Search results for: dense matrices
689 Characterization of Biocomposites Based on Mussel Shell Wastes
Authors: Suheyla Kocaman, Gulnare Ahmetli, Alaaddin Cerit, Alize Yucel, Merve Gozukucuk
Abstract:
Shell wastes represent a considerable quantity of byproducts in the shellfish aquaculture. From the viewpoint of ecofriendly and economical disposal, it is highly desirable to convert these residues into high value-added products for industrial applications. So far, the utilization of shell wastes was confined at relatively lower levels, e.g. wastewater decontaminant, soil conditioner, fertilizer constituent, feed additive and liming agent. Shell wastes consist of calcium carbonate and organic matrices, with the former accounting for 95-99% by weight. Being the richest source of biogenic CaCO3, shell wastes are suitable to prepare high purity CaCO3 powders, which have been extensively applied in various industrial products, such as paper, rubber, paints and pharmaceuticals. Furthermore, the shell waste could be further processed to be the filler of polymer composites. This paper presents a study on the potential use of mussel shell waste as biofiller to produce the composite materials with different epoxy matrices, such as bisphenol-A type, CTBN modified and polyurethane modified epoxy resins. Morphology and mechanical properties of shell particles reinforced epoxy composites were evaluated to assess the possibility of using it as a new material. The effects of shell particle content on the mechanical properties of the composites were investigated. It was shown that in all composites, the tensile strength and Young’s modulus values increase with the increase of mussel shell particles content from 10 wt% to 50 wt%, while the elongation at break decreased, compared to pure epoxy resin. The highest Young’s modulus values were determined for bisphenol-A type epoxy composites.Keywords: biocomposite, epoxy resin, mussel shell, mechanical properties
Procedia PDF Downloads 313688 Effect of Treadmill Exercise on Fluid Intelligence in Early Adults: Electroencephalogram Study
Authors: Ladda Leungratanamart, Seree Chadcham
Abstract:
Fluid intelligence declines along with age, but it can be developed. For this reason, increasing fluid intelligence in young adults can be possible. This study examined the effects of a two-month treadmill exercise program on fluid intelligence. The researcher designed a treadmill exercise program to promote cardiorespiratory fitness. Thirty-eight healthy voluntary students from the Boromarajonani College of Nursing, Chon Buri were assigned randomly to an exercise group (n=18) and a control group (n=20). The experiment consisted of three sessions: The baseline session consisted of measuring the VO2max, electroencephalogram and behavioral response during performed the Raven Progressive Matrices (RPM) test, a measure of fluid intelligence. For the exercise session, an experimental group exercises using treadmill training at 60 % to 80 % maximum heart rate for 30 mins, three times per week, whereas the control group did not exercise. For the following two sessions, each participant was measured the same as baseline testing. The data were analyzed using the t-test to examine whether there is significant difference between the means of the two groups. The results showed that the mean VO2 max in the experimental group were significantly more than the control group (p<.05), suggesting a two-month treadmill exercise program can improve fluid intelligence. When comparing the behavioral data, it was found that experimental group performed RPM test more accurately and faster than the control group. Neuroelectric data indicated a significant increase in percentages of alpha band ERD (%ERD) at P3 and Pz compared to the pre-exercise condition and the control group. These data suggest that a two-month treadmill exercise program can contribute to the development of cardiorespiratory fitness which influences an increase fluid intelligence. Exercise involved in cortical activation in difference brain areas.Keywords: treadmill exercise, fluid intelligence, raven progressive matrices test, alpha band
Procedia PDF Downloads 348687 On the Existence of Homotopic Mapping Between Knowledge Graphs and Graph Embeddings
Authors: Jude K. Safo
Abstract:
Knowledge Graphs KG) and their relation to Graph Embeddings (GE) represent a unique data structure in the landscape of machine learning (relative to image, text and acoustic data). Unlike the latter, GEs are the only data structure sufficient for representing hierarchically dense, semantic information needed for use-cases like supply chain data and protein folding where the search space exceeds the limits traditional search methods (e.g. page-rank, Dijkstra, etc.). While GEs are effective for compressing low rank tensor data, at scale, they begin to introduce a new problem of ’data retreival’ which we observe in Large Language Models. Notable attempts by transE, TransR and other prominent industry standards have shown a peak performance just north of 57% on WN18 and FB15K benchmarks, insufficient practical industry applications. They’re also limited, in scope, to next node/link predictions. Traditional linear methods like Tucker, CP, PARAFAC and CANDECOMP quickly hit memory limits on tensors exceeding 6.4 million nodes. This paper outlines a topological framework for linear mapping between concepts in KG space and GE space that preserve cardinality. Most importantly we introduce a traceable framework for composing dense linguistic strcutures. We demonstrate performance on WN18 benchmark this model hits. This model does not rely on Large Langauge Models (LLM) though the applications are certainy relevant here as well.Keywords: representation theory, large language models, graph embeddings, applied algebraic topology, applied knot theory, combinatorics
Procedia PDF Downloads 67686 Assessment of the Landscaped Biodiversity in the National Park of Tlemcen (Algeria) Using Per-Object Analysis of Landsat Imagery
Authors: Bencherif Kada
Abstract:
In the forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape, and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification, that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction, and area of an object, etc.), and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify of the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak, and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants, and bare soils. Texture attributes seem to provide no useful information, while spatial attributes of shape and compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, diversity, shrublands
Procedia PDF Downloads 119685 Development of Wound Dressing System Based on Hydrogel Matrix Incorporated with pH-Sensitive Nanocarrier-Drug Systems
Authors: Dagmara Malina, Katarzyna Bialik-Wąs, Klaudia Pluta
Abstract:
The growing significance of transdermal systems, in which skin is a route for systemic drug delivery, has generated a considerable amount of data which has resulted in a deeper understanding of the mechanisms of transport across the skin in the context of the controlled and prolonged release of active substances. One of such solutions may be the use of carrier systems based on intelligent polymers with different physicochemical properties. In these systems, active substances, e.g. drugs, can be conjugated (attached), immobilized, or encapsulated in a polymer matrix that is sensitive to specific environmental conditions (e.g. pH or temperature changes). Intelligent polymers can be divided according to their sensitivity to specific environmental stimuli such as temperature, pH, light, electric, magnetic, sound, or electromagnetic fields. Materials & methods—The first stage of the presented research concerned the synthesis of pH-sensitive polymeric carriers by a radical polymerization reaction. Then, the selected active substance (hydrocortisone) was introduced into polymeric carriers. In a further stage, bio-hybrid sodium alginate/poly(vinyl alcohol) – SA/PVA-based hydrogel matrices modified with various carrier-drug systems were prepared with the chemical cross-linking method. The conducted research included the assessment of physicochemical properties of obtained materials i.e. degree of hydrogel swelling and degradation studies as a function of pH in distilled water and phosphate-buffered saline (PBS) at 37°C in time. The gel fraction represents the insoluble gel fraction as a result of inter-molecule cross-linking formation was also measured. Additionally, the chemical structure of obtained hydrogels was confirmed using FT-IR spectroscopic technique. The dynamic light scattering (DLS) technique was used for the analysis of the average particle size of polymer-carriers and carrier-drug systems. The nanocarriers morphology was observed using SEM microscopy. Results & Discussion—The analysis of the encapsulated polymeric carriers showed that it was possible to obtain the time-stable empty pH-sensitive carrier with an average size 479 nm and the encapsulated system containing hydrocortisone with an average 543 nm, which was introduced into hydrogel structure. Bio-hybrid hydrogel matrices are stable materials, and the presence of an additional component: pH-sensitive carrier – hydrocortisone system, does not reduce the degree of cross-linking of the matrix nor its swelling ability. Moreover, the results of swelling tests indicate that systems containing higher concentrations of the drug have a slightly higher sorption capacity in each of the media used. All analyzed materials show stable and statically changing swelling values in simulated body fluids - there is no sudden fluid uptake and no rapid release from the material. The analysis of FT-IR spectra confirms the chemical structure of the obtained bio-hybrid hydrogel matrices. In the case of modifications with a pH-sensitive carrier, a much more intense band can be observed in the 3200-3500 cm⁻¹ range, which most likely originates from the strong hydrogen interactions that occur between individual components.Keywords: hydrogels, polymer nanocarriers, sodium alginate/poly(vinyl alcohol) matrices, wound dressings.
Procedia PDF Downloads 144684 Mapping Forest Biodiversity Using Remote Sensing and Field Data in the National Park of Tlemcen (Algeria)
Authors: Bencherif Kada
Abstract:
In forest management practice, landscape and Mediterranean forest are never posed as linked objects. But sustainable forestry requires the valorization of the forest landscape and this aim involves assessing the spatial distribution of biodiversity by mapping forest landscaped units and subunits and by monitoring the environmental trends. This contribution aims to highlight, through object-oriented classifications, the landscaped biodiversity of the National Park of Tlemcen (Algeria). The methodology used is based on ground data and on the basic processing units of object-oriented classification that are segments, so-called image-objects, representing a relatively homogenous units on the ground. The classification of Landsat Enhanced Thematic Mapper plus (ETM+) imagery is performed on image objects, and not on pixels. Advantages of object-oriented classification are to make full use of meaningful statistic and texture calculation, uncorrelated shape information (e.g., length-to-width ratio, direction and area of an object, etc.) and topological features (neighbor, super-object, etc.), and the close relation between real-world objects and image objects. The results show that per object classification using the k-nearest neighbor’s method is more efficient than per pixel one. It permits to simplify the content of the image while preserving spectrally and spatially homogeneous types of land covers such as Aleppo pine stands, cork oak groves, mixed groves of cork oak, holm oak and zen oak, mixed groves of holm oak and thuja, water plan, dense and open shrub-lands of oaks, vegetable crops or orchard, herbaceous plants and bare soils. Texture attributes seem to provide no useful information while spatial attributes of shape, compactness seem to be performant for all the dominant features, such as pure stands of Aleppo pine and/or cork oak and bare soils. Landscaped sub-units are individualized while conserving the spatial information. Continuously dominant dense stands over a large area were formed into a single class, such as dense, fragmented stands with clear stands. Low shrublands formations and high wooded shrublands are well individualized but with some confusion with enclaves for the former. Overall, a visual evaluation of the classification shows that the classification reflects the actual spatial state of the study area at the landscape level.Keywords: forest, oaks, remote sensing, biodiversity, shrublands
Procedia PDF Downloads 30683 Using Eigenvalues and Eigenvectors in Population Growth and Stability Obtaining
Authors: Abubakar Sadiq Mensah
Abstract:
The Knowledge of the population growth of a nation is paramount to national planning. The population of a place is studied and a model developed over a period of time, Matrices is used to form model for population growth. The eigenvalue ƛ of the matrix A and its corresponding eigenvector X is such that AX = ƛX is calculated. The stable age distribution of the population is obtained using the eigenvalue and the characteristic polynomial. Hence, estimation could be made using eigenvalues and eigenvectors.Keywords: eigenvalues, eigenvectors, population, growth/stability
Procedia PDF Downloads 520682 The Many Faces of Inspiration: A Study on Socio-Cultural Influences in Design
Authors: Nithya Venkataraman
Abstract:
The creative journey in design often starts with a spark of inspiration, the source of which can be from myriad stimuli- nature, poetry, personal experiences or even fleeting thoughts and images. While it is indeed an important source of creative exploration, interpretation of this inspiration may often times be influenced by demographic and psychographic variables of the creator - Age, gender, lifecycle stage, personal experiences and individual personality traits being some of these factors. Common sources of inspiration can thus be interpreted differently, translating to different elements of design, and using varied principles in their execution. Do such variables in the creator influence the nature of the creative output? If yes, what are the visible matrices in the output which can be differentiated? An observational study with two groups of Design students, studying in the same design institute, under the guidance of the same design mentor, was conducted to map this influence. Both the groups were unaware of each other but worked with a common source of inspiration as provided by the instructor. In order to maintain congruence, both the groups were provided with lyrical compositions from well-known ballads and poetry as the source of their inspiration. The outputs were abstract renditions using lines, colors and shapes; and these were analyzed under matrices for the elements and principles used to create the compositions. The study indicated that there was a demarcation in terms of the choice of lines, colors and shapes chosen to create the composition, between both groups. The groups also tended to use repetition, proportion and emphasis differently; giving rise to varied uses of the Design principles. The study threw interesting observations on how Design interpretation can vary for the same source of inspiration, based on demographic and psychographic variances. The implications can be traced not just to the process of creative design, but also to the deep social roots that bind creative thinking and Design ideation; which can provide an interesting commentary between different cohorts on what constitutes ‘Good Design’.Keywords: design compositions, inspiration, interpretation, psychographic factors, social factors
Procedia PDF Downloads 120681 All-Optical Gamma-Rays and Positrons Source by Ultra-Intense Laser Irradiating an Al Cone
Authors: T. P. Yu, J. J. Liu, X. L. Zhu, Y. Yin, W. Q. Wang, J. M. Ouyang, F. Q. Shao
Abstract:
A strong electromagnetic field with E>1015V/m can be supplied by an intense laser such as ELI and HiPER in the near future. Exposing in such a strong laser field, laser-matter interaction enters into the near quantum electrodynamics (QED) regime and highly non-linear physics may occur during the laser-matter interaction. Recently, the multi-photon Breit-Wheeler (BW) process attracts increasing attention because it is capable to produce abundant positrons and it enhances the positron generation efficiency significantly. Here, we propose an all-optical scheme for bright gamma rays and dense positrons generation by irradiating a 1022 W/cm2 laser pulse onto an Al cone filled with near-critical-density plasmas. Two-dimensional (2D) QED particle-in-cell (PIC) simulations show that, the radiation damping force becomes large enough to compensate for the Lorentz force in the cone, causing radiation-reaction trapping of a dense electron bunch in the laser field. The trapped electrons oscillate in the laser electric field and emits high-energy gamma photons in two ways: (1) nonlinear Compton scattering due to the oscillation of electrons in the laser fields, and (2) Compton backwardscattering resulting from the bunch colliding with the reflected laser by the cone tip. The multi-photon Breit-Wheeler process is thus initiated and abundant electron-positron pairs are generated with a positron density ~1027m-3. The scheme is finally demonstrated by full 3D PIC simulations, which indicate the positron flux is up to 109. This compact gamma ray and positron source may have promising applications in future.Keywords: BW process, electron-positron pairs, gamma rays emission, ultra-intense laser
Procedia PDF Downloads 258680 Grouping Pattern, Habitat Assessment and Overlap Analysis of Five Ungulates Species in Different Altitudinal Gradients of Western Himalaya, Uttarakhand, India
Authors: Kaleem Ahmed, Jamal A. Khan
Abstract:
Grouping patterns, habitat use, and overlap studies were conducted on five sympatric ungulate species sambar (Cervus unicolor), chital (Axis axis), muntjac (Muntiacus muntjac), goral (Nemorhaedus goral), and serow (Capricornis sumatraensis) in the Dabka watershed area within Indian West Himalayan range. Data on age, sex composition, group size, and various ecological and topographical factors governing the presence/absence of species within the study area were collected using a 250 km of a trail walk, 95 permanent circular plots of 10 m radius, and 3 vantage points with 58 scannings. The highest mean group size was recorded for chital (6.35 ± 0.50), followed by sambar (1.35 ± 0.10), goral (1.25 ±0.63), muntjac (1.12 ± 0.05), and serow (1.00 ± 0.00). Grouping pattern significantly varied among sympatric species (F = 85.10, df. = 6, P = 0.000). The highest mean pellet group density (/ha ± SE) was recorded for sambar (41.56 ± 3.51), followed by goral (23.31 ± 3.45), chital (19.21 ± 3.51), muntjac (7.43 ± 1.21), and serow (1.02 ± 0.10). Two-way variance analysis showed a significant difference in the density of the pellet group of all ungulate species across different study area habitats (F = 6.38, df = 4, P = 0.027). The availability-utilization (AU) analysis reveals that goral was mostly sighted in steep slopes, preferred > 2100 m altitudinal range with low shrub understory, avoided dense forest, and relatively more southern aspects were used. Chital had used a wide range of tree and shrub coverings with a preference towards moderate cover range (26-50%), preferred areas with low slope category ( < 25), avoided areas of high altitude > 900 m. Sambar avoided less tree cover (0-25), preferred slope category (26-500), altitudes between 1600-2100 m, and preferred dense forest with northern aspects. Muntjac used all elevation ranges in the study area with a preference towards the dense forest and northern aspects. Serow preferred high tree cover > 75%, avoided low shrub cover (0-25%), preferred high shrub cover 51-75%, utilized higher elevation > 2100 m, avoided low elevation range and northern aspects. All species occupied similar habitat types, forest or scrub, except for the goral, which preferred open spaces. Between muntjac and sambar, the highest overlap was found (65%), and there was no overlap between chital and serow, chital and goral. Aspect, slope, altitude, and vegetation characteristics were found to be important factors for the overlap of ungulate sympatric species. One major reason for their ecological separation at the fine-scale level is the differential use of altitude by ungulates in the present study. This is confirmed by the avoidance by chital of altitudes > 900 m and serow of < 2100 m.Keywords: altitude, grouping pattern, Himalayas, overlap, ungulates
Procedia PDF Downloads 140679 A Thermo-mechanical Finite Element Model to Predict Thermal Cycles and Residual Stresses in Directed Energy Deposition Technology
Authors: Edison A. Bonifaz
Abstract:
In this work, a numerical procedure is proposed to design dense multi-material structures using the Directed Energy Deposition (DED) process. A thermo-mechanical finite element model to predict thermal cycles and residual stresses is presented. A numerical layer build-up procedure coupled with a moving heat flux was constructed to minimize strains and residual stresses that result in the multi-layer deposition of an AISI 316 austenitic steel on an AISI 304 austenitic steel substrate. To simulate the DED process, the automated interface of the ABAQUS AM module was used to define element activation and heat input event data as a function of time and position. Of this manner, the construction of ABAQUS user-defined subroutines was not necessary. Thermal cycles and thermally induced stresses created during the multi-layer deposition metal AM pool crystallization were predicted and validated. Results were analyzed in three independent metal layers of three different experiments. The one-way heat and material deposition toolpath used in the analysis was created with a MatLab path script. An optimal combination of feedstock and heat input printing parameters suitable for fabricating multi-material dense structures in the directed energy deposition metal AM process was established. At constant power, it can be concluded that the lower the heat input, the lower the peak temperatures and residual stresses. It means that from a design point of view, the one-way heat and material deposition processing toolpath with the higher welding speed should be selected.Keywords: event series, thermal cycles, residual stresses, multi-pass welding, abaqus am modeler
Procedia PDF Downloads 66678 Objective Assessment of the Evolution of Microplastic Contamination in Sediments from a Vast Coastal Area
Authors: Vanessa Morgado, Ricardo Bettencourt da Silva, Carla Palma
Abstract:
The environmental pollution by microplastics is well recognized. Microplastics were already detected in various matrices from distinct environmental compartments worldwide, some from remote areas. Various methodologies and techniques have been used to determine microplastic in such matrices, for instance, sediment samples from the ocean bottom. In order to determine microplastics in a sediment matrix, the sample is typically sieved through a 5 mm mesh, digested to remove the organic matter, and density separated to isolate microplastics from the denser part of the sediment. The physical analysis of microplastic consists of visual analysis under a stereomicroscope to determine particle size, colour, and shape. The chemical analysis is performed by an infrared spectrometer coupled to a microscope (micro-FTIR), allowing to the identification of the chemical composition of microplastic, i.e., the type of polymer. Creating legislation and policies to control and manage (micro)plastic pollution is essential to protect the environment, namely the coastal areas. The regulation is defined from the known relevance and trends of the pollution type. This work discusses the assessment of contamination trends of a 700 km² oceanic area affected by contamination heterogeneity, sampling representativeness, and the uncertainty of the analysis of collected samples. The methodology developed consists of objectively identifying meaningful variations of microplastic contamination by the Monte Carlo simulation of all uncertainty sources. This work allowed us to unequivocally conclude that the contamination level of the studied area did not vary significantly between two consecutive years (2018 and 2019) and that PET microplastics are the major type of polymer. The comparison of contamination levels was performed for a 99% confidence level. The developed know-how is crucial for the objective and binding determination of microplastic contamination in relevant environmental compartments.Keywords: measurement uncertainty, micro-ATR-FTIR, microplastics, ocean contamination, sampling uncertainty
Procedia PDF Downloads 89677 Study on Electromagnetic Plasma Acceleration Using Rotating Magnetic Field Scheme
Authors: Takeru Furuawa, Kohei Takizawa, Daisuke Kuwahara, Shunjiro Shinohara
Abstract:
In the field of a space propulsion, an electric propulsion system has been developed because its fuel efficiency is much higher than a conventional chemical one. However, the practical electric propulsion systems, e.g., an ion engine, have a problem of short lifetime due to a damage of generation and acceleration electrodes of the plasma. A helicon plasma thruster is proposed as a long-lifetime electric thruster which has non-direct contact electrodes. In this system, both generation and acceleration methods of a dense plasma are executed by antennas from the outside of a discharge tube. Development of the helicon plasma thruster has been conducting under the Helicon Electrodeless Advanced Thruster (HEAT) project. Our helicon plasma thruster has two important processes. First, we generate a dense source plasma using a helicon wave with an excitation frequency between an ion and an electron cyclotron frequencies, fci and fce, respectively, applied from the outside of a discharge using a radio frequency (RF) antenna. The helicon plasma source can provide a high-density (~1019 m-3), a high-ionization ratio (up to several tens of percent), and a high particle generation efficiency. Second, in order to achieve high thrust and specific impulse, we accelerate the dense plasma by the axial Lorentz force fz using the product of the induced azimuthal current jθ and the static radial magnetic field Br, shown as fz = jθ × Br. The HEAT project has proposed several kinds of electrodeless acceleration schemes, and in our particular case, a Rotating Magnetic Field (RMF) method has been extensively studied. The RMF scheme was originally developed as a concept to maintain the Field Reversed Configuration (FRC) in a magnetically confined fusion research. Here, RMF coils are expected to generate jθ due to a nonlinear effect shown below. First, the rotating magnetic field Bω is generated by two pairs of RMF coils with AC currents, which have a phase difference of 90 degrees between the pairs. Due to the Faraday’s law, an axial electric field is induced. Second, an axial current is generated by the effects of an electron-ion and an electron-neutral collisions through the Ohm’s law. Third, the azimuthal electric field is generated by the nonlinear term, and the retarding torque generated by the collision effects again. Then, azimuthal current jθ is generated as jθ = - nₑ er ∙ 2π fRMF. Finally, the axial Lorentz force fz for plasma acceleration is generated. Here, jθ is proportional to nₑ and frequency of RMF coil current fRMF, when Bω is fully penetrated into the plasma. Our previous study has achieved 19 % increase of ion velocity using the 5 MHz and 50 A of the RMF coil power supply. In this presentation, we will show the improvement of the ion velocity using the lower frequency and higher current supplied by RMF power supply. In conclusion, helicon high-density plasma production and electromagnetic acceleration by the RMF scheme with a concept of electrodeless condition have been successfully executed.Keywords: electric propulsion, electrodeless thruster, helicon plasma, rotating magnetic field
Procedia PDF Downloads 260676 Prevalence of Down Syndrome: A Single-Center Study in Bandung, Indonesia
Authors: Bremmy Laksono, Riksa Parikrama, Nur A. Rosyada, Willyanti Soewondo, Dadang S. H. Effendi, Eriska Rianti, Arlette S. Setiawan, Ine Sasmita, Risti S. Primanti, Erna Kurnikasari, Yunia Sribudiani
Abstract:
Down syndrome (DS) is a chromosomal abnormality characterised by complete 21 chromosome trisomy (classical or non-disjunction), or partial 21 chromosome trisomy (mosaicism), or chromosome rearrangement involving chromosome 21 (translocation). This study was carried out to describe the frequency of DS patients in a research institution in the city of Bandung, Indonesia. This descriptive study also provides a picture of the residential location and surrounding area of their dwellings. This study involved people with DS in various age whose chromosome were evaluated by conventional karyotyping method and FISH. Data were collected from 60 patients with DS from a total 150 patients during the period of September 2015 to August 2016 who were referred to Cell Culture and Cytogenetics Laboratory, Faculty of Medicine Universitas Padjadjaran, Indonesia. Results showed that the most common type of DS was non-disjunction (93%), followed by mosaicism (5%), no patient with translocation DS (0%), and a very rare type of tetrasomy 21 (2%). There were 39 males (65%) and 21 females (35%) of DS patient. Most of them live in suburban area beyond Bandung city (55%) while the rest live inside urban area of Bandung city (45%). They live mostly in dense area of greater Bandung area (65%) and only a few live in mid-density area (25%) and the least live in sparse populated area (10%). Their houses are mostly located in residential estate area (55%), nearby industrial area (37%), and around agricultural area (8%). Based on the study, it could be concluded that non-disjunction DS is the most common type. DS patients referred to the laboratory mostly came from dense residential zone in suburban area outside Bandung city. The low number of DS patients referred to the laboratory for chromosome analysis was the highlight to improve health service for people with genetic disorder. This study offered several information regarding area of DS patients’ residence and the condition of neighbourhood in Bandung city where they live as well.Keywords: chromosome, descriptive, Down syndrome, prevalence
Procedia PDF Downloads 277675 On a Generalization of the Spectral Dichotomy Method of a Matrix With Respect to Parabolas
Authors: Mouhamadou Dosso
Abstract:
This paper presents methods of spectral dichotomy of a matrix which compute spectral projectors on the subspace associated with the eigenvalues external to the parabolas described by a general equation. These methods are modifications of the one proposed in [A. N. Malyshev and M. Sadkane, SIAM J. MATRIX ANAL. APPL. 18 (2), 265-278, 1997] which uses the spectral dichotomy method of a matrix with respect to the imaginary axis. Theoretical and algorithmic aspects of the methods are developed. Numerical results obtained by applying methods presented on matrices are reported.Keywords: spectral dichotomy method, spectral projector, eigensubspaces, eigenvalue
Procedia PDF Downloads 91674 Spatial Differentiation of Elderly Care Facilities in Mountainous Cities: A Case Study of Chongqing
Abstract:
In this study, a web crawler was used to collect POI sample data from 38 districts and counties of Chongqing in 2022, and ArcGIS was combined to coordinate and projection conversion and realize data visualization. Nuclear density analysis and spatial correlation analysis were used to explore the spatial distribution characteristics of elderly care facilities in Chongqing, and K mean cluster analysis was carried out with GeoDa to study the spatial concentration degree of elderly care resources in 38 districts and counties. Finally, the driving force of spatial differentiation of elderly care facilities in various districts and counties of Chongqing is studied by using the method of geographic detector. The results show that: (1) in terms of spatial distribution structure, the distribution of elderly care facilities in Chongqing is unbalanced, showing a distribution pattern of ‘large dispersion and small agglomeration’ and the asymmetric pattern of ‘west dense and east sparse, north dense and south sparse’ is prominent. (2) In terms of the spatial matching between elderly care resources and the elderly population, there is a weak coordination between the input of elderly care resources and the distribution of the elderly population at the county level in Chongqing. (3) The analysis of the results of the geographical detector shows that the single factor influence is mainly the number of elderly population, public financial revenue and district and county GDP. The high single factor influence is mainly caused by the elderly population, public financial income, and district and county GDP. The influence of each influence factor on the spatial distribution of elderly care facilities is not simply superimposed but has a nonlinear enhancement effect or double factor enhancement. It is necessary to strengthen the synergistic effect of two factors and promote the synergistic effect of multiple factors.Keywords: aging, elderly care facilities, spatial differentiation, geographical detector, driving force analysis, Mountain city
Procedia PDF Downloads 37673 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles
Procedia PDF Downloads 480672 Diagonal Vector Autoregressive Models and Their Properties
Authors: Usoro Anthony E., Udoh Emediong
Abstract:
Diagonal Vector Autoregressive Models are special classes of the general vector autoregressive models identified under certain conditions, where parameters are restricted to the diagonal elements in the coefficient matrices. Variance, autocovariance, and autocorrelation properties of the upper and lower diagonal VAR models are derived. The new set of VAR models is verified with empirical data and is found to perform favourably with the general VAR models. The advantage of the diagonal models over the existing models is that the new models are parsimonious, given the reduction in the interactive coefficients of the general VAR models.Keywords: VAR models, diagonal VAR models, variance, autocovariance, autocorrelations
Procedia PDF Downloads 114671 Durability of Light-Weight Concrete
Authors: Rudolf Hela, Michala Hubertova
Abstract:
The paper focuses on research of durability and lifetime of dense light-weight concrete with artificial light-weight aggregate Liapor exposed to various types of aggressive environment. Experimental part describes testing of designed concrete of various strength classes and volume weights exposed to cyclical freezing, frost and chemical de-icers and various types of chemically aggressive environment.Keywords: aggressive environment, durability, physical-mechanical properties, light-weight concrete
Procedia PDF Downloads 266670 Formulation of Hybrid Nanopowder-Molecular Ink for Fabricating Critical Material-Free Cu₂ZnSnS₄ Thin Film Solar Absorber
Authors: Anies Mutiari, Neha Bansal, Martin Artner, Veronika Mayer, Juergen Roth, Mathias Weil, Rachmat Adhi Wibowo
Abstract:
Cu₂ZnSnS₄ (CZTS) compound (mineral name kesterite) has attracted considerable interests for photovoltaic application owing to its optoelectrical properties. Moreover, its elemental abundance in Earth’s crust offers a comparative advantage for envisaged large-scale photovoltaic deployment without any material shortage issues. In this contribution, we present an innovative route to prepare CZTS solar absorber layer for photovoltaic application from low-cost and up-scalable process. CZTS layers were spin coated on the Molybdenum-coated glass from two inks composed of different solvents; dimethylsulfoxide (DMSO) and ultrapure water. Into each solvent; 0.57M CuCl₂, 0.39M ZnCl₂, 0.53M SnCl₂, and 1.85M Thiourea or Na₂S₂O₃, as well as pre-synthesized CZTS nanopowder, were added as sources of Cu, Zn, Sn and S in the ink. The crystallisation of ink into CZTS dense layers was carried out by firstly annealing the as-deposited CZTS layer in open air at 300°C for 1 minute, followed by sulfurisation at 560–620°C under atmospheric pressure for 120 minutes. Complementary electron microscopy, grazing incidence X-ray diffraction and Raman spectroscopy investigations suggest that both solvents can be used for preparing high quality and device relevant CZTS solar absorber layers. The sulphurisation crystallizes the as-deposited CZTS into highly polycrystalline CZTS layer with tetragonal structure demonstrated by the presence of tetrahedrally-shaped grains with the size of 1 µm. An advancement of the CZTS layer preparation was made by gradual substitution of volatile organic compound solvent of DMSO with ultrapure water. It is revealed that by using similar air annealing and sulphurisation process, dense and compact CZTS layers can also be fabricated from an ink with reduced volatile organic compound content.Keywords: kesterite, solar ink, spin coating, photovoltaics
Procedia PDF Downloads 169669 Properties of Hot-Pressed Alumina-Graphene Composites
Authors: P. Rutkowski, G. Górny, L. Stobierski, D. Zientara, W. Piekarczyk, K. Tran
Abstract:
The polycrystalline dense alumina shows thermal conductivity about 30 W/mK and very high electrical resistivity. These last two properties can be modified by introducing commercial relatively cheap graphene nanoparticles which, as two-dimensional flakes show very high thermal and electrical properties. The aim of this work is to show that it is possible to manufacture the anisotropic alumina-graphene material with directed multilayer graphene particles. Such materials can show the anisotropic properties mentioned before.Keywords: alumina, composite, hot-pressed, graphene, properties
Procedia PDF Downloads 272668 Poly(N-Vinylcaprolactam-Co-Itaconic Acid-Co-Ethylene Glycol Dimethacrylate)-Based Microgels Embedded in Chitosan Matrix for Controlled Release of Ketoprofen
Authors: Simone F. Medeiros, Jessica M. Fonseca, Gizelda M. Alves, Danilo M. Santos, Sérgio P. Campana-Filho, Amilton M. Santos
Abstract:
Stimuli responsive and biocompatible hydrogel nanoparticles have gained special attention as systems for potential applications in controlled release of drugs to improve their therapeutic efficacy while minimizing side effects. In this work, novel solid dispersions based on thermo- and pH-responsive poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate) hydrogel nanoparticles embedded in chitosan matrices were prepared via spray drying for controlled release of ketoprofen. Firstly, the hydrogel nanoparticles containing ketoprofen were prepared via precipitation polymerization and their stimuli-responsive behavior, thermal properties, chemical composition, encapsulation efficiency and morphology were characterized. Then, hydrogel nanoparticles with different particles size were embedded into chitosan matrices via spray-drying. Scanning electron microscopy (SEM) analyses were performed to investigate the particles size, dispersity and morphology. Finally, ketoprofen release profiles were studied as a function of pH and temperature. Chitosan/poly(NVCL-co-IA-co-EGDMA)-ketoprofen microparticles presented spherical shape, rough surface and pronounced agglomeration, indicating that hydrogels nanoparticles loaded with ketoprofen modified the surface of chitosan matrix. The maximum encapsulation efficiency of ketoprofen into hydrogel nanoparticles was 57.8% and the electrostatic interactions between amino groups from chitosan and carboxylic groups from hydrogel nanoparticles were able to control ketoprofen release. The hydrogel nanoparticles themselves were capable to retard the release of ketoprofen-loaded until 48h of in vitro release tests, while their incorporation into chitosan matrix achieved a maximum percentage of drug release of 45%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 10:7, and 69%, using a mass ratio of chitosan: poly(NVCL-co-IA-co-EGDMA equal to 5:2.Keywords: hydrogel nanoparticles, poly(N-vinylcaprolactam-co-itaconic acid-co-ethylene- glycol dimethacrylate), chitosan, ketoprofen, spray-drying
Procedia PDF Downloads 263667 The Classification Performance in Parametric and Nonparametric Discriminant Analysis for a Class- Unbalanced Data of Diabetes Risk Groups
Authors: Lily Ingsrisawang, Tasanee Nacharoen
Abstract:
Introduction: The problems of unbalanced data sets generally appear in real world applications. Due to unequal class distribution, many research papers found that the performance of existing classifier tends to be biased towards the majority class. The k -nearest neighbors’ nonparametric discriminant analysis is one method that was proposed for classifying unbalanced classes with good performance. Hence, the methods of discriminant analysis are of interest to us in investigating misclassification error rates for class-imbalanced data of three diabetes risk groups. Objective: The purpose of this study was to compare the classification performance between parametric discriminant analysis and nonparametric discriminant analysis in a three-class classification application of class-imbalanced data of diabetes risk groups. Methods: Data from a healthy project for 599 staffs in a government hospital in Bangkok were obtained for the classification problem. The staffs were diagnosed into one of three diabetes risk groups: non-risk (90%), risk (5%), and diabetic (5%). The original data along with the variables; diabetes risk group, age, gender, cholesterol, and BMI was analyzed and bootstrapped up to 50 and 100 samples, 599 observations per sample, for additional estimation of misclassification error rate. Each data set was explored for the departure of multivariate normality and the equality of covariance matrices of the three risk groups. Both the original data and the bootstrap samples show non-normality and unequal covariance matrices. The parametric linear discriminant function, quadratic discriminant function, and the nonparametric k-nearest neighbors’ discriminant function were performed over 50 and 100 bootstrap samples and applied to the original data. In finding the optimal classification rule, the choices of prior probabilities were set up for both equal proportions (0.33: 0.33: 0.33) and unequal proportions with three choices of (0.90:0.05:0.05), (0.80: 0.10: 0.10) or (0.70, 0.15, 0.15). Results: The results from 50 and 100 bootstrap samples indicated that the k-nearest neighbors approach when k = 3 or k = 4 and the prior probabilities of {non-risk:risk:diabetic} as {0.90:0.05:0.05} or {0.80:0.10:0.10} gave the smallest error rate of misclassification. Conclusion: The k-nearest neighbors approach would be suggested for classifying a three-class-imbalanced data of diabetes risk groups.Keywords: error rate, bootstrap, diabetes risk groups, k-nearest neighbors
Procedia PDF Downloads 433666 Toward Subtle Change Detection and Quantification in Magnetic Resonance Neuroimaging
Authors: Mohammad Esmaeilpour
Abstract:
One of the important open problems in the field of medical image processing is detection and quantification of small changes. In this poster, we try to investigate that, how the algebraic decomposition techniques can be used for semiautomatically detecting and quantifying subtle changes in Magnetic Resonance (MR) neuroimaging volumes. We mostly focus on the low-rank values of the matrices achieved from decomposing MR image pairs during a period of time. Besides, a skillful neuroradiologist will help the algorithm to distinguish between noises and small changes.Keywords: magnetic resonance neuroimaging, subtle change detection and quantification, algebraic decomposition, basis functions
Procedia PDF Downloads 472665 Characteristics of Nanosilica-Geopolymer Nanocomposites and Mixing Effect
Authors: H. Assaedi, F. U. A. Shaikh, I. M. Low
Abstract:
This paper presents the effects of mixing procedures on mechanical properties of flyash-based geopolymer matrices containing nanosilica (NS) at 0.5%, 1.0%, 2.0%, and 3.0% by wt.. Comparison is made with conventional mechanical dry-mixing of NS with flyash and wet-mixing of NS in alkaline solutions. Physical and mechanical properties are investigated using X-Ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Results show that generally the addition of NS particles enhanced the microstructure and improved flexural and compressive strengths of geopolymer nanocomposites. However, samples prepared using dry-mixing approach demonstrate better physical and mechanical properties than wet-mixing of NS.Keywords: geopolymer, nano-silica, dry mixing, wet mixing, physical properties, mechanical properties
Procedia PDF Downloads 243664 A Variant of a Double Structure-Preserving QR Algorithm for Symmetric and Hamiltonian Matrices
Authors: Ahmed Salam, Haithem Benkahla
Abstract:
Recently, an efficient backward-stable algorithm for computing eigenvalues and vectors of a symmetric and Hamiltonian matrix has been proposed. The method preserves the symmetric and Hamiltonian structures of the original matrix, during the whole process. In this paper, we revisit the method. We derive a way for implementing the reduction of the matrix to the appropriate condensed form. Then, we construct a novel version of the implicit QR-algorithm for computing the eigenvalues and vectors.Keywords: block implicit QR algorithm, preservation of a double structure, QR algorithm, symmetric and Hamiltonian structures
Procedia PDF Downloads 408663 Identification of Fluorinated Methylsiloxanes in Environmental Matrices Near a Manufacturing Plant in Eastern China
Authors: Liqin Zhi, Lin Xu, Wenxia Wei, Yaqi Cai
Abstract:
Recently, replacing some of the methyl groups in polydimethylsiloxanes with other functional groups has been extensively explored to obtain modified polymethylsiloxanes with special properties that enable new industrial applications. Fluorinated polysiloxanes, one type of these modified polysiloxanes, are based on a siloxane backbone with fluorinated groups attached to the side chains of polysiloxanes. As a commercially significant material, poly[methyl(trifluoropropyl)siloxane] (PMTFPS) has sufficient fluorine content to be useful as a fuel-and oil-resistant elastomer, which combines both the chemical and solvent resistance of fluorocarbons and the wide temperature range applicability of organosilicones. PMTFPS products can be used in many applications in which resistance to fuel, oils and hydrocarbon solvents is required, including use as lubricants in bearings, sealants, and elastomers for aerospace and automotive fuel systems. Fluorinated methylsiloxanes, a type of modified methylsiloxane, include tris(trifluoropropyl)trimethylcyclotrisiloxane (D3F) and tetrakis(trifluoropropyl)tetramethylcyclotetrasiloxane (D4F), both of which contain trifluoropropyl groups in the side chains of cyclic methylsiloxanes. D3F, as an important monomer in the manufacture of PMTFPS, is often present as an impurity in PMTFPS. In addition, the synthesis of PMTFPS from D3F could form other fluorinated methylsiloxanes with low molecular weights (such as D4F). The yearly demand and production volumes of D3F increased rapidly all over world. Fluorinated methylsiloxanes might be released into the environment via different pathways during the production and application of PMTFPS. However, there is a lack of data concerning the emission, environmental occurrence and potential environmental impacts of fluorinated methylsiloxanes. Here, we report fluorinated methylsiloxanes (D3F and D4F) in surface water and sediment samples collected near a fluorinated methylsiloxane manufacturing plant in Weihai, China. The concentrations of D3F and D4F in surface water ranged from 3.29 to 291 ng/L and from 7.02 to 168 ng/L, respectively. The concentrations of D3F and D4F in sediment ranged from 11.8 to 5478 ng/g and from 17.2 to 6277 ng/g, respectively. In simulation experiment, the half-lives of D3F and D4F at different pH values (5.2, 6.4, 7.2, 8.3 and 9.2) varied from 80.6 to 154 h and from 267 to 533 h respectively. CF₃(CH₂)₂MeSi(OH)₂ was identified as one of the main hydrolysis products of fluorinated methylsiloxanes. It was also detected in the river samples at concentrations of 72.1-182.9 ng/L. In addition, the slow rearrangement of D3F (spiked concentration = 500 ng/L) to D4F (concentration = 11.0-22.7 ng/L) was also found during 336h hydrolysis experiment.Keywords: fluorinated methylsiloxanes, environmental matrices, hydrolysis, sediment
Procedia PDF Downloads 114662 Wireless Backhauling for 5G Small Cell Networks
Authors: Abdullah A. Al Orainy
Abstract:
Small cell backhaul solutions need to be cost-effective, scalable, and easy to install. This paper presents an overview of small cell backhaul technologies. Wireless solutions including TV white space, satellite, sub-6 GHz radio wave, microwave and mmWave with their backhaul characteristics are discussed. Recent research on issues like beamforming, backhaul architecture, precoding and large antenna arrays, and energy efficiency for dense small cell backhaul with mmWave communications is reviewed. Recent trials of 5G technologies are summarized.Keywords: backhaul, small cells, wireless, 5G
Procedia PDF Downloads 510661 A Convolution Neural Network PM-10 Prediction System Based on a Dense Measurement Sensor Network in Poland
Authors: Piotr A. Kowalski, Kasper Sapala, Wiktor Warchalowski
Abstract:
PM10 is a suspended dust that primarily has a negative effect on the respiratory system. PM10 is responsible for attacks of coughing and wheezing, asthma or acute, violent bronchitis. Indirectly, PM10 also negatively affects the rest of the body, including increasing the risk of heart attack and stroke. Unfortunately, Poland is a country that cannot boast of good air quality, in particular, due to large PM concentration levels. Therefore, based on the dense network of Airly sensors, it was decided to deal with the problem of prediction of suspended particulate matter concentration. Due to the very complicated nature of this issue, the Machine Learning approach was used. For this purpose, Convolution Neural Network (CNN) neural networks have been adopted, these currently being the leading information processing methods in the field of computational intelligence. The aim of this research is to show the influence of particular CNN network parameters on the quality of the obtained forecast. The forecast itself is made on the basis of parameters measured by Airly sensors and is carried out for the subsequent day, hour after hour. The evaluation of learning process for the investigated models was mostly based upon the mean square error criterion; however, during the model validation, a number of other methods of quantitative evaluation were taken into account. The presented model of pollution prediction has been verified by way of real weather and air pollution data taken from the Airly sensor network. The dense and distributed network of Airly measurement devices enables access to current and archival data on air pollution, temperature, suspended particulate matter PM1.0, PM2.5, and PM10, CAQI levels, as well as atmospheric pressure and air humidity. In this investigation, PM2.5, and PM10, temperature and wind information, as well as external forecasts of temperature and wind for next 24h served as inputted data. Due to the specificity of the CNN type network, this data is transformed into tensors and then processed. This network consists of an input layer, an output layer, and many hidden layers. In the hidden layers, convolutional and pooling operations are performed. The output of this system is a vector containing 24 elements that contain prediction of PM10 concentration for the upcoming 24 hour period. Over 1000 models based on CNN methodology were tested during the study. During the research, several were selected out that give the best results, and then a comparison was made with the other models based on linear regression. The numerical tests carried out fully confirmed the positive properties of the presented method. These were carried out using real ‘big’ data. Models based on the CNN technique allow prediction of PM10 dust concentration with a much smaller mean square error than currently used methods based on linear regression. What's more, the use of neural networks increased Pearson's correlation coefficient (R²) by about 5 percent compared to the linear model. During the simulation, the R² coefficient was 0.92, 0.76, 0.75, 0.73, and 0.73 for 1st, 6th, 12th, 18th, and 24th hour of prediction respectively.Keywords: air pollution prediction (forecasting), machine learning, regression task, convolution neural networks
Procedia PDF Downloads 148660 Spectral Clustering for Manufacturing Cell Formation
Authors: Yessica Nataliani, Miin-Shen Yang
Abstract:
Cell formation (CF) is an important step in group technology. It is used in designing cellular manufacturing systems using similarities between parts in relation to machines so that it can identify part families and machine groups. There are many CF methods in the literature, but there is less spectral clustering used in CF. In this paper, we propose a spectral clustering algorithm for machine-part CF. Some experimental examples are used to illustrate its efficiency. Overall, the spectral clustering algorithm can be used in CF with a wide variety of machine/part matrices.Keywords: group technology, cell formation, spectral clustering, grouping efficiency
Procedia PDF Downloads 403