Search results for: dimethyl adipate (DMA)
24 Use of 3D Printed Bioscaffolds from Decellularized Umbilical Cord for Cartilage Regeneration
Authors: Tayyaba Bari, Muhammad Hamza Anjum, Samra Kanwal, Fakhera Ikram
Abstract:
Osteoarthritis, a degenerative condition, affects more than 213 million individuals globally. Since articular cartilage has no or limited vessels, therefore, after deteriorating, it is unable to rejuvenate. Traditional approaches for cartilage repair, like autologous chondrocyte implantation, microfracture and cartilage transplantation are often associated with postoperative complications and lead to further degradation. Decellularized human umbilical cord has gained interest as a viable treatment for cartilage repair. Decellularization removes all cellular contents as well as debris, leaving a biologically active 3D network known as extracellular matrix (ECM). This matrix is biodegradable, non-immunogenic and provides a microenvironment for homeostasis, growth and repair. UC derived bioink function as 3D scaffolding material, not only mediates cell-matrix interactions but also adherence, proliferation and propagation of cells for 3D organoids. This study comprises different physical, chemical and biological approaches to optimize the decellularization of human umbilical cord (UC) tissues followed by the solubilization of these tissues to bioink formation. The decellularization process consisted of two cycles of freeze thaw where the umbilical cord at -20˚C was thawed at room temperature followed by dissection in small sections from 0.5 to 1cm. Similarly decellularization with ionic and non-ionic detergents Sodium dodecyl sulfate (SDS) and Triton-X 100 revealed that both concentrations of SDS i.e 0.1% and 1% were effective in complete removal of cells from the small UC tissues. The results of decellularization was further confirmed by running them on 1% agarose gel. Histological analysis revealed the efficacy of decellularization, which involves paraffin embedded samples of 4μm processed for Hematoxylin-eosin-safran and 4,6-diamidino-2-phenylindole (DAPI). ECM preservation was confirmed by Alcian Blue, and Masson’s trichrome staining on consecutive sections and images were obtained. Sulfated GAG’s content were determined by 1,9-dimethyl-methylene blue (DMMB) assay, similarly collagen quantification was done by hydroxy proline assay. This 3D bioengineered scaffold will provide a typical atmosphere as in the extracellular matrix of the tissue, which would be seeded with the mesenchymal cells to generate the desired 3D ink for in vitro and in vivo cartilage regeneration applications.Keywords: umbilical cord, 3d printing, bioink, tissue engineering, cartilage regeneration
Procedia PDF Downloads 9923 Bioactivities and Phytochemical Studies of Acrocarpus fraxinifolius Bark Wight and Arn
Authors: H. M. El-Rafie, A. H. Abou Zeid, R. S. Mohammed, A. A. Sleem
Abstract:
Acrocarpus is a genus of flowering plants in the legume family Fabaceae which considered as a large and economically important family. This study aimed to investigate the phytoconstituents of the petroleum ether extract (PEE) of Acrocarpus fraxinofolius bark by Gas chromatography coupled with mass spectrometry (GC/MS) analysis of its fractions (fatty acid and unsaponifiable matter). Concerning this, identification of 52 compounds constituting 97.03 % of the total composition of the unsaponifiable matter fraction. Cycloeucalenol was found to be the major compound representing 32.52% followed by 4a, 14a-dimethyl-A8~24(28)-ergostadien (26.50%) and ß-sitosterol(13.74%), furthermore Gas liquid chromatography (GLC) analysis of the sterol fraction revealed the identification of cholesterol (7.22 %), campesterol (13.30 %), stigmasterol (10.00 %) and β - sitosterol (69.48 %). Meanwhile, the identification of 33 fatty acids representing 90.71% of the total fatty acid constituents. Methyl-9,12-octadecadienoate (40.39%) followed by methyl hexadecanoate (23.64%) were found to be the major compounds. On the other hand, column chromatography and Thin layer chromatography (TLC) fractionation of PEE separate the triterpenoid: 21β-hydroxylup-20(29)-en-3-one and β- amyrin which were structurally identified by spectroscopic analysis (NMR, MS and IR). PEE has been biologically evaluated for 1: management of diabetes in alloxan induced diabetic rats 2: cytotoxic activity against four human tumor cell lines (Cervix carcinoma cell line[HELA], Breast carcinoma cell line [MCF7], Liver carcinoma cell line[HEPG2] and Colon carcinoma cell line[HCT-116] 3: hepatoprotective activity against CCl4-induced hepatotoxicity in rats and the activity was studied by assaying the serum marker enzymes like AST, ALT, and ALP. Concerning this, the anti-diabetic activity exhibited by 100mg of PEE extract was 74.38% relative to metformin (100% potency). It also showed a significant anti-proliferative activity against MCF-7 (IC50= 2.35µg), Hela(IC50=3.85µg) and HEPG-2 (IC50= 9.54µg) compared with Doxorubicin as reference drug. The hepatoprotective activity was evidenced by significant decrease in liver function enzymes, i.e. AST, ALT and ALP by (29.18%, 28.26%, and 34.11%, respectively using silymarin as the reference drug, compared to their concentration levels in an untreated group with liver damage induced by CCl₄. This study was performed for the first time on the bark of this species.Keywords: Acrocarpus fraxinofolius, antidiabetic, cytotoxic, hepatoprotective
Procedia PDF Downloads 19622 Modification of Carbon-Based Gas Sensors for Boosting Selectivity
Authors: D. Zhao, Y. Wang, G. Chen
Abstract:
Gas sensors that utilize carbonaceous materials as sensing media offer numerous advantages, making them the preferred choice for constructing chemical sensors over those using other sensing materials. Carbonaceous materials, particularly nano-sized ones like carbon nanotubes (CNTs), provide these sensors with high sensitivity. Additionally, carbon-based sensors possess other advantageous properties that enhance their performance, including high stability, low power consumption for operation, and cost-effectiveness in their construction. These properties make carbon-based sensors ideal for a wide range of applications, especially in miniaturized devices created through MEMS or NEMS technologies. To capitalize on these properties, a group of chemoresistance-type carbon-based gas sensors was developed and tested against various volatile organic compounds (VOCs) and volatile inorganic compounds (VICs). The results demonstrated exceptional sensitivity to both VOCs and VICs, along with the sensor’s long-term stability. However, this broad sensitivity also led to poor selectivity towards specific gases. This project aims at addressing the selectivity issue by modifying the carbon-based sensing materials and enhancing the sensor's specificity to individual gas. Multiple groups of sensors were manufactured and modified using proprietary techniques. To assess their performance, we conducted experiments on representative sensors from each group to detect a range of VOCs and VICs. The VOCs tested included acetone, dimethyl ether, ethanol, formaldehyde, methane, and propane. The VICs comprised carbon monoxide (CO), carbon dioxide (CO2), hydrogen (H2), nitric oxide (NO), and nitrogen dioxide (NO2). The concentrations of the sample gases were all set at 50 parts per million (ppm). Nitrogen (N2) was used as the carrier gas throughout the experiments. The results of the gas sensing experiments are as follows. In Group 1, the sensors exhibited selectivity toward CO2, acetone, NO, and NO2, with NO2 showing the highest response. Group 2 primarily responded to NO2. Group 3 displayed responses to nitrogen oxides, i.e., both NO and NO2, with NO2 slightly surpassing NO in sensitivity. Group 4 demonstrated the highest sensitivity among all the groups toward NO and NO2, with NO2 being more sensitive than NO. In conclusion, by incorporating several modifications using carbon nanotubes (CNTs), sensors can be designed to respond well to NOx gases with great selectivity and without interference from other gases. Because the response levels to NO and NO2 from each group are different, the individual concentration of NO and NO2 can be deduced.Keywords: gas sensors, carbon, CNT, MEMS/NEMS, VOC, VIC, high selectivity, modification of sensing materials
Procedia PDF Downloads 12721 Oncology and Phytomedicine in the Advancement of Cancer Therapy for Better Patient Care
Authors: Hailemeleak Regassa
Abstract:
Traditional medicines use medicinal plants as a source of ingredients, and many modern medications are indirectly derived from plants. Consumers in affluent nations are growing disenchanted with contemporary healthcare and looking for alternatives. Oxidative stress is the primary cause of multiple diseases, and exogenous antioxidant supplementation or strengthening the body's endogenous antioxidant defenses are potential ways to counteract the negative effects of oxidative damage. Plants can biosynthesize non-enzymatic antioxidants that can reduce ROS-induced oxidative damage. Aging often aids the propagation and development of carcinogenesis, and older animals and older people exhibit increased vulnerability to tumor promoters. Cancer is a major public health issue, with several anti-cancer medications in clinical use. Potential drugs such as flavopiridol, roscovitine, combretastatin A-4, betulinic acid, and silvestrol are in the clinical or preclinical stages of research. Methodology: Microbial Growth media, Dimethyl sulfoxide (DMSO), methanol, ethyl acetate, and n-hexane were obtained from Himedia Labs, Mumbai, India. plant were collected from the Herbal Garden of Shoolini University campus, Solan, India (Latitude - 30.8644° N and longitude - 77.1184° E). The identity was confirmed by Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan (H.P.), India, and documented in Voucher specimens - UHF- Herbarium no. 13784; vide book no. 3818 Receipt No. 086. The plant materials were washed with tap water, and 0.1% mercury chloride for 2 minutes, rinsed with distilled water, air dried, and kept in a hot air oven at 40ºc on blotting paper until all the water evaporated and became well dried for grinding. After drying, the plant materials were grounded using a mixer grinder into fine powder transferred into airtight containers with proper labeling, and stored at 4ºc for future use (Horablaga et al., 2023). The extraction process was done according to Altemimi et al., 2017. The 5g powder was mixed with 15 ml of the respective solvents (n-hexane, ethyl acetate, and methanol), and kept for 4-5 days on the platform shaker. The solvents used are based on their increasing polarity index. Then the extract was centrifuged at 10,000rpm for 5 minutes and filtered using No.1 Whatman filter paper.Keywords: cancer, phytomedicine, medicinal plants, oncology
Procedia PDF Downloads 7120 Functional Finishing of Organic Cotton Fabric Using Vetiver Root Extract
Authors: Sakeena Naikwadi, K. Jagaluraiah Sannapapamma
Abstract:
Vetiveria zizanioides is an aromatic grass and traditionally been used in aromatherapy and ayurvedic medicine. Vetiver root is multi-functional biopolymer and has highly aromatic, antimicrobial, UV blocking, antioxidant properties suitable for textile finishing. The vetiver root (Gulabi) powder of different concentration (2, 4, 6,8 percent) were extracted by aqueous and solvent methods subjected to bioassay for antimicrobial efficiency and GCMS spectral analysis. The organic cotton fabric was finished with vetiver root extract (8 percent) by exhaust and pad dry cure methods. The finished fabric was assessed for functional properties viz., UV protective factor, antimicrobial efficiency and aroma intensity. The results revealed that Ethanol extraction showed a greater zone of inhibition compared to aqueous extract in root powder. Among the concentrations, 8 percent root extract in ethanol showed a greater zone of inhibition against gram-positive organism S. aureus and gram-negative organism E. coli. The major compounds present in vetiver root extracts were diethyl pathalate with greater percentage (87.73 %) followed by 7- Isopropyl dimethyl carboxylic acid (4.05 %), 2-butanone 4-trimethyle cyclohexen (1.21 %), phenanthrene carboxylic acid (1.03 %), naphthalene pentanoic acid (0.99 %), 1-phenanthrene carboxylic acid and 1 cyclohexenone 2-methyl oxobuty (0.89 %). The sample finished by pad dry cure method exhibited better UV protection even after 10th wash as compared to exhaust method. Vetiver extract treated samples exhibited maximum zone of inhibition against S. aureus than the E. coli organism. The vetiver root extract treated organic cotton fabric through pad dry cure method possessed good antimicrobial activity against S. aureus and E. coli even after 20th washes compared to vetiver root extract treated by exhaust method. The olfactory analysis was carried out by 30 panels of members and opined that vetiver root extract treated fabric has very good and pleasant aroma with better tactile properties that provide cooling, soothing effect and enhances the mood of the wearer. Vetiver root extract finished organic cotton fabric possessed aroma, antimicrobial and UV properties which are aptly suitable for medical and healthcare textiles viz., wound dressing, bandage gauze, surgical cloths, baby diapers and sanitary napkins. It can be used as after finishing agent for variegated garments and made-ups and can be replaced with commercial after finishing agents.Keywords: antimicrobial, olfactory analysis, UV protection factor, vetiver root extract
Procedia PDF Downloads 23519 The Antimicrobial Activity of Marjoram Essential Oil Against Some Antibiotic Resistant Microbes Isolated from Hospitals
Authors: R. A. Abdel Rahman, A. E. Abdel Wahab, E. A. Goghneimy, H. F. Mohamed, E. M. Salama
Abstract:
Infectious diseases are a major cause of death worldwide. The treatment of infections continues to be problematic in modern time because of the severe side effects of some drugs and the growing resistance to antimicrobial agents. Hence, the search for newer, safer and more potent antimicrobials is a pressing need. Herbal medicines have received much attention as a source of new antibacterial drugs since they are considered time-tested and comparatively safe both for human use and the environment. In the present study, the antimicrobial activity of marjoram (Origanum majorana L.) essential oil on some gram positive and gram negative reference bacteria, as well as some hospital resistant microbes, was tested. Marjoram oil was extracted and the oil chemical constituents were identified using GC/MS analysis. Staphylococcus aureas ATCC 6923, Pseudomonus auregonosa ATCC 9027, Bacillus subtilis ATCC 6633, E. coli ATCC 8736 and two hospital resistant microbes isolates 16 and 21 were used. The two isolates were identified by biochemical tests and 16s rRNA as proteus spp. and Enterococcus facielus. The effect of different concentrations of essential oils on bacterial growth was tested using agar disk diffusion assay method to determine the minimum inhibitory concentrations and using micro dilution method to determine the minimum bactericidal concentrations. Marjoram oil was found to be effective against both reference and hospital resistance strains. Hospital strains were more resistant to marjoram oil than reference strains. P. auregonosa growth was completely inhibited at a low concentration of oil (4µl/ml). The other reference strains showed sensitivity to marjoram oil at concentrations ranged from 5 to 7µl/ml. The two hospital strains showed sensitivity at media containing 10 and 15µl/ml oil. The major components of oil were terpineol, cis-beta (23.5%), 1,6 – octadien –3-ol,3,7-dimethyl, 2 aminobenzoate (10.9%), alpha terpieol (8.6%) and linalool (6.3%). Scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis were used to determine the difference between treated and untreated hospital strains. SEM results showed that treated cells were smaller in size than control cells. TEM data showed that cell lysis has occurred to treated cells. Treated cells have ruptured cell wall and appeared empty of cytoplasm compared to control cells which shown to be intact with normal volume of cytoplasm. The results indicated that marjoram oil has a positive antimicrobial effect on hospital resistance microbes. Natural crude extracts can be perfect resources for new antimicrobial drugs.Keywords: antimicrobial activity, essential oil, hospital resistance microbes, marjoram
Procedia PDF Downloads 44618 Poly(propylene fumarate) Copolymers with Phosphonic Acid-based Monomers Designed as Bone Tissue Engineering Scaffolds
Authors: Görkem Cemali̇, Avram Aruh, Gamze Torun Köse, Erde Can ŞAfak
Abstract:
In order to heal bone disorders, the conventional methods which involve the use of autologous and allogenous bone grafts or permanent implants have certain disadvantages such as limited supply, disease transmission, or adverse immune response. A biodegradable material that acts as structural support to the damaged bone area and serves as a scaffold that enhances bone regeneration and guides bone formation is one desirable solution. Poly(propylene fumarate) (PPF) which is an unsaturated polyester that can be copolymerized with appropriate vinyl monomers to give biodegradable network structures, is a promising candidate polymer to prepare bone tissue engineering scaffolds. In this study, hydroxyl-terminated PPF was synthesized and thermally cured with vinyl phosphonic acid (VPA) and diethyl vinyl phosphonate (VPES) in the presence of radical initiator benzoyl peroxide (BP), with changing co-monomer weight ratios (10-40wt%). In addition, the synthesized PPF was cured with VPES comonomer at body temperature (37oC) in the presence of BP initiator, N, N-Dimethyl para-toluidine catalyst and varying amounts of Beta-tricalcium phosphate (0-20 wt% ß-TCP) as filler via radical polymerization to prepare composite materials that can be used in injectable forms. Thermomechanical properties, compressive properties, hydrophilicity and biodegradability of the PPF/VPA and PPF/VPES copolymers were determined and analyzed with respect to the copolymer composition. Biocompatibility of the resulting polymers and their composites was determined by the MTS assay and osteoblast activity was explored with von kossa, alkaline phosphatase and osteocalcin activity analysis and the effects of VPA and VPES comonomer composition on these properties were investigated. Thermally cured PPF/VPA and PPF/VPES copolymers with different compositions exhibited compressive modulus and strength values in the wide range of 10–836 MPa and 14–119 MPa, respectively. MTS assay studies showed that the majority of the tested compositions were biocompatible and the overall results indicated that PPF/VPA and PPF/VPES network polymers show significant potential for applications as bone tissue engineering scaffolds where varying PPF and co-monomer ratio provides adjustable and controllable properties of the end product. The body temperature cured PPF/VPES/ß-TCP composites exhibited significantly lower compressive modulus and strength values than the thermal cured PPF/VPES copolymers and were therefore found to be useful as scaffolds for cartilage tissue engineering applications.Keywords: biodegradable, bone tissue, copolymer, poly(propylene fumarate), scaffold
Procedia PDF Downloads 16617 Isosorbide Bis-Methyl Carbonate: Opportunities for an Industrial Model Based on Biomass
Authors: Olga Gomez De Miranda, Jose R. Ochoa-Gomez, Stefaan De Wildeman, Luciano Monsegue, Soraya Prieto, Leire Lorenzo, Cristina Dineiro
Abstract:
The chemical industry is facing a new revolution. As long as processes based on the exploitation of fossil resources emerged with force in the XIX century, Society currently demands a new radical change that will lead to the complete and irreversible implementation of a circular sustainable economic model. The implementation of biorefineries will be essential for this. There, renewable raw materials as sugars and other biomass resources are exploited for the development of new materials that will partially replace their petroleum-derived homologs in a safer, and environmentally more benign approach. Isosorbide, (1,4:3,6-dianhydro-d-glucidol) is a primary bio-based derivative obtained from the plant (poly) saccharides and a very interesting example of a useful chemical produced in biorefineries. It can, in turn, be converted to other secondary monomers as isosorbide bis-methyl carbonate (IBMC), whose main field of application can be as a key biodegradable intermediary substitute of bisphenol-A in the manufacture of polycarbonates, or as an alternative to the toxic isocyanates in the synthesis of new polyurethanes (non-isocyanate polyurethanes) both with a huge application market. New products will present advantageous mechanical or optical properties, as well as improved behavior in non-toxicity and biodegradability aspects in comparison to their petro-derived alternatives. A robust production process of IBMC, a biomass-derived chemical, is here presented. It can be used with different raw material qualities using dimethyl carbonate (DMC) as both co-reactant and solvent. It consists of the transesterification of isosorbide with DMC under soft operational conditions, using different basic catalysts, always active with the isosorbide characteristics and purity. Appropriate isolation processes have been also developed to obtain crude IBMC yields higher than 90%, with oligomers production lower than 10%, independently of the quality of the isosorbide considered. All of them are suitable to be used in polycondensation reactions for polymers obtaining. If higher qualities of IBMC are needed, a purification treatment based on nanofiltration membranes has been also developed. The IBMC reaction-isolation conditions established in the laboratory have been successfully modeled using appropriate software programs and moved to a pilot-scale (production of 100 kg of IBMC). It has been demonstrated that a highly efficient IBMC production process able to be up-scaled under suitable market conditions has been obtained. Operational conditions involved the production of IBMC involve soft temperature and energy needs, no additional solvents, and high operational efficiency. All of them are according to green manufacturing rules.Keywords: biomass, catalyst, isosorbide bis-methyl carbonate, polycarbonate, polyurethane, transesterification
Procedia PDF Downloads 13216 Assessing Acute Toxicity and Endocrine Disruption Potential of Selected Packages Internal Layers Extracts
Authors: N. Szczepanska, B. Kudlak, G. Yotova, S. Tsakovski, J. Namiesnik
Abstract:
In the scientific literature related to the widely understood issue of packaging materials designed to have contact with food (food contact materials), there is much information on raw materials used for their production, as well as their physiochemical properties, types, and parameters. However, not much attention is given to the issues concerning migration of toxic substances from packaging and its actual influence on the health of the final consumer, even though health protection and food safety are the priority tasks. The goal of this study was to estimate the impact of particular foodstuff packaging type, food production, and storage conditions on the degree of leaching of potentially toxic compounds and endocrine disruptors to foodstuffs using the acute toxicity test Microtox and XenoScreen YES YAS assay. The selected foodstuff packaging materials were metal cans used for fish storage and tetrapak. Five stimulants respectful to specific kinds of food were chosen in order to assess global migration: distilled water for aqueous foods with a pH above 4.5; acetic acid at 3% in distilled water for acidic aqueous food with pH below 4.5; ethanol at 5% for any food that may contain alcohol; dimethyl sulfoxide (DMSO) and artificial saliva were used in regard to the possibility of using it as an simulation medium. For each packaging three independent variables (temperature and contact time) factorial design simulant was performed. Xenobiotics migration from epoxy resins was studied at three different temperatures (25°C, 65°C, and 121°C) and extraction time of 12h, 48h and 2 weeks. Such experimental design leads to 9 experiments for each food simulant as conditions for each experiment are obtained by combination of temperature and contact time levels. Each experiment was run in triplicate for acute toxicity and in duplicate for estrogen disruption potential determination. Multi-factor analysis of variation (MANOVA) was used to evaluate the effects of the three main factors solvent, temperature (temperature regime for cup), contact time and their interactions on the respected dependent variable (acute toxicity or estrogen disruption potential). From all stimulants studied the most toxic were can and tetrapak lining acetic acid extracts that are indication for significant migration of toxic compounds. This migration increased with increase of contact time and temperature and justified the hypothesis that food products with low pH values cause significant damage internal resin filling. Can lining extracts of all simulation medias excluding distilled water and artificial saliva proved to contain androgen agonists even at 25°C and extraction time of 12h. For tetrapak extracts significant endocrine potential for acetic acid, DMSO and saliva were detected.Keywords: food packaging, extraction, migration, toxicity, biotest
Procedia PDF Downloads 18115 Phytochemical Composition, Antimicrobial Potential and Antioxidant Activity of Peganum harmala L. Extracts
Authors: Narayana Bhat, Majda Khalil, Hamad Al-Mansour, Anitha Manuvel, Vimla Yeddu
Abstract:
The aim of this study was to assess the antimicrobial and antioxidant potential and phytochemical composition of Peganum harmala L. For this purpose, powdered shoot, root, and seed samples were extracted in an accelerated solvent extractor (ASE) with methanol, ethanol, acetone, and dichloromethane. The residues were reconstituted in the above solvents and 10% dimethyl sulphoxide (DMSO). The antimicrobial activity of these extracts was tested against two bacterial (Escherichia coli E49 and Staphylococcus aureus CCUG 43507) and two fungi Candida albicans ATCC 24433, Candida glabrata ATCC 15545) strains using the well-diffusion method. The minimum inhibitory concentration (MIC) and growth pattern of these test strains were determined using microbroth dilution method, and the phospholipase assay was performed to detect tissue damage in the host cells. Results revealed that ethanolic, methanolic, and dichloromethane extracts of seeds exhibited significant antimicrobial activities against all tested strains, whereas the acetone extract of seeds was effective against E. coli only. Similarly, ethanolic and methanolic extracts of roots were effective against two bacterial strains only. One sixth of percent (0.6%) yield of methanol extract of seeds was found to be the MIC for Escherichia coli E49, Staphylococcus aureus CCUG 43507, and Candida glabrata ATCC 15545. Overall, seed extracts had greater antimicrobial activities compared to roots and shoot extracts. The original plant extract and MIC dilutions prevented phospholipase secretion in Staphylococcus aureus CCUG 43507 and Candida albicans ATCC 24433. The 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assay revealed radical scavenging activities ranging from 71.80 ± 4.36% to 87.75 ± 1.70%. The main compound present in the root extract was 1-methyl-7-methoxy-beta-carboline (RT: 44.171), followed by norlapachol (3.62%), benzopyrazine (2.20%), palmitic acid (2.12%) and vasicinone (1.96%). In contrast, phenol,4-ethenyl-2-methoxy was in abundance in the methonolic extract of the shoot, whereas 1-methyl-7-methoxy-beta-carboline (79.59%), linoleic acid (9.05%), delta-tocopherol (5.02%), 9,12-octadecadienoic acid, methyl ester (2.65%), benzene, 1,1-1,2 ethanediyl bis 3,4dimethyl (1.15%), anthraquinone (0.58%), hexadecanoic acid, methyl ester (0.54%), palmitic acid (0.35%) and methyl stearate (0.18%) were present in the methanol extract of seeds. Major findings of this study, along with their relevance to developing effective, safe drugs, will be discussed in this presentation.Keywords: medicinal plants, secondary metabolites, phytochemical screening, bioprospecting, radical scavenging
Procedia PDF Downloads 17714 Monitoring of Indoor Air Quality in Museums
Authors: Olympia Nisiforou
Abstract:
The cultural heritage of each country represents a unique and irreplaceable witness of the past. Nevertheless, on many occasions, such heritage is extremely vulnerable to natural disasters and reckless behaviors. Even if such exhibits are now located in Museums, they still receive insufficient protection due to improper environmental conditions. These external changes can negatively affect the conditions of the exhibits and contribute to inefficient maintenance in time. Hence, it is imperative to develop an innovative, low-cost system, to monitor indoor air quality systematically, since conventional methods are quite expensive and time-consuming. The present study gives an insight into the indoor air quality of the National Byzantine Museum of Cyprus. In particular, systematic measurements of particulate matter, bio-aerosols, the concentration of targeted chemical pollutants (including Volatile organic compounds (VOCs), temperature, relative humidity, and lighting conditions as well as microbial counts have been performed using conventional techniques. Measurements showed that most of the monitored physiochemical parameters did not vary significantly within the various sampling locations. Seasonal fluctuations of ammonia were observed, showing higher concentrations in the summer and lower in winter. It was found that the outdoor environment does not significantly affect indoor air quality in terms of VOC and Nitrogen oxides (NOX). A cutting-edge portable Gas Chromatography-Mass Spectrometry (GC-MS) system (TORION T-9) was used to identify and measure the concentrations of specific Volatile and Semi-volatile Organic Compounds. A large number of different VOCs and SVOCs found such as Benzene, Toluene, Xylene, Ethanol, Hexadecane, and Acetic acid, as well as some more complex compounds such as 3-ethyl-2,4-dimethyl-Isopropyl alcohol, 4,4'-biphenylene-bis-(3-aminobenzoate) and trifluoro-2,2-dimethylpropyl ester. Apart from the permanent indoor/outdoor sources (i.e., wooden frames, painted exhibits, carpets, ventilation system and outdoor air) of the above organic compounds, the concentration of some of them within the areas of the museum were found to increase when large groups of visitors were simultaneously present at a specific place within the museum. The high presence of Particulate Matter (PM), fungi and bacteria were found in the museum’s areas where carpets were present but low colonial counts were found in rooms where artworks are exhibited. Measurements mentioned above were used to validate an innovative low-cost air-quality monitoring system that has been developed within the present work. The developed system is able to monitor the average concentrations (on a bidaily basis) of several pollutants and presents several innovative features, including the prompt alerting in case of increased average concentrations of monitored pollutants, i.e., exceeding the limit values defined by the user.Keywords: exibitions, indoor air quality , VOCs, pollution
Procedia PDF Downloads 12313 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters
Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng
Abstract:
Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum
Procedia PDF Downloads 16212 MTT Assay-Guided Isolation of a Cytotoxic Lead from Hedyotis umbellata and Its Mechanism of Action against Non-Small Cell Lung Cancer A549 Cells
Authors: Kirti Hira, A. Sajeli Begum, S. Mahibalan, Poorna Chandra Rao
Abstract:
Introduction: Cancer is one of the leading causes of death worldwide. Although existing therapy effectively kills cancer cells, they do affect normal growing cells leading to many undesirable side effects. Hence there is need to develop effective as well as safe drug molecules to combat cancer, which is possible through phyto-research. The currently available plant-derived blockbuster drugs are the example for this. In view of this, an investigation was done to identify cytotoxic lead molecules from Hedyotis umbellata (Family Rubiaceae), a widely distributed weed in India. Materials and Methods: The methanolic extract of the whole plant of H. umbellata (MHU), prepared through Soxhlet extraction method was further fractionated with diethyl ether and n-butanol, successively. MHU, ether fraction (EMHU) and butanol fraction (BMHU) were lyophilized and were tested for the cytotoxic effect using 3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay against non-small cell lung cancer (NSCLC) A549 cell lines. The potentially active EMHU was subjected to chromatographic purification using normal-phase silica columns, in order to isolate the responsible bioactive compounds. The isolated pure compounds were tested for their cytotoxic effect by MTT assay against A549 cells. Compound-3, which was found to be most active, was characterized using IR, 1H- and 13C-NMR and MS analysis. The study was further extended to decipher the mechanism of action of cytotoxicity of compound-3 against A549 cells through various in vitro cellular models. Cell cycle analysis was done using flow cytometry following PI (Propidium Iodide) staining. Protein analysis was done using Western blot technique. Results: Among MHU, EMHU, and BMHU, the non-polar fraction EMHU demonstrated a significant dose-dependent cytotoxic effect with IC50 of 67.7μg/ml. Chromatography of EMHU yielded seven compounds. MTT assay of isolated compounds explored compound-3 as potentially active one, which inhibited the growth of A549 cells with IC50value of 14.2μM. Further, compound-3 was identified as cedrelopsin, a coumarin derivative having molecular weight of 260. Results of in vitro mechanistic studies explained that cedrelopsin induced cell cycle arrest at G2/M phase and down-regulated the expression of G2/M regulatory proteins such as cyclin B1, cdc2, and cdc25C, dose dependently. This is the first report that explores the cytotoxic mechanism of cedrelopsin. Conclusion: Thus a potential small lead molecule, cedrelopsin isolated from H. umbellata, showing antiproliferative effect mediated by G2/M arrest in A549 cells was discovered. The effect of cedrelopsin against other cancer cell lines followed by in vivo studies can be performed in future to develop a new drug candidate.Keywords: A549, cedrelopsin, G2/M phase, Hedyotis umbellata
Procedia PDF Downloads 17511 Brazilian Brown Propolis as a Natural Source against Leishmania amazonensis
Authors: Victor Pena Ribeiro, Caroline Arruda, Jennyfer Andrea Aldana Mejia, Jairo Kenupp Bastos
Abstract:
Leishmaniasis is a serious health problem around the world. The treatment of infected individuals with pentavalent antimonial drugs is the main therapeutic strategy. However, they present high toxicity and persistence side effects. Therefore, the discovery of new and safe natural-derived therapeutic agents against leishmaniasis is important. Propolis is a resin of viscous consistency produced by Apis mellifera bees from parts of plants. The main types of Brazilian propolis are green, red, yellow and brown. Thus, the aim of this work was to investigate the chemical composition and leishmanicidal properties of a brown propolis (BP). For this purpose, the hydroalcoholic crude extract of BP was obtained and was fractionated by liquid-liquid chromatography. The chemical profile of the extract and its fractions were obtained by HPLC-UV-DAD. The fractions were submitted to preparative HPLC chromatography for isolation of the major compounds of each fraction. They were analyzed by NMR for structural determination. The volatile compounds were obtained by hydrodistillation and identified by GC/MS. Promastigote forms of Leishmania amazonensis were cultivated in M199 medium and then 2×106 parasites.mL-1 were incubated in 96-well microtiter plates with the samples. The BP was dissolved in dimethyl sulfoxide (DMSO) and diluted into the medium, to give final concentrations of 1.56, 3.12, 6.25, 12.5, 25 and 50 µg.mL⁻¹. The plates were incubated at 25ºC for 24 h, and the lysis percentage was determined by using a Neubauer chamber. The bioassays were performed in triplicate, using a medium with 0.5% DMSO as a negative control and amphotericin B as a positive control. The leishimnicidal effect against promastigote forms was also evaluated at the same concentrations. Cytotoxicity experiments also were performed in 96-well plates against normal (CHO-k1) and tumor cell lines (AGP01 and HeLa) using XTT colorimetric method. Phenolic compounds, flavonoids, and terpenoids were identified in brown propolis. The major compounds were identified as follows: p-coumaric acid (24.6%) for a methanolic fraction, Artepelin-C (29.2%) for ethyl acetate fraction and the compounds of hexane fraction are in the process of structural elucidation. The major volatile compounds identified were β-caryophyllene (10.9%), germacrene D (9.7%), nerolidol (10.8%) and spathulenol (8.5%). The propolis did not show cytotoxicity against normal cell lines (CHO) with IC₅₀ > 100 μg.mL⁻¹, whereas the IC₅₀ < 10 μg.mL⁻¹ showed a potential against the AGP01 cell line, propolis did not demonstrate cytotoxicity against HeLa cell lines IC₅₀ > 100 μg.mL⁻¹. In the determination of the leishmanicidal activity, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations of the crude extract caused the lysis of 76% and 45% of promastigote forms of L. amazonensis, respectively. To the amastigote form, the highest (50 μg.mL⁻¹) and lowest (1.56 μg.mL⁻¹) concentrations caused the mortality of 89% and 75% of L. amazonensis, respectively. The IC₅₀ was 2.8 μg.mL⁻¹ to amastigote form and 3.9 μg.mL⁻¹ to promastigote form, showing a promising activity against Leishmania amazonensis.Keywords: amastigote, brown propolis, cytotoxicity, promastigote
Procedia PDF Downloads 15110 Organic Light Emitting Devices Based on Low Symmetry Coordination Structured Lanthanide Complexes
Authors: Zubair Ahmed, Andrea Barbieri
Abstract:
The need to reduce energy consumption has prompted a considerable research effort for developing alternative energy-efficient lighting systems to replace conventional light sources (i.e., incandescent and fluorescent lamps). Organic light emitting device (OLED) technology offers the distinctive possibility to fabricate large area flat devices by vacuum or solution processing. Lanthanide β-diketonates complexes, due to unique photophysical properties of Ln(III) ions, have been explored as emitting layers in OLED displays and in solid-state lighting (SSL) in order to achieve high efficiency and color purity. For such applications, the excellent photoluminescence quantum yield (PLQY) and stability are the two key points that can be achieved simply by selecting the proper organic ligands around the Ln ion in a coordination sphere. Regarding the strategies to enhance the PLQY, the most common is the suppression of the radiationless deactivation pathways due to the presence of high-frequency oscillators (e.g., OH, –CH groups) around the Ln centre. Recently, a different approach to maximize the PLQY of Ln(β-DKs) has been proposed (named 'Escalate Coordination Anisotropy', ECA). It is based on the assumption that coordinating the Ln ion with different ligands will break the centrosymmetry of the molecule leading to less forbidden transitions (loosening the constraints of the Laporte rule). The OLEDs based on such complexes are available, but with low efficiency and stability. In order to get efficient devices, there is a need to develop some new Ln complexes with enhanced PLQYs and stabilities. For this purpose, the Ln complexes, both visible and (NIR) emitting, of variant coordination structures based on the various fluorinated/non-fluorinated β-diketones and O/N-donor neutral ligands were synthesized using a one step in situ method. In this method, the β-diketones, base, LnCl₃.nH₂O and neutral ligands were mixed in a 3:3:1:1 M ratio in ethanol that gave air and moisture stable complexes. Further, they were characterized by means of elemental analysis, NMR spectroscopy and single crystal X-ray diffraction. Thereafter, their photophysical properties were studied to select the best complexes for the fabrication of stable and efficient OLEDs. Finally, the OLEDs were fabricated and investigated using these complexes as emitting layers along with other organic layers like NPB,N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (hole-transporting layer), BCP, 2,9-Dimethyl-4,7-diphenyl-1,10-phenanthroline (hole-blocker) and Alq3 (electron-transporting layer). The layers were sequentially deposited under high vacuum environment by thermal evaporation onto ITO glass substrates. Moreover, co-deposition techniques were used to improve charge transport in the devices and to avoid quenching phenomena. The devices show strong electroluminescence at 612, 998, 1064 and 1534 nm corresponding to ⁵D₀ →⁷F₂(Eu), ²F₅/₂ → ²F₇/₂ (Yb), ⁴F₃/₂→ ⁴I₉/₂ (Nd) and ⁴I1₃/₂→ ⁴I1₅/₂ (Er). All the devices fabricated show good efficiency as well as stability.Keywords: electroluminescence, lanthanides, paramagnetic NMR, photoluminescence
Procedia PDF Downloads 1219 Carbon Nanotubes Functionalization via Ullmann-Type Reactions Yielding C-C, C-O and C-N Bonds
Authors: Anna Kolanowska, Anna Kuziel, Sławomir Boncel
Abstract:
Carbon nanotubes (CNTs) represent a combination of lightness and nanoscopic size with high tensile strength, excellent thermal and electrical conductivity. By now, CNTs have been used as a support in heterogeneous catalysis (CuCl anchored to pre-functionalized CNTs) in the Ullmann-type coupling with aryl halides toward formation of C-N and C-O bonds. The results indicated that the stability of the catalyst was much improved and the elaborated catalytic system was efficient and recyclable. However, CNTs have not been considered as the substrate itself in the Ullmann-type reactions. But if successful, this functionalization would open new areas of CNT chemistry leading to enhanced in-solvent/matrix nanotube individualization. The copper-catalyzed Ullmann-type reaction is an attractive method for the formation of carbon-heteroatom and carbon-carbon bonds in organic synthesis. This condensation reaction is usually conducted at temperature as high as 200 oC, often in the presence of stoichiometric amounts of copper reagent and with activated aryl halides. However, a small amount of organic additive (e.g. diamines, amino acids, diols, 1,10-phenanthroline) can be applied in order to increase the solubility and stability of copper catalyst, and at the same time to allow performing the reaction under mild conditions. The copper (pre-)catalyst is prepared by in situ mixing of copper salt and the appropriate chelator. Our research is focused on the application of Ullmann-type reaction for the covalent functionalization of CNTs. Firstly, CNTs were chlorinated by using iodine trichloride (ICl3) in carbon tetrachloride (CCl4). This method involves formation of several chemical species (ICl, Cl2 and I2Cl6), but the most reactive is the dimer. The fact (that the dimer is the main individual in CCl4) is the reason for high reactivity and possibly high functionalization levels of CNTs. This method, indeed, yielded a notable amount of chlorine onto the MWCNT surface. The next step was the reaction of CNT-Cl with three substrates: aniline, iodobenzene and phenol for the formation C-N, C-C and C-O bonds, respectively, in the presence of 1,10-phenanthroline and cesium carbonate (Cs2CO3) as a base. As the CNT substrates, two multi-wall CNT (MWCNT) types were used: commercially available Nanocyl NC7000™ (9.6 nm diameter, 1.5 µm length, 90% purity) and thicker MWCNTs (in-house) synthesized in our laboratory using catalytic chemical vapour deposition (c-CVD). In-house CNTs had diameter ranging between 60-70 nm and length up to 300 µm. Since classical Ullmann reaction was found as suffering from poor yields, we have investigated the effect of various solvents (toluene, acetonitrile, dimethyl sulfoxide and N,N-dimethylformamide) on the coupling of substrates. Owing to the fact that the aryl halides show the reactivity order of I>Br>Cl>F, we have also investigated the effect of iodine presence on CNT surface on reaction yield. In this case, in first step we have used iodine monochloride instead of iodine trichloride. Finally, we have used the optimized reaction conditions with p-bromophenol and 1,2,4-trihydroxybenzene for the control of CNT dispersion.Keywords: carbon nanotubes, coupling reaction, functionalization, Ullmann reaction
Procedia PDF Downloads 1688 Influence Study of the Molar Ratio between Solvent and Initiator on the Reaction Rate of Polyether Polyols Synthesis
Authors: María José Carrero, Ana M. Borreguero, Juan F. Rodríguez, María M. Velencoso, Ángel Serrano, María Jesús Ramos
Abstract:
Flame-retardants are incorporated in different materials in order to reduce the risk of fire, either by providing increased resistance to ignition, or by acting to slow down combustion and thereby delay the spread of flames. In this work, polyether polyols with fire retardant properties were synthesized due to their wide application in the polyurethanes formulation. The combustion of polyurethanes is primarily dependent on the thermal properties of the polymer, the presence of impurities and formulation residue in the polymer as well as the supply of oxygen. There are many types of flame retardants, most of them are phosphorous compounds of different nature and functionality. The addition of these compounds is the most common method for the incorporation of flame retardant properties. The employment of glycerol phosphate sodium salt as initiator for the polyol synthesis allows obtaining polyols with phosphate groups in their structure. However, some of the critical points of the use of glycerol phosphate salt are: the lower reactivity of the salt and the necessity of a solvent (dimethyl sulfoxide, DMSO). Thus, the main aim in the present work was to determine the amount of the solvent needed to get a good solubility of the initiator salt. Although the anionic polymerization mechanism of polyether formation is well known, it seems convenient to clarify the role that DMSO plays at the starting point of the polymerization process. Regarding the fact that the catalyst deprotonizes the hydroxyl groups of the initiator and as a result of this, two water molecules and glycerol phosphate alkoxide are formed. This alkoxide, together with DMSO, has to form a homogeneous mixture where the initiator (solid) and the propylene oxide (PO) are soluble enough to mutually interact. The addition rate of PO increased when the solvent/initiator ratios studied were increased, observing that it also made the initiation step shorter. Furthermore, the molecular weight of the polyol decreased when higher solvent/initiator ratios were used, what revealed that more amount of salt was activated, initiating more chains of lower length but allowing to react more phosphate molecules and to increase the percentage of phosphorous in the final polyol. However, the final phosphorous content was lower than the theoretical one because only a percentage of salt was activated. On the other hand, glycerol phosphate disodium salt was still partially insoluble in DMSO studied proportions, thus, the recovery and reuse of this part of the salt for the synthesis of new flame retardant polyols was evaluated. In the recovered salt case, the rate of addition of PO remained the same than in the commercial salt but a shorter induction period was observed, this is because the recovered salt presents a higher amount of deprotonated hydroxyl groups. Besides, according to molecular weight, polydispersity index, FT-IR spectrum and thermal stability, there were no differences between both synthesized polyols. Thus, it is possible to use the recovered glycerol phosphate disodium salt in the same way that the commercial one.Keywords: DMSO, fire retardants, glycerol phosphate disodium salt, recovered initiator, solvent
Procedia PDF Downloads 2787 Ionophore-Based Materials for Selective Optical Sensing of Iron(III)
Authors: Natalia Lukasik, Ewa Wagner-Wysiecka
Abstract:
Development of selective, fast-responsive, and economical sensors for diverse ions detection and determination is one of the most extensively studied areas due to its importance in the field of clinical, environmental and industrial analysis. Among chemical sensors, vast popularity has gained ionophore-based optical sensors, where the generated analytical signal is a consequence of the molecular recognition of ion by the ionophore. Change of color occurring during host-guest interactions allows for quantitative analysis and for 'naked-eye' detection without the need of using sophisticated equipment. An example of application of such sensors is colorimetric detection of iron(III) cations. Iron as one of the most significant trace elements plays roles in many biochemical processes. For these reasons, the development of reliable, fast, and selective methods of iron ions determination is highly demanded. Taking all mentioned above into account a chromogenic amide derivative of 3,4-dihydroxybenzoic acid was synthesized, and its ability to iron(III) recognition was tested. To the best of authors knowledge (according to chemical abstracts) the obtained ligand has not been described in the literature so far. The catechol moiety was introduced to the ligand structure in order to mimic the action of naturally occurring siderophores-iron(III)-selective receptors. The ligand–ion interactions were studied using spectroscopic methods: UV-Vis spectrophotometry and infrared spectroscopy. The spectrophotometric measurements revealed that the amide exhibits affinity to iron(III) in dimethyl sulfoxide and fully aqueous solution, what is manifested by the change of color from yellow to green. Incorporation of the tested amide into a polymeric matrix (cellulose triacetate) ensured effective recognition of iron(III) at pH 3 with the detection limit 1.58×10⁻⁵ M. For the obtained sensor material parameters like linear response range, response time, selectivity, and possibility of regeneration were determined. In order to evaluate the effect of the size of the sensing material on iron(III) detection nanospheres (in the form of nanoemulsion) containing the tested amide were also prepared. According to DLS (dynamic light scattering) measurements, the size of the nanospheres is 308.02 ± 0.67 nm. Work parameters of the nanospheres were determined and compared with cellulose triacetate-based material. Additionally, for fast, qualitative experiments the test strips were prepared by adsorption of the amide solution on a glass microfiber material. Visual limit of detection of iron(III) at pH 3 by the test strips was estimated at the level 10⁻⁴ M. In conclusion, reported here amide derived from 3,4- dihydroxybenzoic acid proved to be an effective candidate for optical sensing of iron(III) in fully aqueous solutions. N. L. kindly acknowledges financial support from National Science Centre Poland the grant no. 2017/01/X/ST4/01680. Authors thank for financial support from Gdansk University of Technology grant no. 032406.Keywords: ion-selective optode, iron(III) recognition, nanospheres, optical sensor
Procedia PDF Downloads 1546 Biomimetic Dinitrosyl Iron Complexes: A Synthetic, Structural, and Spectroscopic Study
Authors: Lijuan Li
Abstract:
Nitric oxide (NO) has become a fascinating entity in biological chemistry over the past few years. It is a gaseous lipophilic radical molecule that plays important roles in several physiological and pathophysiological processes in mammals, including activating the immune response, serving as a neurotransmitter, regulating the cardiovascular system, and acting as an endothelium-derived relaxing factor. NO functions in eukaryotes both as a signal molecule at nanomolar concentrations and as a cytotoxic agent at micromolar concentrations. The latter arises from the ability of NO to react readily with a variety of cellular targets leading to thiol S-nitrosation, amino acid N-nitrosation, and nitrosative DNA damage. Nitric oxide can readily bind to metals to give metal-nitrosyl (M-NO) complexes. Some of these species are known to play roles in biological NO storage and transport. These complexes have different biological, photochemical, or spectroscopic properties due to distinctive structural features. These recent discoveries have spawned a great interest in the development of transition metal complexes containing NO, particularly its iron complexes that are central to the role of nitric oxide in the body. Spectroscopic evidence would appear to implicate species of “Fe(NO)2+” type in a variety of processes ranging from polymerization, carcinogenesis, to nitric oxide stores. Our research focuses on isolation and structural studies of non-heme iron nitrosyls that mimic biologically active compounds and can potentially be used for anticancer drug therapy. We have shown that reactions between Fe(NO)2(CO)2 and a series of imidazoles generated new non-heme iron nitrosyls of the form Fe(NO)2(L)2 [L = imidazole, 1-methylimidazole, 4-methylimidazole, benzimidazole, 5,6-dimethylbenzimidazole, and L-histidine] and a tetrameric cluster of [Fe(NO)2(L)]4 (L=Im, 4-MeIm, BzIm, and Me2BzIm), resulted from the interactions of Fe(NO)2 with a series of substituted imidazoles was prepared. Recently, a series of sulfur bridged iron di nitrosyl complexes with the general formula of [Fe(µ-RS)(NO)2]2 (R = n-Pr, t-Bu, 6-methyl-2-pyridyl, and 4,6-dimethyl-2-pyrimidyl), were synthesized by the reaction of Fe(NO)2(CO)2 with thiols or thiolates. Their structures and properties were studied by IR, UV-vis, 1H-NMR, EPR, electrochemistry, X-ray diffraction analysis and DFT calculations. IR spectra of these complexes display one weak and two strong NO stretching frequencies (νNO) in solution, but only two strong νNO in solid. DFT calculations suggest that two spatial isomers of these complexes bear 3 Kcal energy difference in solution. The paramagnetic complexes [Fe2(µ-RS)2(NO)4]-, have also been investigated by EPR spectroscopy. Interestingly, the EPR spectra of complexes exhibit an isotropic signal of g = 1.998 - 2.004 without hyperfine splitting. The observations are consistent with the results of calculations, which reveal that the unpaired electron dominantly delocalize over the two sulfur and two iron atoms. The difference of the g values between the reduced form of iron-sulfur clusters and the typical monomeric di nitrosyl iron complexes is explained, for the first time, by of the difference in unpaired electron distributions between the two types of complexes, which provides the theoretical basis for the use of g value as a spectroscopic tool to differentiate these biologically active complexes.Keywords: di nitrosyl iron complex, metal nitrosyl, non-heme iron, nitric oxide
Procedia PDF Downloads 3045 Magneto-Luminescent Biocompatible Complexes Based on Alloyed Quantum Dots and Superparamagnetic Iron Oxide Nanoparticles
Authors: A. Matiushkina, A. Bazhenova, I. Litvinov, E. Kornilova, A. Dubavik, A. Orlova
Abstract:
Magnetic-luminescent complexes based on superparamagnetic iron oxide nanoparticles (SPIONs) and semiconductor quantum dots (QDs) have been recognized as a new class of materials that have high potential in modern medicine. These materials can serve for theranostics of oncological diseases, and also as a target agent for drug delivery. They combine the qualities characteristic of magnetic nanoparticles, that is, magneto-controllability and the ability to local heating under the influence of an external magnetic field, as well as phosphors, due to luminescence of which, for example, early tumor imaging is possible. The complexity of creating complexes is the energy transfer between particles, which quenches the luminescence of QDs in complexes with SPIONs. In this regard, a relatively new type of alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs is used in our work. The presence of a sufficiently thick gradient semiconductor shell in alloyed QDs makes it possible to reduce the probability of energy transfer from QDs to SPIONs in complexes. At the same time, Forster Resonance Energy Transfer (FRET) is a perfect instrument to confirm the formation of complexes based on QDs and different-type energy acceptors. The formation of complexes in the aprotic bipolar solvent dimethyl sulfoxide is ensured by the coordination of the carboxyl group of the stabilizing QD molecule (L-cysteine) on the surface iron atoms of the SPIONs. An analysis of the photoluminescence (PL) spectra has shown that a sequential increase in the SPIONs concentration in the samples is accompanied by effective quenching of the luminescence of QDs. However, it has not confirmed the formation of complexes yet, because of a decrease in the PL intensity of QDs due to reabsorption of light by SPIONs. Therefore, a study of the PL kinetics of QDs at different SPIONs concentrations was made, which demonstrates that an increase in the SPIONs concentration is accompanied by a symbatic reduction in all characteristic PL decay times. It confirms the FRET from QDs to SPIONs, which indicates the QDs/SPIONs complex formation, rather than a spontaneous aggregation of QDs, which is usually accompanied by a sharp increase in the percentage of the QD fraction with the shortest characteristic PL decay time. The complexes have been studied by the magnetic circular dichroism (MCD) spectroscopy that allows one to estimate the response of magnetic material to the applied magnetic field and also can be useful to check SPIONs aggregation. An analysis of the MCD spectra has shown that the complexes have zero residual magnetization, which is an important factor for using in biomedical applications, and don't contain SPIONs aggregates. Cell penetration, biocompatibility, and stability of QDs/SPIONs complexes in cancer cells have been studied using HeLa cell line. We have found that the complexes penetrate in HeLa cell and don't demonstrate cytotoxic effect up to 25 nM concentration. Our results clearly demonstrate that alloyed (CdₓZn₁₋ₓSeᵧS₁₋ᵧ)-ZnS QDs can be successfully used in complexes with SPIONs reached new hybrid nanostructures, which combine bright luminescence for tumor imaging and magnetic properties for targeted drug delivery and magnetic hyperthermia of tumors. Acknowledgements: This work was supported by the Ministry of Science and Higher Education of Russian Federation, goszadanie no. 2019-1080 and was financially supported by Government of Russian Federation, Grant 08-08.Keywords: alloyed quantum dots, magnetic circular dichroism, magneto-luminescent complexes, superparamagnetic iron oxide nanoparticles
Procedia PDF Downloads 1184 Correlation Analysis of Reactivity in the Oxidation of Para and Meta-Substituted Benzyl Alcohols by Benzimidazolium Dichromate in Non-Aqueous Media: A Kinetic and Mechanistic Aspects
Authors: Seema Kothari, Dinesh Panday
Abstract:
An observed correlation of the reaction rates with the changes in the nature of substituent present on one of the reactants often reveals the nature of transition state. Selective oxidation of organic compounds under non-aqueous media is an important transformation in synthetic organic chemistry. Inorganic chromates and dichromates being drastic oxidant and are generally insoluble in most organic solvents, a number of different chromium (VI) derivatives have been synthesized. Benzimidazolium dichromate (BIDC) is one of the recently reported Cr(VI) reagents which is neither hygroscopic nor light sensitive being, therefore, much stable. Not many reports on the kinetics of the oxidations by BIDC are seemed to be available in the literature. In the present investigation, the kinetics and mechanism of benzyl alcohol (BA) and a number of para- and meta-substituted benzyl alcohols by benzimidazolium dichromate (BIDC), in dimethyl sulphoxide, is reported. The reactions were followed spectrophotometrically at 364 nm by monitoring the decrease in [BIDC] for up to 85-90% reaction, the temperature being constant. The observed oxidation product is the corresponding benzaldehyde. The reactions were of first order with respect to each the alcohol and BIDC. The reactions are catalyzed by proton, and the dependence is of the form: kobs = a + b[H+]. The reactions thus follow both, an acid-dependent and acid-independent paths. The oxidation of [1,1 2H2]benzyl alcohol exhibited the presence of a substantial kinetic isotope effect ( kH/kD = 6.20 at 298 K ). This indicated the cleavage of a α-C-H bond in the rate-determining step. An analysis of the temperature dependence of the deuterium isotope effect showed that the loss of hydrogen proceeds through a concerted cyclic process. The rate of oxidation of BA was determined in 19 organic solvents. An analysis of the solvent effect by Swain’s equation indicated that though both the anion and cation-solvating powers of the solvent contribute to the observed solvent effect, the role of cation-solvation is major. The rates of the para and meta compounds, at 298 K, failed to exhibit a significant correlation in terms of Hammett or Brown's substituent constants. The rates were then subjected to analyses in terms of dual substituent parameter (DSP) equations. The rates of oxidation of the para-substituted benzyl alcohols show an excellent correlation with Taft's σI and σRBA values. However, the rates for the meta-substituted benzyl alcohols show an excellent correlation with σI and σR0. The polar reaction constants are negative indicating an electron-deficient transition state. Hence the overall mechanism is proposed to involve the formation of a chromate ester in a fast pre-equilibrium and then a decomposition of the ester in a subsequent slow step via a cyclic concerted symmetrical transition state, involving hydride-ion transfer, leading to the product. The first order dependence on alcohol may be accounted in terms of the small value of the formation constant of the ester intermediate. An another reaction mechanism accounting the acid-catalysis involve the formation of a protonated BIDC prior to formation of an ester intermediate which subsequently decomposes in a slow step leading to the product.Keywords: benzimidazolium dichromate, benzyl alcohols, correlation analysis, kinetics, oxidation
Procedia PDF Downloads 3443 Predicting and Obtaining New Solvates of Curcumin, Demethoxycurcumin and Bisdemethoxycurcumin Based on the Ccdc Statistical Tools and Hansen Solubility Parameters
Authors: J. Ticona Chambi, E. A. De Almeida, C. A. Andrade Raymundo Gaiotto, A. M. Do Espírito Santo, L. Infantes, S. L. Cuffini
Abstract:
The solubility of active pharmaceutical ingredients (APIs) is challenging for the pharmaceutical industry. The new multicomponent crystalline forms as cocrystal and solvates present an opportunity to improve the solubility of APIs. Commonly, the procedure to obtain multicomponent crystalline forms of a drug starts by screening the drug molecule with the different coformers/solvents. However, it is necessary to develop methods to obtain multicomponent forms in an efficient way and with the least possible environmental impact. The Hansen Solubility Parameters (HSPs) is considered a tool to obtain theoretical knowledge of the solubility of the target compound in the chosen solvent. H-Bond Propensity (HBP), Molecular Complementarity (MC), Coordination Values (CV) are tools used for statistical prediction of cocrystals developed by the Cambridge Crystallographic Data Center (CCDC). The HSPs and the CCDC tools are based on inter- and intra-molecular interactions. The curcumin (Cur), target molecule, is commonly used as an anti‐inflammatory. The demethoxycurcumin (Demcur) and bisdemethoxycurcumin (Bisdcur) are natural analogues of Cur from turmeric. Those target molecules have differences in their solubilities. In this way, the work aimed to analyze and compare different tools for multicomponent forms prediction (solvates) of Cur, Demcur and Biscur. The HSP values were calculated for Cur, Demcur, and Biscur using the chemical group contribution methods and the statistical optimization from experimental data. The HSPmol software was used. From the HSPs of the target molecules and fifty solvents (listed in the HSP books), the relative energy difference (RED) was determined. The probability of the target molecules would be interacting with the solvent molecule was determined using the CCDC tools. A dataset of fifty molecules of different organic solvents was ranked for each prediction method and by a consensus ranking of different combinations: HSP, CV, HBP and MC values. Based on the prediction, 15 solvents were selected as Dimethyl Sulfoxide (DMSO), Tetrahydrofuran (THF), Acetonitrile (ACN), 1,4-Dioxane (DOX) and others. In a starting analysis, the slow evaporation technique from 50°C at room temperature and 4°C was used to obtain solvates. The single crystals were collected by using a Bruker D8 Venture diffractometer, detector Photon100. The data processing and crystal structure determination were performed using APEX3 and Olex2-1.5 software. According to the results, the HSPs (theoretical and optimized) and the Hansen solubility sphere for Cur, Demcur and Biscur were obtained. With respect to prediction analyses, a way to evaluate the predicting method was through the ranking and the consensus ranking position of solvates already reported in the literature. It was observed that the combination of HSP-CV obtained the best results when compared to the other methods. Furthermore, as a result of solvent selected, six new solvates, Cur-DOX, Cur-DMSO, Bicur-DOX, Bircur-THF, Demcur-DOX, Demcur-ACN and a new Biscur hydrate, were obtained. Crystal structures were determined for Cur-DOX, Biscur-DOX, Demcur-DOX and Bicur-Water. Moreover, the unit-cell parameter information for Cur-DMSO, Biscur-THF and Demcur-ACN were obtained. The preliminary results showed that the prediction method is showing a promising strategy to evaluate the possibility of forming multicomponent. It is currently working on obtaining multicomponent single crystals.Keywords: curcumin, HSPs, prediction, solvates, solubility
Procedia PDF Downloads 632 Coil-Over Shock Absorbers Compared to Inherent Material Damping
Authors: Carina Emminger, Umut D. Cakmak, Evrim Burkut, Rene Preuer, Ingrid Graz, Zoltan Major
Abstract:
Damping accompanies us daily in everyday life and is used to protect (e.g., in shoes) and make our life more comfortable (damping of unwanted motion) and calm (noise reduction). In general, damping is the absorption of energy which is either stored in the material (vibration isolation systems) or changed into heat (vibration absorbers). In case of the last, the damping mechanism can be split in active, passive, as well as semi-active (a combination of active and passive). Active damping is required to enable an almost perfect damping over the whole application range and is used, for instance, in sport cars. In contrast, passive damping is a response of the material due to external loading. Consequently, the material composition has a huge influence on the damping behavior. For elastomers, the material behavior is inherent viscoelastic, temperature, and frequency dependent. However, passive damping is not adjustable during application. Therefore, it is of importance to understand the fundamental viscoelastic behavior and the dissipation capability due to external loading. The objective of this work is to assess the limitation and applicability of viscoelastic material damping for applications in which currently coil-over shock absorbers are utilized. Coil-over shock absorbers are usually made of various mechanical parts and incorporate fluids within the damper. These shock absorbers are well-known and studied in the industry, and when needed, they can be easily adjusted during their product lifetime. In contrary, dampers made of – ideally – a single material are more resource efficient, have an easier serviceability, and are easier manufactured. However, they lack of adaptability and adjustability in service. Therefore, a case study with a remote-controlled sport car was conducted. The original shock absorbers were redesigned, and the spring-dashpot system was replaced by both an elastomer and a thermoplastic-elastomer, respectively. Here, five different formulations of elastomers were used, including a pure and an iron-particle filled thermoplastic poly(urethan) (TPU) and blends of two different poly(dimethyl siloxane) (PDMS). In addition, the TPUs were investigated as full and hollow dampers to investigate the difference between solid and structured material. To get comparative results each material formulation was comprehensively characterized, by monotonic uniaxial compression tests, dynamic thermomechanical analysis (DTMA), and rebound resilience. Moreover, the new material-based shock absorbers were compared with spring-dashpot shock absorbers. The shock absorbers were analyzed under monotonic and cyclic loading. In addition, an impact loading was applied on the remote-controlled car to measure the damping properties in operation. A servo-hydraulic high-speed linear actuator was utilized to apply the loads. The acceleration of the car and the displacement of specific measurement points were recorded while testing by a sensor and high-speed camera, respectively. The results prove that elastomers are suitable in damping applications, but they are temperature and frequency dependent. This is a limitation in applicability of viscous material damper. Feasible fields of application may be in the case of micromobility, like bicycles, e-scooters, and e-skateboards. Furthermore, the viscous material damping could be used to increase the inherent damping of a whole structure, e.g., in bicycle-frames.Keywords: damper structures, material damping, PDMS, TPU
Procedia PDF Downloads 1141 The in Vitro and in Vivo Antifungal Activity of Terminalia Mantaly on Aspergillus Species Using Drosophila melanogaster (UAS-Diptericin) As a Model
Authors: Ponchang Apollos Wuyep, Alice Njolke Mafe, Longchi Satkat Zacheaus, Dogun Ojochogu, Dabot Ayuba Yakubu
Abstract:
Fungi causes huge losses when infections occur both in plants and animals. Synthetic Antifungal drugs are mostly very expensive and highly cytotoxic when taken. This study was aimed at determining the in vitro and in vivo antifungal activities of the leaves and stem extracts of Terminalia mantaly (Umbrella tree)H. Perrier on Aspergillus species in a bid to identify potential sources of cheap starting materials for the synthesis of new drugs to address the growing antimicrobial resistance. T. mantaly leave and stem powdered plant was extracted by fractionation using the method of solvent partition co-efficient in their graded form in the order n-hexane, Ethyl acetate, methanol and distilled water and phytochemical screening of each fraction revealed the presence of alkaloids, saponins, Tannins, flavonoids, carbohydrates, steroids, anthraquinones, cardiac glycosides and terpenoids in varying degrees. The Agar well diffusion technique was used to screen for antifungal activity of the fractions on clinical isolates of Aspergillus species (Aspergillus flavus and Aspergillus fumigatus). Minimum inhibitory concentration (MIC50) of the most active extracts was determined by the broth dilution method. The fractions test indicated a high antifungal activity with zones of inhibition ranging from 6 to 26 mm and 8 to 30mm (leave fractions) and 10mm to 34mm and 14mm to36mm (stem fractions) on A. flavus and A. fumigatus respectively. All the fractions indicated antifungal activity in a dose response relationship at concentrations of 62.5mg/ml, 125mg/ml, 250mg/ml and 500mg/ml. Better antifungal efficacy was shown by the Ethyl acetate, Hexane and Methanol fractions in the in vitro as the most potent fraction with MIC ranging from 62.5 to 125mg/ml. There was no statistically significant difference (P>0.05) in the potency of the Eight fractions from leave and stem (Hexane, Ethyl acetate, methanol and distilled water, antifungal (fluconazole), which served as positive control and 10% DMSO(Dimethyl Sulfoxide)which served as negative control. In the in vivo investigations, the ingestion technique was used for the infectious studies Female Drosophilla melanogaster(UAS-Diptericin)normal flies(positive control),infected and not treated flies (negative control) and infected flies with A. fumigatus and placed on normal diet, diet containing fractions(MSM and HSM each at concentrations of 10mg/ml 20mg/ml, 30mg/ml, 40mg/ml, 50mg/ml, 60mg/ml, 70mg/ml, 80mg/ml, 90mg/ml and 100mg/ml), diet containing control drugs(fluconazole as positive control)and infected flies on normal diet(negative control), the flies were observed for fifteen(15) days. Then the total mortality of flies was recorded each day. The results of the study reveals that the flies were susceptible to infection with A. fumigatus and responded to treatment with more effectiveness at 50mg/ml, 60mg/ml and 70mg/ml for both the Methanol and Hexane stem fractions. Therefore, the Methanol and Hexane stem fractions of T. mantaly contain therapeutically useful compounds, justifying the traditional use of this plant for the treatment of fungal infections.Keywords: Terminalia mantaly, Aspergillus fumigatus, cytotoxic, Drosophila melanogaster, antifungal
Procedia PDF Downloads 86