Search results for: automated monitoring system.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 20070

Search results for: automated monitoring system.

19950 Monitoring Cellular Networks Performance Using Crowd Sourced IoT System: My Operator Coverage (MOC)

Authors: Bassem Boshra Thabet, Mohammed Ibrahim Elsabagh, Mohammad Adly Talaat

Abstract:

The number of cellular mobile phone users has increased enormously worldwide over the last two decades. Consequently, the monitoring of the performance of the Mobile Network Operators (MNOs) in terms of network coverage and broadband signal strength has become vital for both of the MNOs and regulators. This monitoring helps telecommunications operators and regulators keeping the market playing fair and most beneficial for users. However, the adopted methodologies to facilitate this continuous monitoring process are still problematic regarding cost, effort, and reliability. This paper introduces My Operator Coverage (MOC) system that is using Internet of Things (IoT) concepts and tools to monitor the MNOs performance using a crowd-sourced real-time methodology. MOC produces robust and reliable geographical maps for the user-perceived quality of the MNOs performance. MOC is also meant to enrich the telecommunications regulators with concrete, and up-to-date information that allows for adequate mobile market management strategies as well as appropriate decision making.

Keywords: mobile performance monitoring, crowd-sourced applications, mobile broadband performance, cellular networks monitoring

Procedia PDF Downloads 399
19949 Human Tracking across Heterogeneous Systems Based on Mobile Agent Technologies

Authors: Tappei Yotsumoto, Atsushi Nomura, Kozo Tanigawa, Kenichi Takahashi, Takao Kawamura, Kazunori Sugahara

Abstract:

In a human tracking system, expanding a monitoring range of one system is complicating the management of devices and increasing its cost. Therefore, we propose a method to realize a wide-range human tracking by connecting small systems. In this paper, we examined an agent deploy method and information contents across the heterogeneous human tracking systems. By implementing the proposed method, we can construct a human tracking system across heterogeneous systems, and the system can track a target continuously between systems.

Keywords: human tracking system, mobile agent, monitoring, heterogeneous systems

Procedia PDF Downloads 536
19948 Automated Parking System

Authors: N. Arunraj, C. P. V. Paul, D. M. D. Jayawardena, W. N. D. Fernando

Abstract:

Traffic congestion with increased numbers of vehicles is already a serious issue for many countries. The absence of sufficient parking spaces adds to the issue. Motorists are forced to wait in long queues to park their vehicles. This adds to the inconvenience faced by a motorist, kept waiting for a slot allocation, manually done along with the parking payment calculation. In Sri Lanka, nowadays, parking systems use barcode technology to identify the vehicles at both the entrance and the exit points. Customer management is handled by the use of man power. A parking space is, generally permanently sub divided according to the vehicle type. Here, again, is an issue. Parking spaces are not utilized to the maximum. The current arrangement leaves room for unutilized parking spaces. Accordingly, there is a need to manage the parking space dynamically. As a vehicle enters the parking area, available space has to be assigned for the vehicle according to the vehicle type. The system, Automated Parking System (APS), provides an automated solution using RFID Technology to identify the vehicles. Simultaneously, an algorithm manages the space allocation dynamically. With this system, there is no permanent parking slot allocation for a vehicle type. A desktop application manages the customer. A Web application is used to manage the external users with their reservations. The system also has an android application to view the nearest parking area from the current location. APS is built using java and php. It uses LED panels to guide the user inside the parking area to find the allocated parking slot accurately. The system ensures efficient performance, saving precious time for a customer. Compared with the current parking systems, APS interacts with users and increases customer satisfaction as well.

Keywords: RFID, android, web based system, barcode, algorithm, LED panels

Procedia PDF Downloads 600
19947 The Nuclear Power Plant Environment Monitoring System through Mobile Units

Authors: P. Tanuska, A. Elias, P. Vazan, B. Zahradnikova

Abstract:

This article describes the information system for measuring and evaluating the dose rate in the environment of nuclear power plants Mochovce and Bohunice in Slovakia. The article presents the results achieved in the implementation of the EU project–Research of monitoring and evaluation of non-standard conditions in the area of nuclear power plants. The objectives included improving the system of acquisition, measuring and evaluating data with mobile and autonomous units applying new knowledge from research. The article provides basic and specific features of the system and compared to the previous version of the system, also new functions.

Keywords: information system, dose rate, mobile devices, nuclear power plant

Procedia PDF Downloads 377
19946 Design and Implementation of a Monitoring System Using Arduino and MATLAB

Authors: Jonas P. Reges, Jessyca A. Bessa, Auzuir R. Alexandria

Abstract:

The research came up with the need of monitoring them of temperature and relative moisture in past work that enveloped the study of a greenhouse located in the Research and Extension Unit(UEPE). This research brought several unknowns that were resolved from bibliographical research. Based on the studies performed were found some monitoring methods, including the serial communication between the arduino and matlab which showed a great option due to the low cost. The project was conducted in two stages, the first, an algorithm was developed to the Arduino and Matlab, and second, the circuits were assembled and performed the monitoring tests the following variables: moisture, temperature, and distance. During testing it was possible to momentarily observe the change in the levels of monitored variables. The project showed satisfactory results, such as: real-time verification of the change of state variables, the low cost of acquisition of the prototype, possibility of easy change of programming for the execution of monitoring of other variables. Therefore, the project showed the possibility of monitoring through software and hardware that have easy programming and can be used in several areas. However, it is observed also the possibility of improving the project from a remote monitoring via Bluetooth or web server and through the control of monitored variables.

Keywords: automation, monitoring, programming, arduino, matlab

Procedia PDF Downloads 517
19945 Development of a Real Time Axial Force Measurement System and IoT-Based Monitoring for Smart Bearing

Authors: Hassam Ahmed, Yuanzhi Liu, Yassine Selami, Wei Tao, Hui Zhao

Abstract:

The purpose of this research is to develop a real time axial force measurement system for a smart bearing through the use of strain-gauges, whereby the data acquisition is performed by an Arduino microcontroller due to its easy manipulation and low-cost. The measured signal is acquired and then discretized using a Wheatstone Bridge and an Analog-Digital Converter (ADC) respectively. For bearing monitoring, a real time monitoring system based on Internet of things (IoT) and Bluetooth were developed. Experimental tests were performed on a bearing within a force range up to 600 kN. The experimental results show that there is a proportional linear relationship between the applied force and the output voltage, and the error R squared is within 0.9878 based on the regression analysis.

Keywords: bearing, force measurement, IoT, strain gauge

Procedia PDF Downloads 144
19944 Optimization of Monitoring Networks for Air Quality Management in Urban Hotspots

Authors: Vethathirri Ramanujam Srinivasan, S. M. Shiva Nagendra

Abstract:

Air quality management in urban areas is a serious concern in both developed and developing countries. In this regard, more number of air quality monitoring stations are planned to mitigate air pollution in urban areas. In India, Central Pollution Control Board has set up 574 air quality monitoring stations across the country and proposed to set up another 500 stations in the next few years. The number of monitoring stations for each city has been decided based on population data. The setting up of ambient air quality monitoring stations and their operation and maintenance are highly expensive. Therefore, there is a need to optimize monitoring networks for air quality management. The present paper discusses the various methods such as Indian Standards (IS) method, US EPA method and European Union (EU) method to arrive at the minimum number of air quality monitoring stations. In addition, optimization of rain-gauge method and Inverse Distance Weighted (IDW) method using Geographical Information System (GIS) are also explored in the present work for the design of air quality network in Chennai city. In summary, additionally 18 stations are required for Chennai city, and the potential monitoring locations with their corresponding land use patterns are ranked and identified from the 1km x 1km sized grids.

Keywords: air quality monitoring network, inverse distance weighted method, population based method, spatial variation

Procedia PDF Downloads 191
19943 Solar Power Monitoring and Control System using Internet of Things

Authors: Oladapo Tolulope Ibitoye

Abstract:

It has become imperative to harmonize energy poverty alleviation and carbon footprint reduction. This is geared towards embracing independent power generation at local levels to reduce the popular ambiguity in the transmission of generated power. Also, it will contribute towards the total adoption of electric vehicles and direct current (DC) appliances that are currently flooding the global market. Solar power system is gaining momentum as it is now an affordable and less complex alternative to fossil fuel-based power generation. Although, there are many issues associated with solar power system, which resulted in deprivation of optimum working capacity. One of the key problems is inadequate monitoring of the energy pool from solar irradiance, which can then serve as a foundation for informed energy usage decisions and appropriate solar system control for effective energy pooling. The proposed technique utilized Internet of Things (IoT) in developing a system to automate solar irradiance pooling by controlling solar photovoltaic panels autonomously for optimal usage. The technique is potent with better solar irradiance exposure which results into 30% voltage pooling capacity than a system with static solar panels. The evaluation of the system show that the developed system possesses higher voltage pooling capacity than a system of static positioning of solar panel.

Keywords: solar system, internet of things, renewable energy, power monitoring

Procedia PDF Downloads 84
19942 Water Quality Calculation and Management System

Authors: H. M. B. N Jayasinghe

Abstract:

The water is found almost everywhere on Earth. Water resources contain a lot of pollution. Some diseases can be spread through the water to the living beings. So to be clean water it should undergo a number of treatments necessary to make it drinkable. So it is must to have purification technology for the wastewater. So the waste water treatment plants act a major role in these issues. When considering the procedures taken after the water treatment process was always based on manual calculations and recordings. Water purification plants may interact with lots of manual processes. It means the process taking much time consuming. So the final evaluation and chemical, biological treatment process get delayed. So to prevent those types of drawbacks there are some computerized programmable calculation and analytical techniques going to be introduced to the laboratory staff. To solve this problem automated system will be a solution in which guarantees the rational selection. A decision support system is a way to model data and make quality decisions based upon it. It is widely used in the world for the various kind of process automation. Decision support systems that just collect data and organize it effectively are usually called passive models where they do not suggest a specific decision but only reveal information. This web base system is based on global positioning data adding facility with map location. Most worth feature is SMS and E-mail alert service to inform the appropriate person on a critical issue. The technological influence to the system is HTML, MySQL, PHP, and some other web developing technologies. Current issues in the computerized water chemistry analysis are not much deep in progress. For an example the swimming pool water quality calculator. The validity of the system has been verified by test running and comparison with an existing plant data. Automated system will make the life easier in productively and qualitatively.

Keywords: automated system, wastewater, purification technology, map location

Procedia PDF Downloads 248
19941 To Design an Architectural Model for On-Shore Oil Monitoring Using Wireless Sensor Network System

Authors: Saurabh Shukla, G. N. Pandey

Abstract:

In recent times, oil exploration and monitoring in on-shore areas have gained much importance considering the fact that in India the oil import is 62 percent of the total imports. Thus, architectural model like wireless sensor network to monitor on-shore deep sea oil well is being developed to get better estimate of the oil prospects. The problem we are facing nowadays that we have very few restricted areas of oil left today. Countries like India don’t have much large areas and resources for oil and this problem with most of the countries that’s why it has become a major problem when we are talking about oil exploration in on-shore areas also the increase of oil prices has further ignited the problem. For this the use of wireless network system having relative simplicity, smallness in size and affordable cost of wireless sensor nodes permit heavy deployment in on-shore places for monitoring oil wells. Deployment of wireless sensor network in large areas will surely reduce the cost it will be very much cost effective. The objective of this system is to send real time information of oil monitoring to the regulatory and welfare authorities so that suitable action could be taken. This system architecture is composed of sensor network, processing/transmission unit and a server. This wireless sensor network system could remotely monitor the real time data of oil exploration and monitoring condition in the identified areas. For wireless sensor networks, the systems are wireless, have scarce power, are real-time, utilize sensors and actuators as interfaces, have dynamically changing sets of resources, aggregate behaviour is important and location is critical. In this system a communication is done between the server and remotely placed sensors. The server gives the real time oil exploration and monitoring conditions to the welfare authorities.

Keywords: sensor, wireless sensor network, oil, sensor, on-shore level

Procedia PDF Downloads 447
19940 Application of Transform Fourier for Dynamic Control of Structures with Global Positioning System

Authors: J. M. de Luis Ruiz, P. M. Sierra García, R. P. García, R. P. Álvarez, F. P. García, E. C. López

Abstract:

Given the evolution of viaducts, structural health monitoring requires more complex techniques to define their state. two alternatives can be distinguished: experimental and operational modal analysis. Although accelerometers or Global Positioning System (GPS) have been applied for the monitoring of structures under exploitation, the dynamic monitoring during the stage of construction is not common. This research analyzes whether GPS data can be applied to certain dynamic geometric controls of evolving structures. The fundamentals of this work were applied to the New Bridge of Cádiz (Spain), a worldwide milestone in bridge building. GPS data were recorded with an interval of 1 second during the erection of segments and turned to the frequency domain with Fourier transform. The vibration period and amplitude were contrasted with those provided by the finite element model, with differences of less than 10%, which is admissible. This process provides a vibration record of the structure with GPS, avoiding specific equipment.

Keywords: Fourier transform, global position system, operational modal analysis, structural health monitoring

Procedia PDF Downloads 246
19939 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes

Authors: Akram Khaleghei, Ghosheh Balagh, Viliam Makis

Abstract:

In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.

Keywords: partially observable system, hidden Markov model, competing risks, residual life prediction

Procedia PDF Downloads 415
19938 Conception of a Predictive Maintenance System for Forest Harvesters from Multiple Data Sources

Authors: Lazlo Fauth, Andreas Ligocki

Abstract:

For cost-effective use of harvesters, expensive repairs and unplanned downtimes must be reduced as far as possible. The predictive detection of failing systems and the calculation of intelligent service intervals, necessary to avoid these factors, require in-depth knowledge of the machines' behavior. Such know-how needs permanent monitoring of the machine state from different technical perspectives. In this paper, three approaches will be presented as they are currently pursued in the publicly funded project PreForst at Ostfalia University of Applied Sciences. These include the intelligent linking of workshop and service data, sensors on the harvester, and a special online hydraulic oil condition monitoring system. Furthermore the paper shows potentials as well as challenges for the use of these data in the conception of a predictive maintenance system.

Keywords: predictive maintenance, condition monitoring, forest harvesting, forest engineering, oil data, hydraulic data

Procedia PDF Downloads 147
19937 Monitoring a Membrane Structure Using Non-Destructive Testing

Authors: Gokhan Kilic, Pelin Celik

Abstract:

Structural health monitoring (SHM) is widely used in evaluating the state and health of membrane structures. In the past, in order to collect data and send it to a data collection unit on membrane structures, wire sensors had to be put as part of the SHM process. However, this study recommends using wireless sensors instead of traditional wire ones to construct an economical, useful, and easy-to-install membrane structure health monitoring system. Every wireless sensor uses a software translation program that is connected to the monitoring server. Operational neural networks (ONNs) have recently been developed to solve the shortcomings of convolutional neural networks (CNNs), such as the network's resemblance to the linear neuron model. The results of using ONNs for monitoring to evaluate the structural health of a membrane are presented in this work.

Keywords: wireless sensor network, non-destructive testing, operational neural networks, membrane structures, dynamic monitoring

Procedia PDF Downloads 93
19936 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia

Authors: Carol Anne Hargreaves

Abstract:

A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.

Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system

Procedia PDF Downloads 158
19935 Automated Vehicle Traffic Control Tower: A Solution to Support the Next Level Automation

Authors: Xiaoyun Zhao, Rami Darwish, Anna Pernestål

Abstract:

Automated vehicles (AVs) have the potential to enhance road capacity, improving road safety and traffic efficiency. Research and development on AVs have been going on for many years. However, when the complicated traffic rules and real situations interacted, AVs fail to make decisions on contradicting situations, and are not able to have control in all conditions due to highly dynamic driving scenarios. This limits AVs’ usage and restricts the full potential benefits that they can bring. Furthermore, regulations, infrastructure development, and public acceptance cannot keep up at the same pace as technology breakthroughs. Facing these challenges, this paper proposes automated vehicle traffic control tower (AVTCT) acting as a safe, efficient and integrated solution for AV control. It introduces a concept of AVTCT for control, management, decision-making, communication and interaction with various aspects in transportation. With the prototype demonstrations and simulations, AVTCT has the potential to overcome the control challenges with AVs and can facilitate AV reaching their full potential. Possible functionalities, benefits as well as challenges of AVTCT are discussed, which set the foundation for the conceptual model, simulation and real application of AVTCT.

Keywords: automated vehicle, connectivity and automation, intelligent transport system, traffic control, traffic safety

Procedia PDF Downloads 140
19934 A Framework for an Automated Decision Support System for Selecting Safety-Conscious Contractors

Authors: Rawan A. Abdelrazeq, Ahmed M. Khalafallah, Nabil A. Kartam

Abstract:

Selection of competent contractors for construction projects is usually accomplished through competitive bidding or negotiated contracting in which the contract bid price is the basic criterion for selection. The evaluation of contractor’s safety performance is still not a typical criterion in the selection process, despite the existence of various safety prequalification procedures. There is a critical need for practical and automated systems that enable owners and decision makers to evaluate contractor safety performance, among other important contractor selection criteria. These systems should ultimately favor safety-conscious contractors to be selected by the virtue of their past good safety records and current safety programs. This paper presents an exploratory sequential mixed-methods approach to develop a framework for an automated decision support system that evaluates contractor safety performance based on a multitude of indicators and metrics that have been identified through a comprehensive review of construction safety research, and a survey distributed to domain experts. The framework is developed in three phases: (1) determining the indicators that depict contractor current and past safety performance; (2) soliciting input from construction safety experts regarding the identified indicators, their metrics, and relative significance; and (3) designing a decision support system using relational database models to integrate the identified indicators and metrics into a system that assesses and rates the safety performance of contractors. The proposed automated system is expected to hold several advantages including: (1) reducing the likelihood of selecting contractors with poor safety records; (2) enhancing the odds of completing the project safely; and (3) encouraging contractors to exert more efforts to improve their safety performance and practices in order to increase their bid winning opportunities which can lead to significant safety improvements in the construction industry. This should prove useful to decision makers and researchers, alike, and should help improve the safety record of the construction industry.

Keywords: construction safety, contractor selection, decision support system, relational database

Procedia PDF Downloads 280
19933 A Survey on Ambient Intelligence in Agricultural Technology

Authors: C. Angel, S. Asha

Abstract:

Despite the advances made in various new technologies, application of these technologies for agriculture still remains a formidable task, as it involves integration of diverse domains for monitoring the different process involved in agricultural management. Advances in ambient intelligence technology represents one of the most powerful technology for increasing the yield of agricultural crops and to mitigate the impact of water scarcity, climatic change and methods for managing pests, weeds, and diseases. This paper proposes a GPS-assisted, machine to machine solutions that combine information collected by multiple sensors for the automated management of paddy crops. To maintain the economic viability of paddy cultivation, the various techniques used in agriculture are discussed and a novel system which uses ambient intelligence technique is proposed in this paper. The ambient intelligence based agricultural system gives a great scope.

Keywords: ambient intelligence, agricultural technology, smart agriculture, precise farming

Procedia PDF Downloads 607
19932 A Flute Tracking System for Monitoring the Wear of Cutting Tools in Milling Operations

Authors: Hatim Laalej, Salvador Sumohano-Verdeja, Thomas McLeay

Abstract:

Monitoring of tool wear in milling operations is essential for achieving the desired dimensional accuracy and surface finish of a machined workpiece. Although there are numerous statistical models and artificial intelligence techniques available for monitoring the wear of cutting tools, these techniques cannot pin point which cutting edge of the tool, or which insert in the case of indexable tooling, is worn or broken. Currently, the task of monitoring the wear on the tool cutting edges is carried out by the operator who performs a manual inspection, causing undesirable stoppages of machine tools and consequently resulting in costs incurred from lost productivity. The present study is concerned with the development of a flute tracking system to segment signals related to each physical flute of a cutter with three flutes used in an end milling operation. The purpose of the system is to monitor the cutting condition for individual flutes separately in order to determine their progressive wear rates and to predict imminent tool failure. The results of this study clearly show that signals associated with each flute can be effectively segmented using the proposed flute tracking system. Furthermore, the results illustrate that by segmenting the sensor signal by flutes it is possible to investigate the wear in each physical cutting edge of the cutting tool. These findings are significant in that they facilitate the online condition monitoring of a cutting tool for each specific flute without the need for operators/engineers to perform manual inspections of the tool.

Keywords: machining, milling operation, tool condition monitoring, tool wear prediction

Procedia PDF Downloads 303
19931 Leveraging Automated and Connected Vehicles with Deep Learning for Smart Transportation Network Optimization

Authors: Taha Benarbia

Abstract:

The advent of automated and connected vehicles has revolutionized the transportation industry, presenting new opportunities for enhancing the efficiency, safety, and sustainability of our transportation networks. This paper explores the integration of automated and connected vehicles into a smart transportation framework, leveraging the power of deep learning techniques to optimize the overall network performance. The first aspect addressed in this paper is the deployment of automated vehicles (AVs) within the transportation system. AVs offer numerous advantages, such as reduced congestion, improved fuel efficiency, and increased safety through advanced sensing and decisionmaking capabilities. The paper delves into the technical aspects of AVs, including their perception, planning, and control systems, highlighting the role of deep learning algorithms in enabling intelligent and reliable AV operations. Furthermore, the paper investigates the potential of connected vehicles (CVs) in creating a seamless communication network between vehicles, infrastructure, and traffic management systems. By harnessing real-time data exchange, CVs enable proactive traffic management, adaptive signal control, and effective route planning. Deep learning techniques play a pivotal role in extracting meaningful insights from the vast amount of data generated by CVs, empowering transportation authorities to make informed decisions for optimizing network performance. The integration of deep learning with automated and connected vehicles paves the way for advanced transportation network optimization. Deep learning algorithms can analyze complex transportation data, including traffic patterns, demand forecasting, and dynamic congestion scenarios, to optimize routing, reduce travel times, and enhance overall system efficiency. The paper presents case studies and simulations demonstrating the effectiveness of deep learning-based approaches in achieving significant improvements in network performance metrics

Keywords: automated vehicles, connected vehicles, deep learning, smart transportation network

Procedia PDF Downloads 82
19930 Advanced Particle Characterisation of Suspended Sediment in the Danube River Using Automated Imaging and Laser Diffraction

Authors: Flóra Pomázi, Sándor Baranya, Zoltán Szalai

Abstract:

A harmonized monitoring of the suspended sediment transport along such a large river as the world’s most international river, the Danube River, is a rather challenging task. The traditional monitoring method in Hungary is obsolete but using indirect measurement devices and techniques like optical backscatter sensors (OBS), laser diffraction or acoustic backscatter sensors (ABS) could provide a fast and efficient alternative option of direct methods. However, these methods are strongly sensitive to the particle characteristics (i.e. particle shape, particle size and mineral composition). The current method does not provide sufficient information about particle size distribution, mineral analysis is rarely done, and the shape of the suspended sediment particles have not been examined yet. The aims of the study are (1) to determine the particle characterisation of suspended sediment in the Danube River using advanced particle characterisation methods as laser diffraction and automated imaging, and (2) to perform a sensitivity analysis of the indirect methods in order to determine the impact of suspended particle characteristics. The particle size distribution is determined by laser diffraction. The particle shape and mineral composition analysis is done by the Morphologi G3ID image analyser. The investigated indirect measurement devices are the LISST-Portable|XR, the LISST-ABS (Sequoia Inc.) and the Rio Grande 1200 kHz ADCP (Teledyne Marine). The major findings of this study are (1) the statistical shape of the suspended sediment particle - this is the first research in this context, (2) the actualised particle size distribution – that can be compared to historical information, so that the morphological changes can be tracked, (3) the actual mineral composition of the suspended sediment in the Danube River, and (4) the reliability of the tested indirect methods has been increased – based on the results of the sensitivity analysis and the previous findings.

Keywords: advanced particle characterisation, automated imaging, indirect methods, laser diffraction, mineral composition, suspended sediment

Procedia PDF Downloads 147
19929 Seismic Protection of Automated Stocker System by Customized Viscous Fluid Dampers

Authors: Y. P. Wang, J. K. Chen, C. H. Lee, G. H. Huang, M. C. Wang, S. W. Chen, Y. T. Kuan, H. C. Lin, C. Y. Huang, W. H. Liang, W. C. Lin, H. C. Yu

Abstract:

The hi-tech industries in the Science Park at southern Taiwan were heavily damaged by a strong earthquake early 2016. The financial loss in this event was attributed primarily to the automated stocker system handling fully processed products, and recovery of the automated stocker system from the aftermath proved to contribute major lead time. Therefore, development of effective means for protection of stockers against earthquakes has become the highest priority for risk minimization and business continuity. This study proposes to mitigate the seismic response of the stockers by introducing viscous fluid dampers in between the ceiling and the top of the stockers. The stocker is expected to vibrate less violently with a passive control force on top. Linear damper is considered in this application with an optimal damping coefficient determined from a preliminary parametric study. The damper is small in size in comparison with those adopted for building or bridge applications. Component test of the dampers has been carried out to make sure they meet the design requirement. Shake table tests have been further conducted to verify the proposed scheme under realistic earthquake conditions. Encouraging results have been achieved by effectively reducing the seismic responses of up to 60% and preventing the FOUPs from falling off the shelves that would otherwise be the case if left unprotected. Effectiveness of adopting a viscous fluid damper for seismic control of the stocker on top against the ceiling has been confirmed. This technique has been adopted by Macronix International Co., LTD for seismic retrofit of existing stockers. Demonstrative projects on the application of the proposed technique are planned underway for other companies in the display industry as well.

Keywords: hi-tech industries, seismic protection, automated stocker system, viscous fluid damper

Procedia PDF Downloads 357
19928 A Novel Software Model for Enhancement of System Performance and Security through an Optimal Placement of PMU and FACTS

Authors: R. Kiran, B. R. Lakshmikantha, R. V. Parimala

Abstract:

Secure operation of power systems requires monitoring of the system operating conditions. Phasor measurement units (PMU) are the device, which uses synchronized signals from the GPS satellites, and provide the phasors information of voltage and currents at a given substation. The optimal locations for the PMUs must be determined, in order to avoid redundant use of PMUs. The objective of this paper is to make system observable by using minimum number of PMUs & the implementation of stability software at 22OkV grid for on-line estimation of the power system transfer capability based on voltage and thermal limitations and for security monitoring. This software utilizes State Estimator (SE) and synchrophasor PMU data sets for determining the power system operational margin under normal and contingency conditions. This software improves security of transmission system by continuously monitoring operational margin expressed in MW or in bus voltage angles, and alarms the operator if the margin violates a pre-defined threshold.

Keywords: state estimator (SE), flexible ac transmission systems (FACTS), optimal location, phasor measurement units (PMU)

Procedia PDF Downloads 411
19927 A Vehicle Monitoring System Based on the LoRa Technique

Authors: Chao-Linag Hsieh, Zheng-Wei Ye, Chen-Kang Huang, Yeun-Chung Lee, Chih-Hong Sun, Tzai-Hung Wen, Jehn-Yih Juang, Joe-Air Jiang

Abstract:

Air pollution and climate warming become more and more intensified in many areas, especially in urban areas. Environmental parameters are critical information to air pollution and weather monitoring. Thus, it is necessary to develop a suitable air pollution and weather monitoring system for urban areas. In this study, a vehicle monitoring system (VMS) based on the IoT technique is developed. Cars are selected as the research tool because it can reach a greater number of streets to collect data. The VMS can monitor different environmental parameters, including ambient temperature and humidity, and air quality parameters, including PM2.5, NO2, CO, and O3. The VMS can provide other information, including GPS signals and the vibration information through driving a car on the street. Different sensor modules are used to measure the parameters and collect the measured data and transmit them to a cloud server through the LoRa protocol. A user interface is used to show the sensing data storing at the cloud server. To examine the performance of the system, a researcher drove a Nissan x-trail 1998 to the area close to the Da’an District office in Taipei to collect monitoring data. The collected data are instantly shown on the user interface. The four kinds of information are provided by the interface: GPS positions, weather parameters, vehicle information, and air quality information. With the VMS, users can obtain the information regarding air quality and weather conditions when they drive their car to an urban area. Also, government agencies can make decisions on traffic planning based on the information provided by the proposed VMS.

Keywords: LoRa, monitoring system, smart city, vehicle

Procedia PDF Downloads 419
19926 Spatially Distributed Rainfall Prediction Based on Automated Kriging for Landslide Early Warning Systems

Authors: Ekrem Canli, Thomas Glade

Abstract:

The precise prediction of rainfall in space and time is a key element to most landslide early warning systems. Unfortunately, the spatial variability of rainfall in many early warning applications is often disregarded. A common simplification is to use uniformly distributed rainfall to characterize aerial rainfall intensity. With spatially differentiated rainfall information, real-time comparison with rainfall thresholds or the implementation in process-based approaches might form the basis for improved landslide warnings. This study suggests an automated workflow from the hourly, web-based collection of rain gauge data to the generation of spatially differentiated rainfall predictions based on kriging. Because the application of kriging is usually a labor intensive task, a simplified and consequently automated variogram modeling procedure was applied to up-to-date rainfall data. The entire workflow was carried out purely with open source technology. Validation results, albeit promising, pointed out the challenges that are involved in pure distance based, automated geostatistical interpolation techniques for ever-changing environmental phenomena over short temporal and spatial extent.

Keywords: kriging, landslide early warning system, spatial rainfall prediction, variogram modelling, web scraping

Procedia PDF Downloads 280
19925 Computing Machinery and Legal Intelligence: Towards a Reflexive Model for Computer Automated Decision Support in Public Administration

Authors: Jacob Livingston Slosser, Naja Holten Moller, Thomas Troels Hildebrandt, Henrik Palmer Olsen

Abstract:

In this paper, we propose a model for human-AI interaction in public administration that involves legal decision-making. Inspired by Alan Turing’s test for machine intelligence, we propose a way of institutionalizing a continuous working relationship between man and machine that aims at ensuring both good legal quality and higher efficiency in decision-making processes in public administration. We also suggest that our model enhances the legitimacy of using AI in public legal decision-making. We suggest that case loads in public administration could be divided between a manual and an automated decision track. The automated decision track will be an algorithmic recommender system trained on former cases. To avoid unwanted feedback loops and biases, part of the case load will be dealt with by both a human case worker and the automated recommender system. In those cases an experienced human case worker will have the role of an evaluator, choosing between the two decisions. This model will ensure that the algorithmic recommender system is not compromising the quality of the legal decision making in the institution. It also enhances the legitimacy of using algorithmic decision support because it provides justification for its use by being seen as superior to human decisions when the algorithmic recommendations are preferred by experienced case workers. The paper outlines in some detail the process through which such a model could be implemented. It also addresses the important issue that legal decision making is subject to legislative and judicial changes and that legal interpretation is context sensitive. Both of these issues requires continuous supervision and adjustments to algorithmic recommender systems when used for legal decision making purposes.

Keywords: administrative law, algorithmic decision-making, decision support, public law

Procedia PDF Downloads 218
19924 Performance of the Aptima® HIV-1 Quant Dx Assay on the Panther System

Authors: Siobhan O’Shea, Sangeetha Vijaysri Nair, Hee Cheol Kim, Charles Thomas Nugent, Cheuk Yan William Tong, Sam Douthwaite, Andrew Worlock

Abstract:

The Aptima® HIV-1 Quant Dx Assay is a fully automated assay on the Panther system. It is based on Transcription-Mediated Amplification and real time detection technologies. This assay is intended for monitoring HIV-1 viral load in plasma specimens and for the detection of HIV-1 in plasma and serum specimens. Nine-hundred and seventy nine specimens selected at random from routine testing at St Thomas’ Hospital, London were anonymised and used to compare the performance of the Aptima HIV-1 Quant Dx assay and Roche COBAS® AmpliPrep/COBAS® TaqMan® HIV-1 Test, v2.0. Two-hundred and thirty four specimens gave quantitative HIV-1 viral load results in both assays. The quantitative results reported by the Aptima Assay were comparable those reported by the Roche COBAS AmpliPrep/COBAS TaqMan HIV-1 Test, v2.0 with a linear regression slope of 1.04 and an intercept on -0.097. The Aptima assay detected HIV-1 in more samples than the Roche assay. This was not due to lack of specificity of the Aptima assay because this assay gave 99.83% specificity on testing plasma specimens from 600 HIV-1 negative individuals. To understand the reason for this higher detection rate a side-by-side comparison of low level panels made from the HIV-1 3rd international standard (NIBSC10/152) and clinical samples of various subtypes were tested in both assays. The Aptima assay was more sensitive than the Roche assay. The good sensitivity, specificity and agreement with other commercial assays make the HIV-1 Quant Dx Assay appropriate for both viral load monitoring and detection of HIV-1 infections.

Keywords: HIV viral load, Aptima, Roche, Panther system

Procedia PDF Downloads 376
19923 Detect Cable Force of Cable Stayed Bridge from Accelerometer Data of SHM as Real Time

Authors: Nguyen Lan, Le Tan Kien, Nguyen Pham Gia Bao

Abstract:

The cable-stayed bridge belongs to the combined system, in which the cables is a major strutual element. Cable-stayed bridges with large spans are often arranged with structural health monitoring systems to collect data for bridge health diagnosis. Cables tension monitoring is a structural monitoring content. It is common to measure cable tension by a direct force sensor or cable vibration accelerometer sensor, thereby inferring the indirect cable tension through the cable vibration frequency. To translate cable-stayed vibration acceleration data to real-time tension requires some necessary calculations and programming. This paper introduces the algorithm, labview program that converts cable-stayed vibration acceleration data to real-time tension. The research results are applied to the monitoring system of Tran Thi Ly cable-stayed bridge and Song Hieu cable-stayed bridge in Vietnam.

Keywords: cable-stayed bridge, cable fore, structural heath monitoring (SHM), fast fourie transformed (FFT), real time, vibrations

Procedia PDF Downloads 73
19922 An Intelligent Nondestructive Testing System of Ultrasonic Infrared Thermal Imaging Based on Embedded Linux

Authors: Hao Mi, Ming Yang, Tian-yue Yang

Abstract:

Ultrasonic infrared nondestructive testing is a kind of testing method with high speed, accuracy and localization. However, there are still some problems, such as the detection requires manual real-time field judgment, the methods of result storage and viewing are still primitive. An intelligent non-destructive detection system based on embedded linux is put forward in this paper. The hardware part of the detection system is based on the ARM (Advanced Reduced Instruction Set Computer Machine) core and an embedded linux system is built to realize image processing and defect detection of thermal images. The CLAHE algorithm and the Butterworth filter are used to process the thermal image, and then the boa server and CGI (Common Gateway Interface) technology are used to transmit the test results to the display terminal through the network for real-time monitoring and remote monitoring. The system also liberates labor and eliminates the obstacle of manual judgment. According to the experiment result, the system provides a convenient and quick solution for industrial non-destructive testing.

Keywords: remote monitoring, non-destructive testing, embedded Linux system, image processing

Procedia PDF Downloads 225
19921 Optimization of Real Time Measured Data Transmission, Given the Amount of Data Transmitted

Authors: Michal Kopcek, Tomas Skulavik, Michal Kebisek, Gabriela Krizanova

Abstract:

The operation of nuclear power plants involves continuous monitoring of the environment in their area. This monitoring is performed using a complex data acquisition system, which collects status information about the system itself and values of many important physical variables e.g. temperature, humidity, dose rate etc. This paper describes a proposal and optimization of communication that takes place in teledosimetric system between the central control server responsible for the data processing and storing and the decentralized measuring stations, which are measuring the physical variables. Analyzes of ongoing communication were performed and consequently the optimization of the system architecture and communication was done.

Keywords: communication protocol, transmission optimization, data acquisition, system architecture

Procedia PDF Downloads 520