algorithm for DNA Microarray Data
Authors: Haifa Ben Saber, Mourad Elloumi
Abstract:
In a number of domains, like in DNA microarray data analysis, we need to cluster simultaneously rows (genes) and columns (conditions) of a data matrix to identify groups of constant rows with a group of columns. This kind of clustering is called biclustering. Biclustering algorithms are extensively used in DNA microarray data analysis. More effective biclustering algorithms are highly desirable and needed. We introduce a new algorithm called, Enumerative tree (EnumTree) for biclustering of binary microarray data. is an algorithm adopting the approach of enumerating biclusters. This algorithm extracts all biclusters consistent good quality. The main idea of EnumLat is the construction of a new tree structure to represent adequately different biclusters discovered during the process of enumeration. This algorithm adopts the strategy of all biclusters at a time. The performance of the proposed algorithm is assessed using both synthetic and real DNA micryarray data, our algorithm outperforms other biclustering algorithms for binary microarray data. Biclusters with different numbers of rows. Moreover, we test the biological significance using a gene annotation web tool to show that our proposed method is able to produce biologically relevent biclusters.Keywords: DNA microarray, biclustering, gene expression data, tree, datamining.
Procedia PDF Downloads 369215 Designing a Refractive Index Gas Biosensor Exploiting Defects in Photonic Crystal Core-Shell Rods
Authors: Bilal Tebboub, AmelLabbani
Abstract:
This article introduces a compact sensor based on high-transmission, high-sensitivity two-dimensional photonic crystals. The photonic crystal consists of a square network of silicon rods in the air. The sensor is composed of two waveguide couplers and a microcavity designed for monitoring the percentage of hydrogen in the air and identifying gas types. Through the Finite-Difference Time-Domain (FDTD) method, we demonstrate that the sensor's resonance wavelength is contingent upon changes in the gas refractive index. We analyze transmission spectra, quality factors, and sensor sensitivity. The sensor exhibits a notable quality factor and a sensitivity value of 1374 nm/RIU. Notably, the sensor's compact structure occupies an area of 74.5 μm2, rendering it suitable for integrated optical circuits.Keywords: 2-D photonic crystal, sensitivity, F.D.T.D method, label-free biosensing
Procedia PDF Downloads 90214 Hate Speech Detection in Tunisian Dialect
Authors: Helmi Baazaoui, Mounir Zrigui
Abstract:
This study addresses the challenge of hate speech detection in Tunisian Arabic text, a critical issue for online safety and moderation. Leveraging the strengths of the AraBERT model, we fine-tuned and evaluated its performance against the Bi-LSTM model across four distinct datasets: T-HSAB, TNHS, TUNIZI-Dataset, and a newly compiled dataset with diverse labels such as Offensive Language, Racism, and Religious Intolerance. Our experimental results demonstrate that AraBERT significantly outperforms Bi-LSTM in terms of Recall, Precision, F1-Score, and Accuracy across all datasets. The findings underline the robustness of AraBERT in capturing the nuanced features of Tunisian Arabic and its superior capability in classification tasks. This research not only advances the technology for hate speech detection but also provides practical implications for social media moderation and policy-making in Tunisia. Future work will focus on expanding the datasets and exploring more sophisticated architectures to further enhance detection accuracy, thus promoting safer online interactions.Keywords: hate speech detection, Tunisian Arabic, AraBERT, Bi-LSTM, Gemini annotation tool, social media moderation
Procedia PDF Downloads 6213 Use of Segmentation and Color Adjustment for Skin Tone Classification in Dermatological Images
Authors: Fernando Duarte
Abstract:
The work aims to evaluate the use of classical image processing methodologies towards skin tone classification in dermatological images. The skin tone is an important attribute when considering several factor for skin cancer diagnosis. Currently, there is a lack of clear methodologies to classify the skin tone based only on the dermatological image. In this work, a recent released dataset with the label for skin tone was used as reference for the evaluation of classical methodologies for segmentation and adjustment of color space for classification of skin tone in dermatological images. It was noticed that even though the classical methodologies can work fine for segmentation and color adjustment, classifying the skin tone without proper control of the aquisition of the sample images ended being very unreliable.Keywords: segmentation, classification, color space, skin tone, Fitzpatrick
Procedia PDF Downloads 34212 Using Scale Invariant Feature Transform Features to Recognize Characters in Natural Scene Images
Authors: Belaynesh Chekol, Numan Çelebi
Abstract:
The main purpose of this work is to recognize individual characters extracted from natural scene images using scale invariant feature transform (SIFT) features as an input to K-nearest neighbor (KNN); a classification learner algorithm. For this task, 1,068 and 78 images of English alphabet characters taken from Chars74k data set is used to train and test the classifier respectively. For each character image, We have generated describing features by using SIFT algorithm. This set of features is fed to the learner so that it can recognize and label new images of English characters. Two types of KNN (fine KNN and weighted KNN) were trained and the resulted classification accuracy is 56.9% and 56.5% respectively. The training time taken was the same for both fine and weighted KNN.Keywords: character recognition, KNN, natural scene image, SIFT
Procedia PDF Downloads 279211 Measuring Biobased Content of Building Materials Using Carbon-14 Testing
Authors: Haley Gershon
Abstract:
The transition from using fossil fuel-based building material to formulating eco-friendly and biobased building materials plays a key role in sustainable building. The growing demand on a global level for biobased materials in the building and construction industries heightens the importance of carbon-14 testing, an analytical method used to determine the percentage of biobased content that comprises a material’s ingredients. This presentation will focus on the use of carbon-14 analysis within the building materials sector. Carbon-14, also known as radiocarbon, is a weakly radioactive isotope present in all living organisms. Any fossil material older than 50,000 years will not contain any carbon-14 content. The radiocarbon method is thus used to determine the amount of carbon-14 content present in a given sample. Carbon-14 testing is performed according to ASTM D6866, a standard test method developed specifically for biobased content determination of material in solid, liquid, or gaseous form, which requires radiocarbon dating. Samples are combusted and converted into a solid graphite form and then pressed onto a metal disc and mounted onto a wheel of an accelerator mass spectrometer (AMS) machine for the analysis. The AMS instrument is used in order to count the amount of carbon-14 present. By submitting samples for carbon-14 analysis, manufacturers of building materials can confirm the biobased content of ingredients used. Biobased testing through carbon-14 analysis reports results as percent biobased content, indicating the percentage of ingredients coming from biomass sourced carbon versus fossil carbon. The analysis is performed according to standardized methods such as ASTM D6866, ISO 16620, and EN 16640. Products 100% sourced from plants, animals, or microbiological material are therefore 100% biobased, while products sourced only from fossil fuel material are 0% biobased. Any result in between 0% and 100% biobased indicates that there is a mixture of both biomass-derived and fossil fuel-derived sources. Furthermore, biobased testing for building materials allows manufacturers to submit eligible material for certification and eco-label programs such as the United States Department of Agriculture (USDA) BioPreferred Program. This program includes a voluntary labeling initiative for biobased products, in which companies may apply to receive and display the USDA Certified Biobased Product label, stating third-party verification and displaying a product’s percentage of biobased content. The USDA program includes a specific category for Building Materials. In order to qualify for the biobased certification under this product category, examples of product criteria that must be met include minimum 62% biobased content for wall coverings, minimum 25% biobased content for lumber, and a minimum 91% biobased content for floor coverings (non-carpet). As a result, consumers can easily identify plant-based products in the marketplace.Keywords: carbon-14 testing, biobased, biobased content, radiocarbon dating, accelerator mass spectrometry, AMS, materials
Procedia PDF Downloads 157210 Thinned Elliptical Cylindrical Antenna Array Synthesis Using Particle Swarm Optimization
Authors: Rajesh Bera, Durbadal Mandal, Rajib Kar, Sakti P. Ghoshal
Abstract:
This paper describes optimal thinning of an Elliptical Cylindrical Array (ECA) of uniformly excited isotropic antennas which can generate directive beam with minimum relative Side Lobe Level (SLL). The Particle Swarm Optimization (PSO) method, which represents a new approach for optimization problems in electromagnetic, is used in the optimization process. The PSO is used to determine the optimal set of ‘ON-OFF’ elements that provides a radiation pattern with maximum SLL reduction. Optimization is done without prefixing the value of First Null Beam Width (FNBW). The variation of SLL with element spacing of thinned array is also reported. Simulation results show that the number of array elements can be reduced by more than 50% of the total number of elements in the array with a simultaneous reduction in SLL to less than -27dB.Keywords: thinned array, Particle Swarm Optimization, Elliptical Cylindrical Array, Side Lobe Label.
Procedia PDF Downloads 442209 De Novo Assembly and Characterization of the Transcriptome during Seed Development, and Generation of Genic-SSR Markers in Pomegranate (Punica granatum L.)
Authors: Ozhan Simsek, Dicle Donmez, Burhanettin Imrak, Ahsen Isik Ozguven, Yildiz Aka Kacar
Abstract:
Pomegranate (Punica granatum L.) is known to be one of the oldest edible fruit tree species, with a wide geographical global distribution. Fruits from the two defined varieties (Hicaznar and 33N26) were taken at intervals after pollination and fertilization at different sizes. Seed samples were used for transcriptome sequencing. Primary sequencing was produced by Illumina Hi-Seq™ 2000. Firstly, we had raw reads, and it was subjected to quality control (QC). Raw reads were filtered into clean reads and aligned to the reference sequences. De novo analysis was performed to detect genes expressed in seeds of pomegranate varieties. We performed downstream analysis to determine differentially expressed genes. We generated about 27.09 gb bases in total after Illumina Hi-Seq sequencing. All samples were assembled together, we got 59,264 Unigenes, the total length, average length, N50, and GC content of Unigenes are 84.547.276 bp, 1.426 bp, 2,137 bp, and 46.20 %, respectively. Unigenes were annotated with 7 functional databases, finally, 42.681(NR: 72.02%), 39.660 (NT: 66.92%), 30.790 (Swissprot: 51.95%), 20.212 (COG: 34.11%), 27.689 (KEGG: 46.72%), 12.328 (GO: 20.80%), and 33,833 (Interpro: 57.09%) Unigenes were annotated. With functional annotation results, we detected 42.376 CDS, and 4.999 SSR distribute on 16.143 Unigenes.Keywords: next generation sequencing, SSR, RNA-Seq, Illumina
Procedia PDF Downloads 239208 Engagement Analysis Using DAiSEE Dataset
Authors: Naman Solanki, Souraj Mondal
Abstract:
With the world moving towards online communication, the video datastore has exploded in the past few years. Consequently, it has become crucial to analyse participant’s engagement levels in online communication videos. Engagement prediction of people in videos can be useful in many domains, like education, client meetings, dating, etc. Video-level or frame-level prediction of engagement for a user involves the development of robust models that can capture facial micro-emotions efficiently. For the development of an engagement prediction model, it is necessary to have a widely-accepted standard dataset for engagement analysis. DAiSEE is one of the datasets which consist of in-the-wild data and has a gold standard annotation for engagement prediction. Earlier research done using the DAiSEE dataset involved training and testing standard models like CNN-based models, but the results were not satisfactory according to industry standards. In this paper, a multi-level classification approach has been introduced to create a more robust model for engagement analysis using the DAiSEE dataset. This approach has recorded testing accuracies of 0.638, 0.7728, 0.8195, and 0.866 for predicting boredom level, engagement level, confusion level, and frustration level, respectively.Keywords: computer vision, engagement prediction, deep learning, multi-level classification
Procedia PDF Downloads 112207 Hedonic Pricing Model of Parboiled Rice
Authors: Roengchai Tansuchat, Wassanai Wattanutchariya, Aree Wiboonpongse
Abstract:
Parboiled rice is one of the most important food grains and classified in cereal and cereal product. In 2015, parboiled rice was traded more than 14.34 % of total rice trade. The major parboiled rice export countries are Thailand and India, while many countries in Africa and the Middle East such as Nigeria, South Africa, United Arab Emirates, and Saudi Arabia, are parboiled rice import countries. In the global rice market, parboiled rice pricing differs from white rice pricing because parboiled rice is semi-processing product, (soaking, steaming and drying) which affects to their color and texture. Therefore, parboiled rice export pricing does not depend only on the trade volume, length of grain, and percentage of broken rice or purity but also depend on their rice seed attributes such as color, whiteness, consistency of color and whiteness, and their texture. In addition, the parboiled rice price may depend on the country of origin, and other attributes, such as certification mark, label, packaging, and sales locations. The objectives of this paper are to study the attributes of parboiled rice sold in different countries and to evaluate the relationship between parboiled rice price in different countries and their attributes by using hedonic pricing model. These results are useful for product development, and marketing strategies development. The 141 samples of parboiled rice were collected from 5 major parboiled rice consumption countries, namely Nigeria, South Africa, Saudi Arabia, United Arab Emirates and Spain. The physicochemical properties and optical properties, namely size and shape of seed, colour (L*, a*, and b*), parboiled rice texture (hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness), nutrition (moisture, protein, carbohydrate, fat, and ash), amylose, package, country of origin, label are considered as explanatory variables. The results from parboiled rice analysis revealed that most of samples are classified as long grain and slender. The highest average whiteness value is the parboiled rice sold in South Africa. The amylose value analysis shows that most of parboiled rice is non-glutinous rice, classified in intermediate amylose content range, and the maximum value was found in United Arab Emirates. The hedonic pricing model showed that size and shape are the key factors to determine parboiled rice price statistically significant. In parts of colour, brightness value (L*) and red-green value (a*) are statistically significant, but the yellow-blue value (b*) is insignificant. In addition, the texture attributes that significantly affect to the parboiled rice price are hardness, adhesiveness, cohesiveness, and gumminess. The findings could help both parboiled rice miller, exporter and retailers formulate better production and marketing strategies by focusing on these attributes.Keywords: hedonic pricing model, optical properties, parboiled rice, physicochemical properties
Procedia PDF Downloads 330206 Attention Multiple Instance Learning for Cancer Tissue Classification in Digital Histopathology Images
Authors: Afaf Alharbi, Qianni Zhang
Abstract:
The identification of malignant tissue in histopathological slides holds significant importance in both clinical settings and pathology research. This paper introduces a methodology aimed at automatically categorizing cancerous tissue through the utilization of a multiple-instance learning framework. This framework is specifically developed to acquire knowledge of the Bernoulli distribution of the bag label probability by employing neural networks. Furthermore, we put forward a neural network based permutation-invariant aggregation operator, equivalent to attention mechanisms, which is applied to the multi-instance learning network. Through empirical evaluation of an openly available colon cancer histopathology dataset, we provide evidence that our approach surpasses various conventional deep learning methods.Keywords: attention multiple instance learning, MIL and transfer learning, histopathological slides, cancer tissue classification
Procedia PDF Downloads 109205 Gendered Labelling and Its Effects on Vhavenda Women
Authors: Matodzi Rapalalani
Abstract:
In context with Spencer's (2018) classic labelling theory, labels influence the perceptions of both the individual and other members of society. That is, once labelled, the individual act in ways that confirm the stereotypes attached to the label. This study, therefore, investigates the understanding of gendered labelling and its effects on Vhavenda women. Gender socialization and patriarchy have been viewed as the core causes of the problem. The literature presented the development of gendered labelling, forms of it, and other aspects. A qualitative method of data collection was used in this study, and semi-structural interviews were conducted. A total of 6 participants were used as it is easy to deal with a small sample. Thematic analysis was used as the data was interpreted and analyzed. Ethical issues such as confidentiality, informed consent, and voluntary participation were considered. Through the analysis and data interpretation, causes such as lack of Christian values, insecurities, and lust were mentioned as well as some of the effects such as frustrations, increased divorce, and low self-esteem.Keywords: gender, naming, Venda, women, African culture
Procedia PDF Downloads 90204 Photosynthesis Metabolism Affects Yield Potentials in Jatropha curcas L.: A Transcriptomic and Physiological Data Analysis
Authors: Nisha Govender, Siju Senan, Zeti-Azura Hussein, Wickneswari Ratnam
Abstract:
Jatropha curcas, a well-described bioenergy crop has been extensively accepted as future fuel need especially in tropical regions. Ideal planting material required for large-scale plantation is still lacking. Breeding programmes for improved J. curcas varieties are rendered difficult due to limitations in genetic diversity. Using a combined transcriptome and physiological data, we investigated the molecular and physiological differences in high and low yielding Jatropha curcas to address plausible heritable variations underpinning these differences, in regard to photosynthesis, a key metabolism affecting yield potentials. A total of 6 individual Jatropha plant from 4 accessions described as high and low yielding planting materials were selected from the Experimental Plot A, Universiti Kebangsaan Malaysia (UKM), Bangi. The inflorescence and shoots were collected for transcriptome study. For the physiological study, each individual plant (n=10) from the high and low yielding populations were screened for agronomic traits, chlorophyll content and stomatal patterning. The J. curcas transcriptomes are available under BioProject PRJNA338924 and BioSample SAMN05827448-65, respectively Each transcriptome was subjected to functional annotation analysis of sequence datasets using the BLAST2Go suite; BLASTing, mapping, annotation, statistical analysis and visualization Large-scale phenotyping of the number of fruits per plant (NFPP) and fruits per inflorescence (FPI) classified the high yielding Jatropha accessions with average NFPP =60 and FPI > 10, whereas the low yielding accessions yielded an average NFPP=10 and FPI < 5. Next generation sequencing revealed genes with differential expressions in the high yielding Jatropha relative to the low yielding plants. Distinct differences were observed in transcript level associated to photosynthesis metabolism. DEGs collection in the low yielding population showed comparable CAM photosynthetic metabolism and photorespiration, evident as followings: phosphoenolpyruvate phosphate translocator chloroplastic like isoform with 2.5 fold change (FC) and malate dehydrogenase (2.03 FC). Green leaves have the most pronounced photosynthetic activity in a plant body due to significant accumulation of chloroplast. In most plants, the leaf is always the dominant photosynthesizing heart of the plant body. Large number of the DEGS in the high-yielding population were found attributable to chloroplast and chloroplast associated events; STAY-GREEN chloroplastic, Chlorophyllase-1-like (5.08 FC), beta-amylase (3.66 FC), chlorophyllase-chloroplastic-like (3.1 FC), thiamine thiazole chloroplastic like (2.8 FC), 1-4, alpha glucan branching enzyme chloroplastic amyliplastic (2.6FC), photosynthetic NDH subunit (2.1 FC) and protochlorophyllide chloroplastic (2 FC). The results were parallel to a significant increase in chlorophyll a content in the high yielding population. In addition to the chloroplast associated transcript abundance, the TOO MANY MOUTHS (TMM) at 2.9 FC, which code for distant stomatal distribution and patterning in the high-yielding population may explain high concentration of CO2. The results were in agreement with the role of TMM. Clustered stomata causes back diffusion in the presence of gaps localized closely to one another. We conclude that high yielding Jatropha population corresponds to a collective function of C3 metabolism with a low degree of CAM photosynthetic fixation. From the physiological descriptions, high chlorophyll a content and even distribution of stomata in the leaf contribute to better photosynthetic efficiency in the high yielding Jatropha compared to the low yielding population.Keywords: chlorophyll, gene expression, genetic variation, stomata
Procedia PDF Downloads 238203 Improvement of Ground Truth Data for Eye Location on Infrared Driver Recordings
Authors: Sorin Valcan, Mihail Gaianu
Abstract:
Labeling is a very costly and time consuming process which aims to generate datasets for training neural networks in several functionalities and projects. For driver monitoring system projects, the need for labeled images has a significant impact on the budget and distribution of effort. This paper presents the modifications done to an algorithm used for the generation of ground truth data for 2D eyes location on infrared images with drivers in order to improve the quality of the data and performance of the trained neural networks. The algorithm restrictions become tougher, which makes it more accurate but also less constant. The resulting dataset becomes smaller and shall not be altered by any kind of manual label adjustment before being used in the neural networks training process. These changes resulted in a much better performance of the trained neural networks.Keywords: labeling automation, infrared camera, driver monitoring, eye detection, convolutional neural networks
Procedia PDF Downloads 115202 The Prospective Assessment of Zero-Energy Dwellings
Authors: Jovana Dj. Jovanovic, Svetlana M. Stevovic
Abstract:
The highest priority of so called, projected passive houses is to meet the appropriate energy demand. Every single material and layer which is injected into a dwelling has a certain energy quantity stored. The passive houses include optimized insulation levels with minimal thermal bridges, minimum of air leakage through the building, utilization of passive solar and internal gains, and good circulation of air which leans on mechanical ventilation system. The focus of this paper is on passive house features, benefits and targets, their feasibility and energy demands which are set up during each project. Numerous passive house-standards outline the very significant role of zero-energy dwellings towards the modern label of sustainable development. It is clear that the performance of both built and existing housing stock must be addressed if the population across the world sets out the energy objectives. This scientific article examines passive house features since the many passive house cases are launched.Keywords: benefits, energy demands, passive houses, sustainable development
Procedia PDF Downloads 336201 Detection of PCD-Related Transcription Factors for Improving Salt Tolerance in Plant
Authors: A. Bahieldin, A. Atef, S. Edris, N. O. Gadalla, S. M. Hassan, M. A. Al-Kordy, A. M. Ramadan, A. S. M. Al- Hajar, F. M. El-Domyati
Abstract:
The idea of this work is based on a natural exciting phenomenon suggesting that suppression of genes related to the program cell death (or PCD) mechanism might help the plant cells to efficiently tolerate abiotic stresses. The scope of this work was the detection of PCD-related transcription factors (TFs) that might also be related to salt stress tolerance in plant. Two model plants, e.g., tobacco and Arabidopsis, were utilized in order to investigate this phenomenon. Occurrence of PCD was first proven by Evans blue staining and DNA laddering after tobacco leaf discs were treated with oxalic acid (OA) treatment (20 mM) for 24 h. A number of 31 TFs up regulated after 2 h and co-expressed with genes harboring PCD-related domains were detected via RNA-Seq analysis and annotation. These TFs were knocked down via virus induced gene silencing (VIGS), an RNA interference (RNAi) approach, and tested for their influence on triggering PCD machinery. Then, Arabidopsis SALK knocked out T-DNA insertion mutants in selected TFs analogs to those in tobacco were tested under salt stress (up to 250 mM NaCl) in order to detect the influence of different TFs on conferring salt tolerance in Arabidopsis. Involvement of a number of candidate abiotic-stress related TFs was investigated.Keywords: VIGS, PCD, RNA-Seq, transcription factors
Procedia PDF Downloads 272200 Farmers’ Awareness and Behavior of Chemical Pesticide Uses in Suan Luang Sub-District Municipality, Ampawa, Samut Songkram, Thailand
Authors: Paiboon Jeamponk, Tikamporn Thipsaeng
Abstract:
This paper is aimed to investigate farmers’ level of awareness and behavior of chemical pesticide uses, by using a case study of Suan Luang Sub- District Municipality, Ampawa, Samut Songkram Province. Questionnaire was employed in this study with the farmers from 46 households to explore their level of awareness in chemical pesticide uses, while interview and observation were adopted in exploring their behavior of chemical pesticide uses. The findings reflected the farmers’ high level of awareness in chemical pesticide uses in the hazardous effects of the chemical to human and environmental health, while their behavior of chemical pesticide uses explained their awareness paid to the right way of using pesticides, for instance reading the direction on the label, keeping children and animals away from the area of pesticide mixing, covering body with clothes and wearing hat and mask, no smoking, eating or drinking during pesticide spray or standing in windward direction.Keywords: awareness, behavior, pesticide, farmers
Procedia PDF Downloads 427199 Image Instance Segmentation Using Modified Mask R-CNN
Authors: Avatharam Ganivada, Krishna Shah
Abstract:
The Mask R-CNN is recently introduced by the team of Facebook AI Research (FAIR), which is mainly concerned with instance segmentation in images. Here, the Mask R-CNN is based on ResNet and feature pyramid network (FPN), where a single dropout method is employed. This paper provides a modified Mask R-CNN by adding multiple dropout methods into the Mask R-CNN. The proposed model has also utilized the concepts of Resnet and FPN to extract stage-wise network feature maps, wherein a top-down network path having lateral connections is used to obtain semantically strong features. The proposed model produces three outputs for each object in the image: class label, bounding box coordinates, and object mask. The performance of the proposed network is evaluated in the segmentation of every instance in images using COCO and cityscape datasets. The proposed model achieves better performance than the state-of-the-networks for the datasets.Keywords: instance segmentation, object detection, convolutional neural networks, deep learning, computer vision
Procedia PDF Downloads 72198 Performance Evaluation of Routing Protocols for Video Conference over MPLS VPN Network
Authors: Abdullah Al Mamun, Tarek R. Sheltami
Abstract:
Video conferencing is a highly demanding facility now a days in order to its real time characteristics, but faster communication is the prior requirement of this technology. Multi Protocol Label Switching (MPLS) IP Virtual Private Network (VPN) address this problem and it is able to make a communication faster than others techniques. However, this paper studies the performance comparison of video traffic between two routing protocols namely the Enhanced Interior Gateway Protocol(EIGRP) and Open Shortest Path First (OSPF). The combination of traditional routing and MPLS improve the forwarding mechanism, scalability and overall network performance. We will use GNS3 and OPNET Modeler 14.5 to simulate many different scenarios and metrics such as delay, jitter and mean opinion score (MOS) value are measured. The simulation result will show that OSPF and BGP-MPLS VPN offers best performance for video conferencing application.Keywords: OSPF, BGP, EIGRP, MPLS, Video conference, Provider router, edge router, layer3 VPN
Procedia PDF Downloads 330197 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 92196 Enhanced Arabic Semantic Information Retrieval System Based on Arabic Text Classification
Authors: A. Elsehemy, M. Abdeen , T. Nazmy
Abstract:
Since the appearance of the Semantic web, many semantic search techniques and models were proposed to exploit the information in ontology to enhance the traditional keyword-based search. Many advances were made in languages such as English, German, French and Spanish. However, other languages such as Arabic are not fully supported yet. In this paper we present a framework for ontology based information retrieval for Arabic language. Our system consists of four main modules, namely query parser, indexer, search and a ranking module. Our approach includes building a semantic index by linking ontology concepts to documents, including an annotation weight for each link, to be used in ranking the results. We also augmented the framework with an automatic document categorizer, which enhances the overall document ranking. We have built three Arabic domain ontologies: Sports, Economic and Politics as example for the Arabic language. We built a knowledge base that consists of 79 classes and more than 1456 instances. The system is evaluated using the precision and recall metrics. We have done many retrieval operations on a sample of 40,316 documents with a size 320 MB of pure text. The results show that the semantic search enhanced with text classification gives better performance results than the system without classification.Keywords: Arabic text classification, ontology based retrieval, Arabic semantic web, information retrieval, Arabic ontology
Procedia PDF Downloads 522195 Mathematical Toolbox for editing Equations and Geometrical Diagrams and Graphs
Authors: Ayola D. N. Jayamaha, Gihan V. Dias, Surangika Ranathunga
Abstract:
Currently there are lot of educational tools designed for mathematics. Open source software such as GeoGebra and Octave are bulky in their architectural structure. In addition, there is MathLab software, which facilitates much more than what we ask for. Many of the computer aided online grading and assessment tools require integrating editors to their software. However, there are not exist suitable editors that cater for all their needs in editing equations and geometrical diagrams and graphs. Some of the existing software for editing equations is Alfred’s Equation Editor, Codecogs, DragMath, Maple, MathDox, MathJax, MathMagic, MathFlow, Math-o-mir, Microsoft Equation Editor, MiraiMath, OpenOffice, WIRIS Editor and MyScript. Some of them are commercial, open source, supports handwriting recognition, mobile apps, renders MathML/LaTeX, Flash / Web based and javascript display engines. Some of the diagram editors are GeoKone.NET, Tabulae, Cinderella 1.4, MyScript, Dia, Draw2D touch, Gliffy, GeoGebra, Flowchart, Jgraph, JointJS, J painter Online diagram editor and 2D sketcher. All these software are open source except for MyScript and can be used for editing mathematical diagrams. However, they do not fully cater the needs of a typical computer aided assessment tool or Educational Platform for Mathematics. This solution provides a Web based, lightweight, easy to implement and integrate solution of an html5 canvas that renders on all of the modern web browsers. The scope of the project is an editor that covers equations and mathematical diagrams and drawings on the O/L Mathematical Exam Papers in Sri Lanka. Using the tool the students can enter any equation to the system which can be on an online remote learning platform. The users can also create and edit geometrical drawings, graphs and do geometrical constructions that require only Compass and Ruler from the Editing Interface provided by the Software. The special feature of this software is the geometrical constructions. It allows the users to create geometrical constructions such as angle bisectors, perpendicular lines, angles of 600 and perpendicular bisectors. The tool correctly imitates the functioning of rulers and compasses to create the required geometrical construction. Therefore, the users are able to do geometrical drawings on the computer successfully and we have a digital format of the geometrical drawing for further processing. Secondly, we can create and edit Venn Diagrams, color them and label them. In addition, the students can draw probability tree diagrams and compound probability outcome grids. They can label and mark regions within the grids. Thirdly, students can draw graphs (1st order and 2nd order). They can mark points on a graph paper and the system connects the dots to draw the graph. Further students are able to draw standard shapes such as circles and rectangles by selecting points on a grid or entering the parametric values.Keywords: geometrical drawings, html5 canvas, mathematical equations, toolbox
Procedia PDF Downloads 374194 Language and Empire: A Post-Colonial Examination of Othering and Identity in Babel: An Arcane History
Authors: Essam Hegazy
Abstract:
English has solidified its role as the global lingua franca, largely due to British colonial expansion. This research investigates the use of English as a tool for Empire-building and the subjugation of colonized peoples and their languages. The objective is to examine how linguistic Anglo-hegemony contributes to the construction of otherness and identity formation, and how these processes are depicted in R.F. Kuang's novel Babel: An Arcane History. Using a post-colonial theoretical framework, this study employs textual analysis to explore the novel's portrayal of characters' conflicting loyalties to their native cultures and the British Empire. Key methods include identifying themes of linguistic dominance, othering, and identity conflict through close reading and annotation. The analysis is contextualized with historical and cultural perspectives to understand the broader implications of these themes. The findings reveal that linguistic hegemony is a central mechanism of colonial power, deeply affecting the characters' sense of identity and belonging. The study uncovers how the imposition of English creates internalized conflicts and reinforces social hierarchies. This research highlights the need to challenge hegemonic structures to preserve authentic identities and promote cultural diversity.Keywords: linguistic hegemony, otherness, identity formation, colonialism, imperialism
Procedia PDF Downloads 23