Search results for: durability
462 Effect of Ageing of Laser-Treated Surfaces on Corrosion Resistance of Fusion-bonded Al Joints
Authors: Rio Hirakawa, Christian Gundlach, Sven Hartwig
Abstract:
Aluminium has been used in a wide range of industrial applications due to its numerous advantages, including excellent specific strength, thermal conductivity, corrosion resistance, workability and recyclability. The automotive industry is increasingly adopting multi-materials, including aluminium in structures and components to improve the mechanical usability and performance of individual components. A common method for assembling dissimilar materials is mechanical joining, but mechanical joining requires multiple manufacturing steps, affects the mechanical properties of the base material and increases the weight due to additional metal parts. Fusion bonding is being used in more and more industries as a way of avoiding the above drawbacks. Infusion bonding, and surface pre-treatment of the base material is essential to ensure the long-life durability of the joint. Laser surface treatment of aluminium has been shown to improve the durability of the joint by forming a passive oxide film and roughening the substrate surface. Infusion bonding, the polymer bonds directly to the metal instead of the adhesive, but the sensitivity to interfacial contamination is higher due to the chemical activity and molecular size of the polymer. Laser-treated surfaces are expected to absorb impurities from the storage atmosphere over time, but the effect of such changes in the treated surface over time on the durability of fusion-bonded joints has not yet been fully investigated. In this paper, the effect of the ageing of laser-treated surfaces of aluminum alloys on the corrosion resistance of fusion-bonded joints is therefore investigated. AlMg3 of 1.5 mm thickness was cut using a water-jet cutting machine, cleaned and degreased with isopropanol and surface pre-treated with a pulsed fiber laser at a wavelength of 1060 nm, maximum power of 70 W and repetition rate of 55 kHz. The aluminum surfaces were then stored in air for various periods of time and their corrosion resistance was assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). For the aluminum joints, induction heating was employed as the fusion bonding method and single-lap shear specimens were prepared. The corrosion resistance of the joints was assessed by measuring the lap shear strength before and after neutral salt spray. Cross-sectional observations by scanning electron microscopy (SEM) were also carried out to investigate changes in the microstructure of the bonded interface. Finally, the corrosion resistance of the surface and the joint were compared and the differences in the mechanisms of corrosion resistance enhancement between the two were discussed.Keywords: laser surface treatment, pre-treatment, bonding, corrosion, durability, interface, automotive, aluminium alloys, joint, fusion bonding
Procedia PDF Downloads 77461 Novel Anticorrosion Epoxy Reinforced Graphitic Nanocomposite as a Durable Surface
Authors: Shimaa A. Higazy, Mohamed S. Selim, Olfat E. El-Azabawy, Abeer A. Hassan
Abstract:
We designed novel epoxy/graphitic carbon nitride (g-C₃N₄) nanocomposite materials as suitable surface coatings. g-C₃N₄ nanosheets were facilely prepared and dispersed in the epoxy resin via solution casting. This research focuses on the mechanical and anticorrosion properties of g-C₃N₄ nanofiller reinforced epoxy nanocomposites. The structures, sizes, and morphologies of designed polymeric nanocomposites and nanofillers were elucidated using various techniques such as FT-IR, NMR, FE-TEM, FE-SEM. The developed nanocomposite was applied as a surface coating by air-assisted spray method. The structure-property relationship was studied for different concentrations of nanofiller in the epoxy matrix. The anticorrosive properties were studied via electrochemical experiments, including potentiodynamic polarization, electrochemical impedance, and open-circuit potential analyses, as well as salt spray test. Mechanical durability was assessed by various methods, such as impact, T-bending, and crosscut tests. Surface heterogeneity, elasticity, and corrosion-resistance features are among the merits of developed composite. The highest improvement was achieved with well dispersion of g-C₃N₄ sheets fillers. This fascinating epoxy nanostructured coating provides a promising anticorrosive coatings for a sustainable future environment.Keywords: epoxy, nanocomposite, surface coating, anticorrosive properties, mechanical durability
Procedia PDF Downloads 88460 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding
Authors: Amir E. Amirzadeh, Richard K. Strand
Abstract:
Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making
Procedia PDF Downloads 70459 The Effect of Durability and Pathogen Strains on the Wheat Induced Resistance against Zymoseptoria tritici as a Response to Paenibacillus sp. Strain B2
Authors: E. Samain, T. Aussenac, D. van Tuinen, S. Selim
Abstract:
Plant growth promoting rhizobacteria are known as potential biofertilizers and plant resistance inducers. The present work aims to study the durability of the resistance induced as a response to wheat seeds inoculation with PB2 and its influence by Z. tritici strains. The internal and external roots colonization have been determined in vitro, seven days post inoculation, by measuring the colony forming unit (CFU). In planta experimentations were done under controlled conditions included four wheat cultivars with different levels of resistance against Septoria Leaf Blotch (SLB) and four Z. tritici strains with high aggressiveness and resistance levels to fungicides. Plantlets were inoculated with PB2 at sowing and infected with Z. tritici at 3 leaves or tillering growth stages. The infection level with SLB was evaluated at 17 days post inoculation using real-time quantitative polymerase chain reaction (PCR). Results showed that PB2 has a high potential of wheat root external colonization (> 10⁶ CFU/g of root). However, the internal colonization seems to be cultivar dependent. Indeed, PB2 has not been observed as endophytic for one cultivar but has a high level of internal colonization with more than 104 CFU/g of root concerning the three others. Two wheat cultivars (susceptible and moderated resistant) were used to investigate PB2-induced resistance (PB2-IR). After the first infection with Z. tritici, results showed that PB2-IR has conferred a high protection efficiency (40-90%) against SLB in the two tested cultivars. Whereas the PB2-IR was effective against all tested strains with the moderate resistant cultivar, it was higher with the susceptible cultivar (> 64%) but against three of the four tested strains. Concerning the durability of the PB2-IR, after the second infection timing, it has been observed a significant decrease (10-59%) depending strains in the moderate resistant cultivar. Contrarily, the susceptible cultivar showed a stable and high protection level (76-84%) but against three of the four tested strains and interestingly, the strain that overcame PB2-IR was not the same as that of the first infection timing. To conclude, PB2 induces a high and durable resistance against Z. tritici. The PB2-IR is pathogen strain, plant growth stage and genotype dependent. These results may explain the loss of the induced resistance effectiveness under field conditions.Keywords: induced resistance, Paenibacillus sp. strain B2, wheat genotypes, Zymoseptoria tritici
Procedia PDF Downloads 149458 Effect of Conjugated Linoleic Acid on Lipid Metabolism and Increased Fat around the Muscle Durability by Reducing the Oxidation Process
Authors: Hamidreza Khodaei, Ali Daryabeigi Zand
Abstract:
Conjugated linoleic acid (CLA) is a mixture of isomers of linoleic acid. Despite the fact that 28 different isomers of CLA have already been identified, but the main isomer found in natural diets more than ninety percent CLA on intake of food constitutes demonstrates. CLA is known to be a substance that readily available by rumen microorganisms in some ruminants such as cattle and sheep would likely be made. The main objective of this research was to evaluate the impacts of CLA on lipid metabolism and enhanced fat around the muscle durability by reducing the process of oxidation. In order to implement this research, 80 female mice of the Balb/C, with 55 days of age were employed in the experiment. Treatments include various levels of CLA. Over the course of this study blood samples was also taken from the tail vein of the studied mice. Some other relevant parameters such as serum concentrations of triglycerides, total cholesterol, LDL, HDL and liver enzymes were also determined. The oxidative stability of fats TBARS technique was investigated at different intervals. The findings of the research were analyzed by statistical software of SAS 98. The results, CLA had no significant effect on liver enzymes (P > 0.05). However, it showed a statistically significant impact on triglycerides and total cholesterol. Ratio of LDL to HDL declined remarkably. Histological studies demonstrated reduced accumulation of fat in the tissues surrounding muscles.Keywords: conjugated linoleic acid, fat metabolism, fat retention, oxidation process
Procedia PDF Downloads 198457 Modulation of the Interphase in a Glass Epoxy System: Influence of the Sizing Chemistry on Adhesion and Interfacial Properties
Authors: S. Assengone Otogo Be, A. Fahs, L. Belec, T. A. Nguyen Tien, G. Louarn, J-F. Chailan
Abstract:
Glass fiber-reinforced composite materials have gradually developed in all sectors ranging from consumer products to aerospace applications. However, the weak point is most often the fiber/matrix interface, which can reduce the durability of the composite material. To solve this problem, it is essential to control the interphase and improve our understanding of the adhesion mechanism at the fibre/matrix interface. The interphase properties depend on the nature of the sizing applied on the surface of the glass fibers during their manufacture in order to protect them, facilitate their handling, and ensure fibre/matrix adhesion. The sizing composition, and in particular the nature of the coupling agent and the film-former affects the mechanical properties and the durability of composites. The aim of our study is, therefore, to develop and study composite materials with simplified sizing systems in order to understand how the main constituents modify the mechanical properties and the durability of composites from the nanometric to the macroscopic scale. Two model systems were elaborated: an epoxy matrix reinforced with simplified-sized glass fibres and an epoxy coating applied on glass substrates treated with the same sizings as fibres. For the sizing composition, two configurations were chosen. The first configuration possesses a chemical reactivity to link the glass and the matrix, and the second sizing contains non-reactive agents. The chemistry of the sized glass substrates and fibers was analyzed by FT-IR and XPS spectroscopies. The surface morphology was characterized by SEM and AFM microscopies. The observation of the surface samples reveals the presence of sizings which morphology depends on their chemistry. The evaluation of adhesion of coated substrates and composite materials show good interfacial properties for the reactive configuration. However, the non-reactive configuration exhibits an adhesive rupture at the interface of glass/epoxy for both systems. The interfaces and interphases between the matrix and the substrates are characterized at different scales. Correlations are made between the initial properties of the sizings and the mechanical performances of the model composites.Keywords: adhesion, interface, interphase, materials composite, simplified sizing systems, surface properties
Procedia PDF Downloads 141456 Investigations on Geopolymer Concrete Slabs
Authors: Akhila Jose
Abstract:
The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties
Procedia PDF Downloads 183455 Baby Bed Sheets with a Nanofiber Membrane
Authors: Roman Knizek, Denisa Knizkova, Vladimir Bajzik
Abstract:
Nowadays there are countless kinds of bedsheets or mattress covers for little children which should stop any liquid getting into the mattress. It is quite easy to wash the cover of the mattress, but it is almost impossible to clean the body of a mattress which is made of latex foam, wool or synthetic materials. Children bedsheets or mattress covers are often made with plastic coating which is not steam or air permeable and therefore is not very hygienic. This is our goal: by laminating a nanofiber membrane to a suitable bedsheet textile material, we can create a bedsheet which is waterproof but at the same time steam permeable and also partially breathable, thanks to the membrane. For the same reason, nanofiber membranes are widely used in outdoor clothing. The comfort properties and durability of the new nano-membrane bedsheet were studied. The following comfort properties were investigated: steam permeability - measured in accordance with Standard ISO 11902 hydrostatic resistances - measured in accordance with Standard ISO 811 and air permeability - measured in accordance with Standard ISO 9237. The durability or more precisely the wash resistance of the nano-membrane bedsheet was also measured by submitting the sheet to 30 washing cycles. The result of our work is a children's bedsheet with a nano-membrane. The nano-membrane is made of polyurethane to keep maximum flexibility and elasticity which are essential for this product. The comfort properties of this new bedsheet are very good especially its steam permeability and hydrostatic resistance.Keywords: bed sheet, hydrostatic resistance, nanofiber membrane, water vapour permeable
Procedia PDF Downloads 214454 The Influence of Silica on the Properties of Cementitious Composites
Authors: Eva Stefanovska, Estefania Cuenca, Aleksandra Momirov, Monika Fidanchevska, Liberato Ferrara, Emilija Fidanchevski
Abstract:
Silica is used in construction materials as a part of natural raw materials or as an additive in powder form (micro and nano dimensions). SiO₂ particles in cement act as centers of nucleation, as a filler or as pozzolan material. In this regard, silica improves the microstructure of cementitious composites, increases the mechanical properties, and finally also results into improved durability of the final products. Improved properties of cementitious composites may lead to better structural efficiency, which, together with increased durability, results into increased sustainability signature of structures made with this kind of materials. The aim of the present work was to investigate the influence of silica on the properties of cement. Fly ash (as received and mechanically activated) and synthetized silica (sol-gel method using TEOS as precursor) was used in the investigation as source of silica. Four types of cement mixtures were investigated (reference cement paste, cement paste with addition of 15wt.% as-received fly ash, cement paste with 15 wt.% mechanically activated fly ash and cement paste with 14wt.% mechanically activated fly ash and 1 wt.% silica). The influence of silica on setting time and mechanical properties (2, 7 and 28 days) was followed. As a matter of fact it will be shown that cement paste with composition 85 wt. % cement, 14 wt.% mechanically activated fly ash and 1 wt. % SiO₂ obtained by the sol-gel method was the best performing one, with increased compressive and flexure strength by 9 and 10 % respectively, as compared to the reference mixture. Acknowledgements: 'COST Action CA15202, www.sarcos.eng.cam.ac.uk'Keywords: cement, fly ash, mechanical properties, silica, sol-gel
Procedia PDF Downloads 145453 The Effect of Rice Husk Ash on the Mechanical and Durability Properties of Concrete
Authors: Binyamien Rasoul
Abstract:
Portland cement is one of the most widely used construction materials in the world today; however, manufacture of ordinary Portland cement (OPC) emission significant amount of CO2 resulting environmental impact. On the other hand, rice husk ash (RHA), which is produce as by product material is generally considered to be an environmental issue as a waste material. This material (RHA) consists of non-crystalline silicon dioxide with high specific surface area and high pozzolanic reactivity. These RHA properties can demonstrate a significant influence in improving the mechanical and durability properties of mortar and concrete. Furthermore, rice husk ash can provide a cost effective and give concrete more sustainability. In this paper, chemical composition, reactive silica and fineness effect was assessed by examining five different types of RHA. Mortars and concrete specimens were molded with 5% to 50% of ash, replacing the Portland cement, and measured their compressive and tensile strength behavior. Beyond it, another two parameters had been considered: the durability of concrete blended RHA, and effect of temperature on the transformed of amorphous structure to crystalline form. To obtain the rice husk ash properties, these different types were subjected to X-Ray fluorescence to determine the chemical composition, while pozzolanic activity obtained by using X-Ray diffraction test. On the other hand, finesses and specific surface area were obtained by used Malvern Mastersizer 2000 test. The measured parameters properties of fresh mortar and concrete obtained by used flow table and slump test. While, for hardened mortar and concrete the compressive and tensile strength determined pulse the chloride ions penetration for concrete using NT Build 492 (Nord Test) – non-steady state migration test (RMT Test). The obtained test results indicated that RHA can be used as a cement replacement material in concrete with considerable proportion up to 50% percentages without compromising concrete strength. The use of RHA in the concrete as blending materials improved the different characteristics of the concrete product. The paper concludes that to exhibits a good compressive strength of OPC mortar or concrete with increase RHA replacement ratio rice husk ash should be consist of high silica content with high pozzolanic activity. Furthermore, with high amount of carbon content (12%) could be improve the strength of concrete when the silica structure is totally amorphous. As well RHA with high amount of crystalline form (25%) can be used as cement replacement when the silica content over 90%. The workability and strength of concrete increased by used of superplasticizer and it depends on the silica structure and carbon content. This study therefore is an investigation of the effect of partially replacing Ordinary Portland cement (OPC) with Rice hush Ash (RHA) on the mechanical properties and durability of concrete. This paper gives satisfactory results to use RHA in sustainable construction in order to reduce the carbon footprint associated with cement industry.Keywords: OPC, ordinary Portland cement, RHA rice husk ash, W/B water to binder ratio, CO2, carbon dioxide
Procedia PDF Downloads 192452 Mechanical, Thermal and Biodegradable Properties of Bioplast-Spruce Green Wood Polymer Composites
Authors: A. Atli, K. Candelier, J. Alteyrac
Abstract:
Environmental and sustainability concerns push the industries to manufacture alternative materials having less environmental impact. The Wood Plastic Composites (WPCs) produced by blending the biopolymers and natural fillers permit not only to tailor the desired properties of materials but also are the solution to meet the environmental and sustainability requirements. This work presents the elaboration and characterization of the fully green WPCs prepared by blending a biopolymer, BIOPLAST® GS 2189 and spruce sawdust used as filler with different amounts. Since both components are bio-based, the resulting material is entirely environmentally friendly. The mechanical, thermal, structural properties of these WPCs were characterized by different analytical methods like tensile, flexural and impact tests, Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC) and X-ray Diffraction (XRD). Their water absorption properties and resistance to the termite and fungal attacks were determined in relation with different wood filler content. The tensile and flexural moduli of WPCs increased with increasing amount of wood fillers into the biopolymer, but WPCs became more brittle compared to the neat polymer. Incorporation of spruce sawdust modified the thermal properties of polymer: The degradation, cold crystallization, and melting temperatures shifted to higher temperatures when spruce sawdust was added into polymer. The termite, fungal and water absorption resistance of WPCs decreased with increasing wood amount in WPCs, but remained in durability class 1 (durable) concerning fungal resistance and quoted 1 (attempted attack) in visual rating regarding to the termites resistance except that the WPC with the highest wood content (30 wt%) rated 2 (slight attack) indicating a long term durability. All the results showed the possibility to elaborate the easy injectable composite materials with adjustable properties by incorporation of BIOPLAST® GS 2189 and spruce sawdust. Therefore, lightweight WPCs allow both to recycle wood industry byproducts and to produce a full ecologic material.Keywords: biodegradability, color measurements, durability, mechanical properties, melt flow index, MFI, structural properties, thermal properties, wood-plastic composites, WPCs
Procedia PDF Downloads 137451 ORR Electrocatalyst for Batteries and Fuel Cells Development with SIO₂/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO₂ and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO₂/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO₂ into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO₂ facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO₂/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: ORR, fuel cells, batteries, electrocatalyst
Procedia PDF Downloads 113450 Durability Study of Pultruded CFRP Plates under Sustained Bending in Distilled Water and Seawater Immersions: Effects on the Visco-Elastic Properties
Authors: Innocent Kafodya, Guijun Xian
Abstract:
This paper presents effects of distilled water, seawater and sustained bending strains of 30% and 50% ultimate strain at room temperature, on the durability of unidirectional pultruded carbon fiber reinforced polymer (CFRP) plates. In this study, dynamic mechanical analyzer (DMA) was used to investigate the synergic effects of the immersions and bending strains on the visco-elastic properties of (CFRP) such as storage modulus, tan delta and glass transition temperature. The study reveals that the storage modulus and glass transition temperature increase while tan delta peak decreases in the initial stage of both immersions due to the progression of curing. The storage modulus and Tg subsequently decrease and tan delta increases due to the matrix plasticization. The blister induced damages in the unstrained seawater samples enhance water uptake and cause more serious degradation of Tg and storage modulus than in water immersion. Increasing sustained bending decreases Tg and storage modulus in a long run for both immersions due to resin matrix cracking and debonding. The combined effects of immersions and strains are not clearly reflected due to the statistical effects of DMA sample sizes and competing processes of molecular reorientation and postcuring.Keywords: pultruded CFRP plate, bending strain, glass transition temperature, storage modulus, tan delta
Procedia PDF Downloads 269449 Advanced Textiles for Soldier Clothes Based on Coordination Polymers
Authors: Hossam E. Emam
Abstract:
The functional textiles development history in the military field could be ascribed as a uniquely interesting research topic. Soldiers are like a high-performance athletes, where monitoring their physical and physiological capabilities is a vital requirement. Functional clothes represent a “second skin” that has a close, “intimate” relationship with the human body. For the application of textiles in military purposes, which is normally required in difficult weather and environmental conditions, several functions are required. The requirements for designing functional military textiles for soldier's protection can be categorized into three categories; i) battle field (protection from chemical warfare agents, flames, and thermal radiation), ii) environmental (water proof, air permeable, UV-protection, antibacterial), iii) physiological (minimize heat stress, low weight, insulative, durability). All of these requirements are important, but the means to fulfill these requirements are not simple and straight forward. Additionally, the combination of more than one function is reported to be very expensive and requires many complicated steps, and the final product is found to be low durability. Not only do all of these requirements are overlapping, but they are also contradicting each other at various levels. Thus, we plan to produce multi-functional textiles (e.g., anti-microbial, UV-protection, fire retardant, photoluminescent) to be applied in military clothes. The current project aims to use quite a simple and applicable technique through the modification of textiles with different coordination polymers and functionalized coordination polymers.Keywords: functional textiles, military clothes, coordination polymers, antimicrobial, fire retardant, photolumenscent
Procedia PDF Downloads 180448 Effect of Surface Preparation of Concrete Substrate on Bond Tensile Strength of Thin Bonded Cement Based Overlays
Authors: S. Asad Ali Gillani, Ahmed Toumi, Anaclet Turatsinze
Abstract:
After a certain period of time, the degradation of concrete structures is unavoidable. For large concrete areas, thin bonded cement-based overlay is a suitable rehabilitation technique. Previous research demonstrated that durability of bonded cement-based repairs is always a problem and one of its main reasons is deboning at interface. Since durability and efficiency of any repair system mainly depend upon the bond between concrete substrate and repair material, the bond between concrete substrate and repair material can be improved by increasing the surface roughness. The surface roughness can be improved by performing surface treatment of the concrete substrate to enhance mechanical interlocking which is one of the basic mechanisms of adhesion between two surfaces. In this research, bond tensile strength of cement-based overlays having substrate surface prepared using different techniques has been characterized. In first step cement based substrate was prepared and then cured for three months. After curing two different types of the surface treatments were performed on this substrate; cutting and sandblasting. In second step overlay was cast on these prepared surfaces, which were cut and sandblasted surfaces. The overlay was also cast on the surface without any treatment. Finally, bond tensile strength of cement-based overlays was evaluated in direct tension test and the results are discussed in this paper.Keywords: concrete substrate, surface preparation, overlays, bond tensile strength
Procedia PDF Downloads 457447 The Influence of Incorporating in the Concrete of Recycled Waste from Shredding Used Tires and Crushed Glass on Their Characteristics and Behavior
Authors: Samiha Ramdani, Abdelhamid Geuttala
Abstract:
There is no doubt that the batteries increasingly used tires create environmental concerns. Algeria generates large amounts of by industrial and household waste, such as used tires and colored glass bottles and dishes, whose valuation in cementitious materials could be an interesting ecological and economical alternative for broadening eliminating cumbersome landfills. This work is a contribution to the promotion of local materials with the use of waste tires and glass bottle in the development of a new cementitious composite having the acceptable compressive strength and a capacity of improved strains. For this purpose, rubber crumb (GC) from shredding used tires were used as partial replacement of quarry sand with 10%, 20%, 40, 60%. In addition, some mixtures also contain glass powder at15% cement replacement by volume. The compressive strength, tensile strength, deformability, the water permeability and penetration Inions chlorides are studied. As results; an acceptable compressive strength was obtained with the substitution rate of 10% and 20% by volume, the deformability of the composite increases with increased replacement rate. The addition of finely ground glass as a partial replacement of cement concrete increases the resistance to penetration of Inions chloride and reduce the water permeability thereof; then increases their durability.Keywords: crumb rubber, deformability, compressive strength, finely ground glass, durability, behavior law
Procedia PDF Downloads 321446 Influence of Ground Granulated Blast Furnace Slag on Geotechnical Characteristics of Jarosite Waste
Authors: Chayan Gupta, Arun Prasad
Abstract:
The quick evolution of industrialization causes the scarcity of precious land. Thus, it is vital need to influence the R&D societies to achieve sustainable, economic and social benefits from huge utilization of waste for universal aids. The current study promotes the influence of steel industries waste i.e. ground granulated blast furnace slag (GGBS) in geotechnical properties of jarosite waste (solid waste residues produced from hydrometallurgy operations involved in extraction of Zinc). Numerous strengths tests (unconfined compression (qu) and splitting tensile strength (qt)) are conducted on jarosite-GGBS blends (GGBS, 10-30%) with different curing periods (7, 28 & 90 days). The results indicate that both qu and qt increase with the increase in GGBS content along with curing periods. The increased strength with the addition of GGBS is also observed from microstructural study, which illustrates the occurrence of larger agglomeration of jarosite-GGBS blend particles. The Freezing-Thawing (F-T) durability analysis is also conducted for all the jarosite-GGBS blends and found that the reduction in unconfined compressive strength after five successive F-T cycles enhanced from 62% (natural jarosite) to 48, 42 and 34% at 7, 14 and 28 days curing periods respectively for stabilized jarosite-GGBS samples containing 30% GGBS content. It can be concluded from this study that blending of cementing additives (GGBS) with jarosite waste resulted in a significant improvement in geotechnical characteristics.Keywords: jarosite, GGBS, strength characteristics, microstructural study, durability analysis
Procedia PDF Downloads 168445 The Optimization of an Industrial Recycling Line: Improving the Durability of Recycled Polyethyene Blends
Authors: Alae Lamtai, Said Elkoun, Hniya Kharmoudi, Mathieu Robert, Carl Diez
Abstract:
This study applies Taguchi's design of experiment methodology and grey relational analysis (GRA) for multi objective optimization of an industrial recycling line. This last is composed mainly of a mono and twin-screw extruder and a filtration system. Experiments were performed according to L₁₆ standard orthogonal array based on five process parameters, namely: mono screw design, screw speed of the mono and twin-screw extruder, melt pump pressure, and filter mesh size. The objective of this optimization is to improve the durability of the Polyethylene (PE) blend by decreasing the loss of Stress Crack resistance (SCR) using Notched Crack Ligament Stress (NCLS) test and Unnotched Crack Ligament Stress (UCLS) in parallel with increasing the gain of Izod impact strength of the Polyethylene (PE) blend before and after recycling. Based on Grey Relational Analysis (GRA), the optimal setting of process parameters was identified, and the results indicated that the mono-screw design and screw speed of both mono and twin-screw extruder impact significantly the mechanical properties of recycled Polyethylene (PE) blend.Keywords: Taguchi, recycling line, polyethylene, stress crack resistance, Izod impact strength, grey relational analysis
Procedia PDF Downloads 83444 Corrosion Resistance Evaluation of Reinforcing Bars: A Comparative Study of Fusion Bonded Epoxy Coated, Cement Polymer Composite Coated and Dual Zinc Epoxy Coated Rebar for Application in Reinforced Concrete Structures
Authors: Harshit Agrawal, Salman Muhammad
Abstract:
Degradation to reinforced concrete (RC), primarily due to corrosion of embedded reinforcement, has been a major cause of concern worldwide. Among several ways to control corrosion, the use of coated reinforcement has gained significant interest in field applications. However, the choice of proper coating material and the effect of damage over coating are yet to be addressed for effective application of coated reinforcements. The present study aims to investigate and compare the performance of three different types of coated reinforcements —Fusion-Bonded Epoxy Coating (FBEC), Cement Polymer Composite Coating (CPCC), and Dual Zinc-Epoxy Coating (DZEC) —in concrete structures. The aim is to assess their corrosion resistance, durability, and overall effectiveness as coated reinforcement materials both in undamaged and simulated damaged conditions. Through accelerated corrosion tests, electrochemical analysis, and exposure to aggressive marine environments, the study evaluates the long-term performance of each coating system. This research serves as a crucial guide for engineers and construction professionals in selecting the most suitable corrosion protection for reinforced concrete, thereby enhancing the durability and sustainability of infrastructure.Keywords: corrosion, reinforced concrete, coated reinforcement, seawater exposure, electrochemical analysis, service life, corrosion prevention
Procedia PDF Downloads 82443 ORR Electrocatalyst for Batteries and Fuel Cells Development with SiO2/Carbon Black Based Composite Nanomaterials
Authors: Maryam Kiani
Abstract:
This study focuses on the development of composite nanomaterials based on SiO2 and carbon black for oxygen reduction reaction (ORR) electrocatalysts in batteries and fuel cells. The aim was to explore the potential of these composite materials as efficient catalysts for ORR, which is a critical process in energy conversion devices. The SiO2/carbon black composite nanomaterials were synthesized using a facile and scalable method. The morphology, structure, and electrochemical properties of the materials were characterized using various techniques, including scanning electron microscopy (SEM), X-ray diffraction (XRD), and electrochemical measurements. The results demonstrated that the incorporation of SiO2 into the carbon black matrix enhanced the ORR performance of the composite material. The composite nanomaterials exhibited improved electrocatalytic activity, enhanced stability, and increased durability compared to pure carbon black. The presence of SiO2 facilitated the formation of active sites, improved electron transfer, and increased the surface area available for ORR. This study contributes to the advancement of battery and fuel cell technology by offering a promising approach for the development of high-performance ORR electrocatalysts. The SiO2/carbon black composite nanomaterials show great potential for improving the efficiency and durability of energy conversion devices, leading to more sustainable and efficient energy solutions.Keywords: oxygen reduction reaction, batteries, fuel cells, electrrocatalyst
Procedia PDF Downloads 116442 Tribological Behavior of PTFE Composites Used for Guide Rings of Hydraulic Actuating Cylinders under Oil-Lubricated Condition
Authors: Trabelsi Mohamed, Kharrat Mohamed, Dammak Maher
Abstract:
Guide rings play an important role in the performance and durability of hydraulic actuating cylinders. In service, guide rings surfaces are subjected to friction and wear against steel counterface. A good mastery of these phenomena is required for the improvement of the energy safeguard and the durability of the actuating cylinder. Polytetrafluoroethylene (PTFE) polymer is extensively used in guide rings thanks to its low coefficient of friction, its good resistance to solvents as well as its high temperature stability. In this study, friction and wear behavior of two PTFE composites filled with bronze and bronze plus MoS2 were evaluated under oil-lubricated condition, aiming as guide rings for hydraulic actuating cylinder. Wear tests of the PTFE composite specimen sliding against steel ball were conducted using reciprocating linear tribometer. The wear mechanisms of the composites under the same sliding condition were discussed, based on Scanning Electron Microscopy examination of the worn composite surface and the optical micrographs of the steel counter surface. As for the results, comparative friction behaviors of the PTFE composites and lower friction coefficients were recorded under oil lubricated condition. The wear behavior was considerably improved to compare with this in dry sliding, while the oil adsorbed layer limited the transfer of the PTFE to the steel counter face during the sliding test.Keywords: PTFE, composite, bronze, MoS2, friction, wear, oil-lubrication
Procedia PDF Downloads 299441 Environmental Impact of Pallets in the Supply Chain: Including Logistics and Material Durability in a Life Cycle Assessment Approach
Authors: Joana Almeida, Kendall Reid, Jonas Bengtsson
Abstract:
Pallets are devices that are used for moving and storing freight and are nearly omnipresent in supply chains. The market is dominated by timber pallets, with plastic being a common alternative. Either option underpins the use of important resources (oil, land, timber), the emission of greenhouse gases and additional waste generation in most supply chains. This study uses a dynamic approach to the life cycle assessment (LCA) of pallets. It demonstrates that what ultimately defines the environmental burden of pallets in the supply chain is how often the length of its lifespan, which depends on the durability of the material and on how pallets are utilized. This study proposes a life cycle assessment (LCA) of pallets in supply chains supported by an algorithm that estimates pallet durability in function of material resilience and of logistics. The LCA runs from cradle-to-grave, including raw material provision, manufacture, transport and end of life. The scope is representative of timber and plastic pallets in the Australian and South-East Asia markets. The materials included in this analysis are: -tropical mixed hardwood, unsustainably harvested in SE Asia; -certified softwood, sustainably harvested; -conventional plastic, a mix of virgin and scrap plastic; -recycled plastic pallets, 100% mixed plastic scrap, which are being pioneered by Re > Pal. The logistical model purports that more complex supply chains and rougher handling subject pallets to higher stress loads. More stress shortens the lifespan of pallets in function of their composition. Timber pallets can be repaired, extending their lifespan, while plastic pallets cannot. At the factory gate, softwood pallets have the lowest carbon footprint. Re > pal follows closely due to its burden-free feedstock. Tropical mixed hardwood and plastic pallets have the highest footprints. Harvesting tropical mixed hardwood in SE Asia often leads to deforestation, leading to emissions from land use change. The higher footprint of plastic pallets is due to the production of virgin plastic. Our findings show that manufacture alone does not determine the sustainability of pallets. Even though certified softwood pallets have lower carbon footprint and their lifespan can be extended by repair, the need for re-supply of materials and disposal of waste timber offsets this advantage. It also leads to most waste being generated among all pallets. In a supply chain context, Re > Pal pallets have the lowest footprint due to lower replacement and disposal needs. In addition, Re > Pal are nearly ‘waste neutral’, because the waste that is generated throughout their life cycle is almost totally offset by the scrap uptake for production. The absolute results of this study can be confirmed by progressing the logistics model, improving data quality, expanding the range of materials and utilization practices. Still, this LCA demonstrates that considering logistics, raw materials and material durability is central for sustainable decision-making on pallet purchasing, management and disposal.Keywords: carbon footprint, life cycle assessment, recycled plastic, waste
Procedia PDF Downloads 221440 Fatigue Test and Stress-Life Analysis of Nanocomposite-Based Bone Fixation Device
Authors: Jisoo Kim, Min Su Lee, Sunmook Lee
Abstract:
Durability assessment of nanocomposite-based bone fixation device was performed by flexural fatigue tests, for which the changes in the life cycles of nanocomposite samples synthesized by blending bioabsorbable polymer (PLGA) and ceramic nanoparticles (β-TCP) with different ratios were monitored. The nanocomposite samples were kept in a constant temperature/humidity chamber at 37°C/50%RH for varied incubation periods for the degradation of nanocomposite samples under the temperature/humidity stress. It was found that the life cycles were increasing as the incubation time in the chamber were increasing in the initial stage irrespective of sample compositions, which was due to the annealing effect of the polymer. However, the life cycle was getting shorter as the incubation time increased afterward, which was due to the overall degradation of nanocomposites. It was found that the life cycle of the nanocomposite sample with high ceramic content was shorter than the one with low ceramic content, which was attributed to the increased brittleness of the composite with high ceramic content. The changes in chemical properties were also monitored by FT-IR, which indicated that the degradation of the biodegradable polymer could be confirmed by the increased intensities of carboxyl groups and hydroxyl groups since the hydrolysis of ester bonds connecting two successive monomers yielded carboxyl end groups and hydroxyl groups.Keywords: bioabsorbable polymer, bone fixation device, ceramic nanoparticles, durability assessment, fatigue test
Procedia PDF Downloads 402439 Compact LWIR Borescope Sensor for Surface Temperature of Engine Components
Authors: Andy Zhang, Awnik Roy, Trevor B. Chen, Bibik Oleksandr, Subodh Adhikari, Paul S. Hsu
Abstract:
The durability of a combustor in gas-turbine enginesrequiresa good control of its component temperatures. Since the temperature of combustion gases frequently exceeds the melting point of the combustion liner walls, an efficient air-cooling system is significantly important to elongatethe lifetime of liner walls. To determine the effectiveness of the air-cooling system, accurate 2D surface temperature measurement of combustor liner walls is crucial for advanced engine development. Traditional diagnostic techniques for temperature measurement, such as thermocouples, thermal wall paints, pyrometry, and phosphors, have shown disadvantages, including being intrusive and affecting local flame/flow dynamics, potential flame quenching, and physical damages to instrumentation due to harsh environments inside the combustor and strong optical interference from strong combustion emission in UV-Mid IR wavelength. To overcome these drawbacks, a compact and small borescope long-wave-infrared (LWIR) sensor is developed to achieve two-dimensional high-spatial resolution, high-fidelity thermal imaging of 2D surface temperature in gas-turbine engines, providing the desired engine component temperature distribution. The compactLWIRborescope sensor makes it feasible to promote the durability of combustor in gas-turbine engines.Keywords: borescope, engine, long-wave-infrared, sensor
Procedia PDF Downloads 135438 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization
Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh
Abstract:
The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.Keywords: battery characterization, SoH estimation, RLS, BEV
Procedia PDF Downloads 149437 The Damage and Durability of a Sport Synthetic Resin Floor: A Case Study
Abstract:
Synthetic resin floorsare often used in sport infrastructure. These organic materials are often in contact with a bituminous substrate, which in turn is placed on the ground. In this work, the damage of a basket resin field surface was characterized by means of visual inspection, optical microscopy, resin thickness measurements, adhesion strength, water vapor transmission capacity, capillary water adsorption, granulometry of the bituminous conglomerate, the surface properties, and the water ground infiltration speed. The infiltration speed indicates water pemeability. This was due to its composition: clean sand mixed with gravel. Relatively good adhesion was present between the synthetic resin and the bituminous layer. The adhesion resistance of the bituminous layer was relatively low. According to the required bitumoniousasphalt-concrete mixes AC 11 S, the placed material was more porous. Insufficient constipation was present. The spaces values were above the standard limits, while the apparent densities were lower compared to the conventional AC 11 mixtures. The microstructure outlines the high permeability and porosity of the bituminous layer. The synthetic resin wasvapourproof and did not exhibit capillary adsorption. It exhibited a lower thickness as required, and no multiple placing steps were observed. Multiple cavities were detected along with the interface between the bituminous layer and the resin coating with no intermediate layers. The layer for the pore filling in the bituminous surface was not properly applied. The swelling bubbles on the synthetic pavement were caused by the humidity in the bituminous layer. Water or humidity were present prior to the application of the resin, and the effect was worsened by the upward movement of the water from the ground.Keywords: resin, floor, damage, durability
Procedia PDF Downloads 162436 Robust Design of a Ball Joint Considering Uncertainties
Authors: Bong-Su Sin, Jong-Kyu Kim, Se-Il Song, Kwon-Hee Lee
Abstract:
An automobile ball joint is a pivoting element used to allow rotational motion between the parts of the steering and suspension system. And it plays a role in smooth transmission of steering movement, also reduction in impact from the road surface. A ball joint is under various repeated loadings that may cause cracks and abrasion. This damages lead to safety problems of a car, as well as reducing the comfort of the driver's ride, and raise questions about the ball joint procedure and the whole durability of the suspension system. Accordingly, it is necessary to ensure the high durability and reliability of a ball joint. The structural responses of stiffness and pull-out strength were then calculated to check if the design satisfies the related requirements. The analysis was sequentially performed, following the caulking process. In this process, the deformation and stress results obtained from the analysis were saved. Sequential analysis has a strong advantage, in that it can be analyzed by considering the deformed shape and residual stress. The pull-out strength means the required force to pull the ball stud out from the ball joint assembly. The low pull-out strength can deteriorate the structural stability and safety performances. In this study, two design variables and two noise factors were set up. Two design variables were the diameter of a stud and the angle of a socket. And two noise factors were defined as the uncertainties of Young's modulus and yield stress of a seat. The DOE comprises 81 cases using these conditions. Robust design of a ball joint was performed using the DOE. The pull-out strength was generated from the uncertainties in the design variables and the design parameters. The purpose of robust design is to find the design with target response and smallest variation.Keywords: ball joint, pull-out strength, robust design, design of experiments
Procedia PDF Downloads 422435 Index and Mechanical Geotechnical Properties and Their Control on the Strength and Durability of the Cainozoic Calcarenites in KwaZulu-Natal, South Africa
Authors: Luvuno N. Jele, Warwick W. Hastie, Andrew Green
Abstract:
Calcarenite is a clastic sedimentary beach rock composed of more than 50% sand sized (0.0625 – 2 mm) carbonate grains. In South Africa, these rocks occur as a narrow belt along most of the coast of KwaZulu-Natal and sporadically along the coast of the Eastern Cape. Calcarenites contain a high percentage of calcium carbonate, and due to a number of its physical and structural features, like porosity, cementing material, sedimentary structures, grain shape, and grain size; they are more prone to chemical and mechanical weathering. The objective of the research is to study the strength and compressibility characteristics of the calcarenites along the coast of KwaZulu-Natal to be able to better understand the geotechnical behaviour of these rocks, which may help to predict areas along the coast which may be potentially susceptible to failure/differential settling resulting in damage to property. A total of 148 cores were prepared and analyzed. Cores were analyzed perpendicular and parallel to bedding. Tests were carried out in accordance with the relevant codes and recommendations of the International Society for Rock Mechanics, American Standard Testing Methods, and Committee of Land and Transport Standard Specifications for Road and Bridge Works for State Road Authorities. Test carried out included: x-ray diffraction, petrography, shape preferred orientation (SPO), 3-D Tomography, rock porosity, rock permeability, ethylene glycol, slake durability, rock water absorption, Duncan swelling index, triaxial compressive strength, Brazilian tensile strength and uniaxial compression test with elastic modulus. The beach-rocks have a uniaxial compressive strength (UCS) ranging from 17,84Mpa to 287,35Mpa and exhibit three types of failure; (1) single sliding shear failure, (2) complete cone development, and (3) splitting failure. Brazilian tensile strength of the rocks ranges from 2.56 Mpa to 12,40 Ma, with those tested perpendicular to bedding showing lower tensile strength. Triaxial compressive tests indicate calcarenites have strength ranging from 86,10 Mpa to 371,85 Mpa. Common failure mode in the triaxial test is a single sliding shear failure. Porosity of the rocks varies from 1.25 % to 26.52 %. Rock tests indicate that the direction of loading, whether it be parallel to bedding or perpendicular to bedding, plays no significantrole in the strength and durability of the calcarenites. Porosity, cement type, and grain texture play major roles.UCS results indicate that saturated cores are weaker in strength compared to dry samples. Thus, water or moisture content plays a significant role in the strength and durability of the beach-rock. Loosely packed, highly porous and low magnesian-calcite bearing calcarenites show a decrease in strength compared to the densely packed, low porosity and high magnesian-calcite bearing calcarenites.Keywords: beach-rock, calcarenite, cement, compressive, failure, porosity, strength, tensile, grains
Procedia PDF Downloads 93434 Effect of Temperature on the Properties of Cement Paste Modified with Nanoparticles
Authors: Karine Pimenta Teixeira, Jessica Flores, Isadora PerdigãO Rocha, Leticia De Sá Carneiro, Mahsa Kamali, Ali Ghahremaninezhad
Abstract:
The advent of nanotechnology has enabled innovative solutions towards improving the behavior of infrastructure materials. Nanomaterials have the potential to revolutionize the construction industry by improving the performance and durability of construction materials, as well as imparting new functionalities to these materials. Due to variability in the environmental temperature during mixing and curing of cementitious materials in practice, it is important to understand how curing temperature influences the behavior of cementitious materials. In addition, high temperature curing is relevant in applications such as oil well cement and precast industry. Knowledge of the influence of temperature on the performance of cementitious materials modified with nanoparticles is important in the nanoengineering of cementitious materials in applications such as oil well cement and precast industry. This presentation aims to investigate the influence of temperature on the hydration, mechanical properties and durability of cementitious materials modified with TiO2 nanoparticles. It was found that temperature improved the early hydration. The cement pastes cured at high temperatures showed an increase in the compressive strength at early age but the strength gain decreased at late ages. The electrical resistivity of the cement pastes cured at high temperatures was shown to decrease more noticeably at late ages compared to that of the room temperature cured cement paste. SEM examination indicated that hydration product was more uniformly distributed in the microstructure of the cement paste cured at room temperature compared to the cement pastes cured at high temperature.Keywords: cement paste, nanoparticles, temperature, hydration
Procedia PDF Downloads 317433 Shelf Life of Frozen Processed Foods for Extended Durability
Authors: Manfreda Gerardo, Pasquali Frederique, Pepe Tiziana, Anastasio Aniello, Ianieri Adriana
Abstract:
The aim of the research was to evaluate the shelf life of a REPFED’s product (lasagna alla bolognese), developed as a product to be marketed fresh after defrosting. Three different samples were prepared: A, B and C, which presented differences in relation to the recipe, pasteurization technique and packaging on which the trend of the shelf-life indicator parameters was evaluated during a period of prolonged shelf life. The analytical plan involved the measurement of microbiological, chemical-physical and organoleptic parameters over 7 moments of storage selected in a period of 33 days. CBT, LAB, enterobacteria, E. coli, yeasts, molds, S. coagulase positive, B. cereus, Salmonella spp and L. monocytogenes, pH, Aw, Kreiss test, peroxides, atmosphere inside the packages, and organoleptic characteristics were determined. The results demonstrated the effect of post-packaging pasteurization on the shelf life of fresh from frozen products. However, the products pasteurized at 95°C in the absence of steam showed microbiological parameters that were not appropriate for an extended shelf life of up to 60 days. On the contrary, the samples pasteurized at 98°C with steam saturation and counterpressure showed values compatible with an extended shelf life. The results of the chemical-physical analyses highlighted how recipe and packaging affect the chemical-physical and organoleptic parameters. In conclusion, this preliminary study confirmed the effectiveness of post-packaging pasteurization treatments aimed at extending the shelf life of the product, helping the food company to occupy market niches even very distant from the production sites.Keywords: shelf life, REPFED’s product, extended durability, pasteurization
Procedia PDF Downloads 28