Search results for: automated drift detection and adaptation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5359

Search results for: automated drift detection and adaptation

5239 Traditional Ecological Knowledge System as Climate Change Adaptation Strategies for Mountain Community of Tangkhul Tribe in Northeast India

Authors: Tuisem Shimrah

Abstract:

One general agreement on climate change is that its causes may be local but the effects are global. Indigenous people are subscribed to “low-carbon” traditional ways of life and as such they have contributed little to causes of climate change. On the contrary they are the most adversely affected by climate change due to their dependence on surrounding rich biological wealth as a source of their livelihood, health care, entertainment and cultural activities This paper deals with the results of the investigation of various adaptation strategies adopted to combat climate change by traditional community. The result shows effective ways of application of traditional knowledge and wisdom applied by Tangkhul traditional community at local and community level in remote areas in Northeast India. Four adaptation measures are being presented in this paper.

Keywords: adaptation, climate change, Northeast India, Tangkhul, traditional community

Procedia PDF Downloads 276
5238 Multichannel Object Detection with Event Camera

Authors: Rafael Iliasov, Alessandro Golkar

Abstract:

Object detection based on event vision has been a dynamically growing field in computer vision for the last 16 years. In this work, we create multiple channels from a single event camera and propose an event fusion method (EFM) to enhance object detection in event-based vision systems. Each channel uses a different accumulation buffer to collect events from the event camera. We implement YOLOv7 for object detection, followed by a fusion algorithm. Our multichannel approach outperforms single-channel-based object detection by 0.7% in mean Average Precision (mAP) for detection overlapping ground truth with IOU = 0.5.

Keywords: event camera, object detection with multimodal inputs, multichannel fusion, computer vision

Procedia PDF Downloads 26
5237 Educating Farmers and Fishermen in Rural Areas in Nigeria on Climate Change Mitigation and Adaptation for Global Sustainability

Authors: Benjamin Anabaraonye, Okafor Joachim Chukwuma, Olamire James

Abstract:

The impacts of climate change are greatly felt on Nigeria’s agricultural sector which in turn affects the economy of the nation. There is an urgent need to educate farmers and fishermen in rural areas in Nigeria on climate change adaptation and mitigation for sustainable development. Through our literature and participant observation, it has been discovered that many farmers and fishermen in rural areas in Nigeria have little or no knowledge about climate change adaptation and mitigation. This paper seeks to draw the attention of policy makers in government, private sectors, non-governmental organizations and interested individuals to the need to seek for innovative ways of educating farmers and fishermen in rural areas about climate change adaptation and mitigation for global sustainability. This study also explores the effective methods of bridging the communication gaps through efficient information dissemination, intensive awareness outreach, use of climate change poems and blogs, innovative loan scheme to farmers and fishermen, etc. to help ensure that farmers and fishermen in rural areas in Nigeria are adequately educated about climate change adaptation and mitigation for global sustainability.

Keywords: agriculture, climate change, farmers, fishermen

Procedia PDF Downloads 242
5236 Gas Pressure Evaluation through Radial Velocity Measurement of Fluid Flow Modeled by Drift Flux Model

Authors: Aicha Rima Cheniti, Hatem Besbes, Joseph Haggege, Christophe Sintes

Abstract:

In this paper, we consider a drift flux mixture model of the blood flow. The mixture consists of gas phase which is carbon dioxide and liquid phase which is an aqueous carbon dioxide solution. This model was used to determine the distributions of the mixture velocity, the mixture pressure, and the carbon dioxide pressure. These theoretical data are used to determine a measurement method of mean gas pressure through the determination of radial velocity distribution. This method can be applicable in experimental domain.

Keywords: mean carbon dioxide pressure, mean mixture pressure, mixture velocity, radial velocity

Procedia PDF Downloads 323
5235 Distribution of Maximum Loss of Fractional Brownian Motion with Drift

Authors: Ceren Vardar Acar, Mine Caglar

Abstract:

In finance, the price of a volatile asset can be modeled using fractional Brownian motion (fBm) with Hurst parameter H>1/2. The Black-Scholes model for the values of returns of an asset using fBm is given as, 〖Y_t=Y_0 e^((r+μ)t+σB)〗_t^H, 0≤t≤T where Y_0 is the initial value, r is constant interest rate, μ is constant drift and σ is constant diffusion coefficient of fBm, which is denoted by B_t^H where t≥0. Black-Scholes model can be constructed with some Markov processes such as Brownian motion. The advantage of modeling with fBm to Markov processes is its capability of exposing the dependence between returns. The real life data for a volatile asset display long-range dependence property. For this reason, using fBm is a more realistic model compared to Markov processes. Investors would be interested in any kind of information on the risk in order to manage it or hedge it. The maximum possible loss is one way to measure highest possible risk. Therefore, it is an important variable for investors. In our study, we give some theoretical bounds on the distribution of maximum possible loss of fBm. We provide both asymptotical and strong estimates for the tail probability of maximum loss of standard fBm and fBm with drift and diffusion coefficients. In the investment point of view, these results explain, how large values of possible loss behave and its bounds.

Keywords: maximum drawdown, maximum loss, fractional brownian motion, large deviation, Gaussian process

Procedia PDF Downloads 481
5234 Census and Mapping of Oil Palms Over Satellite Dataset Using Deep Learning Model

Authors: Gholba Niranjan Dilip, Anil Kumar

Abstract:

Conduct of accurate reliable mapping of oil palm plantations and census of individual palm trees is a huge challenge. This study addresses this challenge and developed an optimized solution implemented deep learning techniques on remote sensing data. The oil palm is a very important tropical crop. To improve its productivity and land management, it is imperative to have accurate census over large areas. Since, manual census is costly and prone to approximations, a methodology for automated census using panchromatic images from Cartosat-2, SkySat and World View-3 satellites is demonstrated. It is selected two different study sites in Indonesia. The customized set of training data and ground-truth data are created for this study from Cartosat-2 images. The pre-trained model of Single Shot MultiBox Detector (SSD) Lite MobileNet V2 Convolutional Neural Network (CNN) from the TensorFlow Object Detection API is subjected to transfer learning on this customized dataset. The SSD model is able to generate the bounding boxes for each oil palm and also do the counting of palms with good accuracy on the panchromatic images. The detection yielded an F-Score of 83.16 % on seven different images. The detections are buffered and dissolved to generate polygons demarcating the boundaries of the oil palm plantations. This provided the area under the plantations and also gave maps of their location, thereby completing the automated census, with a fairly high accuracy (≈100%). The trained CNN was found competent enough to detect oil palm crowns from images obtained from multiple satellite sensors and of varying temporal vintage. It helped to estimate the increase in oil palm plantations from 2014 to 2021 in the study area. The study proved that high-resolution panchromatic satellite image can successfully be used to undertake census of oil palm plantations using CNNs.

Keywords: object detection, oil palm tree census, panchromatic images, single shot multibox detector

Procedia PDF Downloads 159
5233 Computer-Aided Classification of Liver Lesions Using Contrasting Features Difference

Authors: Hussein Alahmer, Amr Ahmed

Abstract:

Liver cancer is one of the common diseases that cause the death. Early detection is important to diagnose and reduce the incidence of death. Improvements in medical imaging and image processing techniques have significantly enhanced interpretation of medical images. Computer-Aided Diagnosis (CAD) systems based on these techniques play a vital role in the early detection of liver disease and hence reduce liver cancer death rate.  This paper presents an automated CAD system consists of three stages; firstly, automatic liver segmentation and lesion’s detection. Secondly, extracting features. Finally, classifying liver lesions into benign and malignant by using the novel contrasting feature-difference approach. Several types of intensity, texture features are extracted from both; the lesion area and its surrounding normal liver tissue. The difference between the features of both areas is then used as the new lesion descriptors. Machine learning classifiers are then trained on the new descriptors to automatically classify liver lesions into benign or malignant. The experimental results show promising improvements. Moreover, the proposed approach can overcome the problems of varying ranges of intensity and textures between patients, demographics, and imaging devices and settings.

Keywords: CAD system, difference of feature, fuzzy c means, lesion detection, liver segmentation

Procedia PDF Downloads 323
5232 iCount: An Automated Swine Detection and Production Monitoring System Based on Sobel Filter and Ellipse Fitting Model

Authors: Jocelyn B. Barbosa, Angeli L. Magbaril, Mariel T. Sabanal, John Paul T. Galario, Mikka P. Baldovino

Abstract:

The use of technology has become ubiquitous in different areas of business today. With the advent of digital imaging and database technology, business owners have been motivated to integrate technology to their business operation ranging from small, medium to large enterprises. Technology has been found to have brought many benefits that can make a business grow. Hog or swine raising, for example, is a very popular enterprise in the Philippines, whose challenges in production monitoring can be addressed through technology integration. Swine production monitoring can become a tedious task as the enterprise goes larger. Specifically, problems like delayed and inconsistent reports are most likely to happen if counting of swine per pen of which building is done manually. In this study, we present iCount, which aims to ensure efficient swine detection and counting that hastens the swine production monitoring task. We develop a system that automatically detects and counts swine based on Sobel filter and ellipse fitting model, given the still photos of the group of swine captured in a pen. We improve the Sobel filter detection result through 8-neigbhorhood rule implementation. Ellipse fitting technique is then employed for proper swine detection. Furthermore, the system can generate periodic production reports and can identify the specific consumables to be served to the swine according to schedules. Experiments reveal that our algorithm provides an efficient way for detecting swine, thereby providing a significant amount of accuracy in production monitoring.

Keywords: automatic swine counting, swine detection, swine production monitoring, ellipse fitting model, sobel filter

Procedia PDF Downloads 311
5231 Automated Driving Deep Neural Networks Model Accuracy and Performance Assessment in a Simulated Environment

Authors: David Tena-Gago, Jose M. Alcaraz Calero, Qi Wang

Abstract:

The evolution and integration of automated vehicles have become more and more tangible in recent years. State-of-the-art technological advances in the field of camera-based Artificial Intelligence (AI) and computer vision greatly favor the performance and reliability of the Advanced Driver Assistance System (ADAS), leading to a greater knowledge of vehicular operation and resembling human behavior. However, the exclusive use of this technology still seems insufficient to control vehicular operation at 100%. To reveal the degree of accuracy of the current camera-based automated driving AI modules, this paper studies the structure and behavior of one of the main solutions in a controlled testing environment. The results obtained clearly outline the lack of reliability when using exclusively the AI model in the perception stage, thereby entailing using additional complementary sensors to improve its safety and performance.

Keywords: accuracy assessment, AI-driven mobility, artificial intelligence, automated vehicles

Procedia PDF Downloads 113
5230 The Effect of Peer Support on Adaptation to University Life in First Year Students of the University

Authors: Bilgen Ozluk, Ayfer Karaaslan

Abstract:

Introduction: Adaptation to university life is a difficult process for students. In peer support, students are expected to help other students or sometimes adults using their helping skills. Therefore, it is expected that peer support will have significant effect on students’ adaptation to university life. Aim: This study was conducted with the aim of determining the effect of peer support on adaptation to university life in the first year students of the faculty of health sciences. Methods: The population consists of 340 first year university students receiving education in the departments of nursing, health management, social services, nutrition and dietetics, physiotherapy and rehabilitation at an university located in the province of Konya. The sample of the study consisted of 274 students who voluntarily participated in the study. The data were collected between the dates 23 May 2016 and 3 June 2016. The data were collected using the socio-demographic information, the peer support scale and the university life adaptation scale. Ethical approvals for the study and permission from the university were taken. Numbers, percentages, averages, one-Way ANOVA, pearson correlation analysis and regression analysis have been used in assessing the data. Findings: When the problems most frequently encountered by students just starting the university were ordered, problems regarding their classes took the first place by 41.6%, socio-cultural problems took the second place by 38.7%, and economic problems took the third place by 37.6%. The mean total score of the Adaptation to University Life Scale was found to be 216.78±32.15. Considering that the lowest and highest scores that can be gained from the scale are 132 and 289 respectively, it was found that the adaptation to university life levels of the students were higher than the average. The mean adaptation to university life score of the nursing students was higher than those of the students of other departments. The mean score of ‘the Peer Support Scale’ was found to be 47.24±10.27. Considering that the lowest and highest scores that can be gained from the scale are 17 and 68 respectively, it was found that the peer support levels of the students were higher than the average. As a result of the regression analysis, it was found that 20% of the total variance regarding adaptation to university life was explained by peer support. Conclution: Receiving the support peer groups becomes highly important in the university adaptation process of first-year students. Peer support will create the means for easier completion of this difficult transition process.

Keywords: adaptation to university life, first years, peer support, university student

Procedia PDF Downloads 214
5229 A Case Study on the Collapse Assessment of the Steel Moment-Frame Setback High-Rise Tower

Authors: Marzie Shahini, Rasoul Mirghaderi

Abstract:

This paper describes collapse assessments of a steel moment-frame high-rise tower with setback irregularity, designed per the 2010 ASCE7 code, under spectral-matched ground motion records. To estimate a safety margin against life-threatening collapse, an analytical model of the tower is subjected to a suite of ground motions with incremental intensities from maximum considered earthquake hazard level to the incipient collapse level. Capability of the structural system to collapse prevention is evaluated based on the similar methodology reported in FEMA P695. Structural performance parameters in terms of maximum/mean inter-story drift ratios, residual drift ratios, and maximum plastic hinge rotations are also compared to the acceptance criteria recommended by the TBI Guidelines. The results demonstrate that the structural system satisfactorily safeguards the building against collapse. Moreover, for this tower, the code-specified requirements in ASCE7-10 are reasonably adequate to satisfy seismic performance criteria developed in the TBI Guidelines for the maximum considered earthquake hazard level.

Keywords: high-rise buildings, set back, residual drift, seismic performance

Procedia PDF Downloads 258
5228 An Overview of Posterior Fossa Associated Pathologies and Segmentation

Authors: Samuel J. Ahmad, Michael Zhu, Andrew J. Kobets

Abstract:

Segmentation tools continue to advance, evolving from manual methods to automated contouring technologies utilizing convolutional neural networks. These techniques have evaluated ventricular and hemorrhagic volumes in the past but may be applied in novel ways to assess posterior fossa-associated pathologies such as Chiari malformations. Herein, we summarize literature pertaining to segmentation in the context of this and other posterior fossa-based diseases such as trigeminal neuralgia, hemifacial spasm, and posterior fossa syndrome. A literature search for volumetric analysis of the posterior fossa identified 27 papers where semi-automated, automated, manual segmentation, linear measurement-based formulas, and the Cavalieri estimator were utilized. These studies produced superior data than older methods utilizing formulas for rough volumetric estimations. The most commonly used segmentation technique was semi-automated segmentation (12 studies). Manual segmentation was the second most common technique (7 studies). Automated segmentation techniques (4 studies) and the Cavalieri estimator (3 studies), a point-counting method that uses a grid of points to estimate the volume of a region, were the next most commonly used techniques. The least commonly utilized segmentation technique was linear measurement-based formulas (1 study). Semi-automated segmentation produced accurate, reproducible results. However, it is apparent that there does not exist a single semi-automated software, open source or otherwise, that has been widely applied to the posterior fossa. Fully-automated segmentation via such open source software as FSL and Freesurfer produced highly accurate posterior fossa segmentations. Various forms of segmentation have been used to assess posterior fossa pathologies and each has its advantages and disadvantages. According to our results, semi-automated segmentation is the predominant method. However, atlas-based automated segmentation is an extremely promising method that produces accurate results. Future evolution of segmentation technologies will undoubtedly yield superior results, which may be applied to posterior fossa related pathologies. Medical professionals will save time and effort analyzing large sets of data due to these advances.

Keywords: chiari, posterior fossa, segmentation, volumetric

Procedia PDF Downloads 106
5227 Ecotourism Adaptation Practices to Climate Change in the Context of Sustainable Management in Dana Biosphere Reserve, Jordan

Authors: Malek Jamaliah, Robert Powell

Abstract:

In spite of the influence of climate change on tourism destinations, particularly those rely heavily on natural resources, little attention paid to study the appropriate adaptation efforts to cope with, moderate and benefit from the impacts of climate change. The existing literature indicated that the research of climate change adaptation in the tourism and outdoor recreation field is at least 5-7 years behind other sectors such as water resources and agriculture. In Jordan, there are many observed changes in climate patterns such as higher temperatures, decreased precipitation and increased severity and frequency of drought. Dana Biosphere Reserve (DBR), the largest protected area and the major eco-tourism destination in Jordan, is facing climate change, which gradually degrading environment, shifting tourism seasons and changing livelihood and lifestyle of local communities. This study aims to assess climate change adaptation practices and policies used in DBR to cope with climate change related-risks. We conducted qualitative semi-structured interviews with key informants in DBR to assess climate change adaptation practices. Direct content analysis (or a priori content analysis) was used to determine the components and indicators of climate change adaptation. The results found that DBR has implemented a wide range of adaptation practices, including infrastructure development, diversification of tourism products, environmentally-friendly practices, visitor management, land use management, rainwater collection, environmental monitoring and research, environmental education and collaboration with stakeholders. These diverse practices implicitly and explicitly play an important role in coping with the social, economic and environmental impacts caused by climate change. Finally, this study demonstrated that climate change adaptation is closely related to sustainable management of eco-tourism.

Keywords: climate change adaptation, dana biosphere reserve, ecotourism, sustainable management

Procedia PDF Downloads 508
5226 Securing Web Servers by the Intrusion Detection System (IDS)

Authors: Yousef Farhaoui

Abstract:

An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS).

Keywords: intrusion detection, architectures, characteristic, tools, security, web server

Procedia PDF Downloads 416
5225 Climate Change Adaptation Interventions in Agriculture and Sustainable Development through South-South Cooperation in Sub-Saharan Africa

Authors: Nuhu Mohammed Gali, Kenichi Matsui

Abstract:

Climate change poses a significant threat to agriculture and food security in Africa. The UNFCC recognized the need to address climate change adaptation in the broader context of sustainable development. African countries have initiated a governance system for adapting and responding to climate change in their Nationally Determined Contributions (NDCs). Despite the implementation limitations, Africa’s adaptation initiatives highlight the need to strengthen and expand adaptation responses. This paper looks at the extent to which South-South cooperation facilitates the implementation of adaptation actions between nations for agriculture and sustainable development. We conducted a literature review and content analysis of reports prepared by international organizations, reflecting the diversity of adaptation activities taking place in Sub-Saharan Africa. Our analysis of the connection between adaptation and nationally determined contributions (NDCs) showed that climate actions are mainstreamed into sustainable development. The NDCs in many countries on climate change adaptation action for agriculture aimed to strengthen the resilience of the poor. We found that climate-smart agriculture is the core of many countries target to end hunger. We revealed that South-South Cooperation, in terms of capacity, technology, and financial support, can help countries to achieve their climate action priorities and the Sustainable Development Goals (SDGs). We found that inadequate policy and regulatory frameworks between countries, differences in development priorities and strategies, poor communication, inadequate coordination, and the lack of local engagement and advocacy are some key barriers to South-South Cooperation in Africa. We recommend a multi-dimensional partnership, provisionoffinancialresources, systemic approach for coordination and engagement to promote and achieve the potential of SSC in Africa.

Keywords: climate change, adaptation, food security, sustainable development goals

Procedia PDF Downloads 126
5224 Automatic Method for Exudates and Hemorrhages Detection from Fundus Retinal Images

Authors: A. Biran, P. Sobhe Bidari, K. Raahemifar

Abstract:

Diabetic Retinopathy (DR) is an eye disease that leads to blindness. The earliest signs of DR are the appearance of red and yellow lesions on the retina called hemorrhages and exudates. Early diagnosis of DR prevents from blindness; hence, many automated algorithms have been proposed to extract hemorrhages and exudates. In this paper, an automated algorithm is presented to extract hemorrhages and exudates separately from retinal fundus images using different image processing techniques including Circular Hough Transform (CHT), Contrast Limited Adaptive Histogram Equalization (CLAHE), Gabor filter and thresholding. Since Optic Disc is the same color as the exudates, it is first localized and detected. The presented method has been tested on fundus images from Structured Analysis of the Retina (STARE) and Digital Retinal Images for Vessel Extraction (DRIVE) databases by using MATLAB codes. The results show that this method is perfectly capable of detecting hard exudates and the highly probable soft exudates. It is also capable of detecting the hemorrhages and distinguishing them from blood vessels.

Keywords: diabetic retinopathy, fundus, CHT, exudates, hemorrhages

Procedia PDF Downloads 271
5223 Computer Aided Diagnosis Bringing Changes in Breast Cancer Detection

Authors: Devadrita Dey Sarkar

Abstract:

Regardless of the many technologic advances in the past decade, increased training and experience, and the obvious benefits of uniform standards, the false-negative rate in screening mammography remains unacceptably high .A computer aided neural network classification of regions of suspicion (ROS) on digitized mammograms is presented in this abstract which employs features extracted by a new technique based on independent component analysis. CAD is a concept established by taking into account equally the roles of physicians and computers, whereas automated computer diagnosis is a concept based on computer algorithms only. With CAD, the performance by computers does not have to be comparable to or better than that by physicians, but needs to be complementary to that by physicians. In fact, a large number of CAD systems have been employed for assisting physicians in the early detection of breast cancers on mammograms. A CAD scheme that makes use of lateral breast images has the potential to improve the overall performance in the detection of breast lumps. Because breast lumps can be detected reliably by computer on lateral breast mammographs, radiologists’ accuracy in the detection of breast lumps would be improved by the use of CAD, and thus early diagnosis of breast cancer would become possible. In the future, many CAD schemes could be assembled as packages and implemented as a part of PACS. For example, the package for breast CAD may include the computerized detection of breast nodules, as well as the computerized classification of benign and malignant nodules. In order to assist in the differential diagnosis, it would be possible to search for and retrieve images (or lesions) with these CAD systems, which would be reliable and useful method for quantifying the similarity of a pair of images for visual comparison by radiologists.

Keywords: CAD(computer-aided design), lesions, neural network, ROS(region of suspicion)

Procedia PDF Downloads 455
5222 Current Design Approach for Seismic Resistant Automated Rack Supported Warehouses: Strong Points and Critical Aspects

Authors: Agnese Natali, Francesco Morelli, Walter Salvatore

Abstract:

Automated Rack Supported Warehouses (ARSWs) are structures currently designed as steel racks. Even if there are common characteristics, there are differences that don’t allow to adopt the same design approach. Aiming to highlight the factors influencing the design and the behavior of ARSWs, a set of 5 structures designed by 5 European companies specialized in this field is used to perform both a critical analysis of the design approaches and the assessment of the seismic performance, which is used to point out the criticalities and the necessity of new design philosophy.

Keywords: steel racks, automated rack supported warehouse, thin walled cold-formed elements, seismic assessment

Procedia PDF Downloads 163
5221 From Conflicts to Synergies between Mitigation and Adaptation Strategies to Climate Change: The Case of Lisbon Downtown 2010-2030

Authors: Nuno M. Pereira

Abstract:

In the last thirty years, European cities have been addressing global climate change and its local impacts by implementing mitigation and adaptation strategies. Lisbon Downtown is no exception with 10 plans under implementation since 2010 with completion scheduled for 2030 valued 1 billion euros of public investment. However, the gap between mitigation and adaptation strategies is not yet sufficiently studied alongside with its nuances- vulnerability and risk mitigation, resilience and adaptation. In Lisbon Downtown, these plans are being implemented separately, therefore compromising the effectiveness of public investment. The research reviewed the common ground of mitigation and adaptation strategies of the theoretical framework and analyzed the current urban development actions in Lisbon Downtown in order to identify potential conflicts and synergies. The empirical fieldwork supported by a sounding board of experts has been developed during two years and the results suggest that the largest public investment in Lisbon on flooding mitigation will conflict with the new Cruise ship terminal and old Downton building stock, therefore increasing risk and vulnerability factors. The study concludes that the Lisbon Downtown blue infrastructure plan should be redesigned in some areas in a trans- disciplinary and holistic approach and that the current theoretical framework on climate change should focus more on mitigation and adaptation synergies articulating the gray, blue and green infrastructures, combining old knowledge tested by resilient communities and new knowledge emerging from the digital era.

Keywords: adaptation, climate change, conflict, Lisbon Downtown, mitigation, synergy

Procedia PDF Downloads 198
5220 Linking Adaptation to Climate Change and Sustainable Development: The Case of ClimAdaPT.Local in Portugal

Authors: A. F. Alves, L. Schmidt, J. Ferrao

Abstract:

Portugal is one of the more vulnerable European countries to the impacts of climate change. These include: temperature increase; coastal sea level rise; desertification and drought in the countryside; and frequent and intense extreme weather events. Hence, adaptation strategies to climate change are of great importance. This is what was addressed by ClimAdaPT.Local. This policy-oriented project had the main goal of developing 26 Municipal Adaptation Strategies for Climate Change, through the identification of local specific present and future vulnerabilities, the training of municipal officials, and the engagement of local communities. It is intended to be replicated throughout the whole territory and to stimulate the creation of a national network of local adaptation in Portugal. Supported by methodologies and tools specifically developed for this project, our paper is based on the surveys, training and stakeholder engagement workshops implemented at municipal level. In an 'adaptation-as-learning' process, these tools functioned as a social-learning platform and an exercise in knowledge and policy co-production. The results allowed us to explore the nature of local vulnerabilities and the exposure of gaps in the context of reappraisal of both future climate change adaptation opportunities and possible dysfunctionalities in the governance arrangements of municipal Portugal. Development issues are highlighted when we address the sectors and social groups that are both more sensitive and more vulnerable to the impacts of climate change. We argue that a pluralistic dialogue and a common framing can be established between them, with great potential for transformational adaptation. Observed climate change, present-day climate variability and future expectations of change are great societal challenges which should be understood in the context of the sustainable development agenda.

Keywords: adaptation, ClimAdaPT.Local, climate change, Portugal, sustainable development

Procedia PDF Downloads 194
5219 Conceptual Design of an Automated Biomethane Test Using Interacting Criteria

Authors: Vassilis C. Moulianitis, Evgenios Scourboutis, Ilias Katsanis, Paraskevas Papanikos, Nikolas Zacharopoulos

Abstract:

This paper presents the conceptual design of an automated biomethane potential measurement system. First, the design specifications for the BMP system and the basic components of the system will be presented. Three concepts that meet the design specifications will be presented. The basic characteristics of each concept will be analyzed in detail. The concepts will be evaluated using a set of design criteria that includes flexibility, cost, size, complexity, aesthetics, and accessibility in order to determine the best solution. The evaluation will be based on the discrete Choquet integral.

Keywords: automated biomethane test, conceptual mechatronics design, concept evaluation, Choquet integral

Procedia PDF Downloads 92
5218 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 187
5217 The Age Difference in Social Skills Constructs for School Adaptation: A Cross-Sectional Study of Japanese Students at Elementary, Junior, and Senior High School

Authors: Hiroki Shinkawa, Tadaaki Tomiie

Abstract:

Many interventions for social skills acquisition aim to decrease the gap between social skills deficits in the individual and normative social skills; nevertheless little is known of typical social skills according to age difference in students. In this study, we developed new quintet of Hokkaido Social Skills Inventory (HSSI) in order to identify age-appropriate social skills for school adaptation. First, we selected 13 categories of social skills for school adaptation from previous studies, and created questionnaire items through discussion by 25 teachers in all three levels from elementary schools to senior high schools. Second, the factor structures of five versions of the social skills scale were investigated on 2nd grade (n = 1,864), 4th grade (n = 1,936), 6th grade (n = 2,085), 7th grade (n = 2,007), and 10th grade (n = 912) students, respectively. The exploratory factor analysis showed that a number of constructing factors of social skills increased as one’s grade in school advanced. The results in the present study can be useful to characterize the age-appropriate social skills for school adaptation.

Keywords: social skills, age difference, children, adolescents

Procedia PDF Downloads 392
5216 Suggestion for Malware Detection Agent Considering Network Environment

Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung

Abstract:

Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.

Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment

Procedia PDF Downloads 431
5215 Mobile Application Testing Matrix and Challenges

Authors: Bakhtiar Amen, Sardasht Mahmood, Joan Lu

Abstract:

The adoption of smartphones and the usages of mobile applications are increasing rapidly. Consequently, within limited time-range, mobile Internet usages have managed to take over the desktop usages particularly since the first smartphone-touched application released by iPhone in 2007. This paper is proposed to provide solution and answer the most demandable questions related to mobile application automated and manual testing limitations. Moreover, Mobile application testing requires agility and physically testing. Agile testing is to detect bugs through automated tools, whereas the compatibility testing is more to ensure that the apps operates on mobile OS (Operation Systems) as well as on the different real devices. Moreover, we have managed to answer automated or manual questions through two mobile application case studies MES (Mobile Exam System) and MLM (Mobile Lab Mate) by creating test scripts for both case studies and our experiment results have been discussed and evaluated on whether to adopt test on real devices or on emulators? In addition to this, we have introduced new mobile application testing matrix for the testers and some enterprises to obtain knowledge from.

Keywords: mobile app testing, testing matrix, automated, manual testing

Procedia PDF Downloads 476
5214 Strategic Shear Wall Arrangement in Buildings under Seismic Loads

Authors: Akram Khelaifia, Salah Guettala, Nesreddine Djafar Henni, Rachid Chebili

Abstract:

Reinforced concrete shear walls are pivotal in protecting buildings from seismic forces by providing strength and stiffness. This study highlights the importance of strategically placing shear walls and optimizing the shear wall-to-floor area ratio in building design. Nonlinear analyses were conducted on an eight-story building situated in a high seismic zone, exploring various scenarios of shear wall positioning and ratios to floor area. Employing the performance-based seismic design (PBSD) approach, the study aims to meet acceptance criteria such as inter-story drift ratio and damage levels. The results indicate that concentrating shear walls in the middle of the structure during the design phase yields superior performance compared to peripheral distributions. Utilizing shear walls that fully infill the frame and adopting compound shapes (e.g., Box, U, and L) enhances reliability in terms of inter-story drift. Conversely, the absence of complete shear walls within the frame leads to decreased stiffness and degradation of shorter beams. Increasing the shear wall-to-floor area ratio in building design enhances structural rigidity and reliability regarding inter-story drift, facilitating the attainment of desired performance levels. The study suggests that a shear wall ratio of 1.0% is necessary to meet validation criteria for inter-story drift and structural damage, as exceeding this percentage leads to excessive performance levels, proving uneconomical as structural elements operate near the elastic range.

Keywords: nonlinear analyses, pushover analysis, shear wall, plastic hinge, performance level

Procedia PDF Downloads 47
5213 Improved Skin Detection Using Colour Space and Texture

Authors: Medjram Sofiane, Babahenini Mohamed Chaouki, Mohamed Benali Yamina

Abstract:

Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model.

Keywords: skin detection, YCbCr, GLCM, texture, human skin

Procedia PDF Downloads 456
5212 Active Treatment of Water Chemistry for Swimming Pools Using Novel Automated System (NAS)

Authors: Saeed Asiri

Abstract:

The Novel Automated System (NAS) has the control system of the level of chlorine and acid (i.e. pH level) through a feedback in three forms of synchronous alerts. The feedback is in the form of an alert voice, a visible color, and a message on a digital screen. In addition, NAS contains a slide-in container in which chemicals are used to treat the problems of chlorine and acid levels independently. Moreover, NAS has a net in front of it to clean the pool on the surface of the water from leaves and wastes and so on which is controlled through a remote control. The material used is a lightweight aluminum with mechanical and electric parts integrated with each other. In fact, NAS is qualified to serve as an assistant security guard for swimming pools because it has the characteristics that make it unique and smart.

Keywords: novel automated system, pool safety, maintenance, pH level, digital screen

Procedia PDF Downloads 70
5211 Ta-DAH: Task Driven Automated Hardware Design of Free-Flying Space Robots

Authors: Lucy Jackson, Celyn Walters, Steve Eckersley, Mini Rai, Simon Hadfield

Abstract:

Space robots will play an integral part in exploring the universe and beyond. A correctly designed space robot will facilitate OOA, satellite servicing and ADR. However, problems arise when trying to design such a system as it is a highly complex multidimensional problem into which there is little research. Current design techniques are slow and specific to terrestrial manipulators. This paper presents a solution to the slow speed of robotic hardware design, and generalizes the technique to free-flying space robots. It presents Ta-DAH Design, an automated design approach that utilises a multi-objective cost function in an iterative and automated pipeline. The design approach leverages prior knowledge and facilitates the faster output of optimal designs. The result is a system that can optimise the size of the base spacecraft, manipulator and some key subsystems for any given task. Presented in this work is the methodology behind Ta-DAH Design and a number optimal space robot designs.

Keywords: space robots, automated design, on-orbit operations, hardware design

Procedia PDF Downloads 70
5210 Deep Convolutional Neural Network for Detection of Microaneurysms in Retinal Fundus Images at Early Stage

Authors: Goutam Kumar Ghorai, Sandip Sadhukhan, Arpita Sarkar, Debprasad Sinha, G. Sarkar, Ashis K. Dhara

Abstract:

Diabetes mellitus is one of the most common chronic diseases in all countries and continues to increase in numbers significantly. Diabetic retinopathy (DR) is damage to the retina that occurs with long-term diabetes. DR is a major cause of blindness in the Indian population. Therefore, its early diagnosis is of utmost importance towards preventing progression towards imminent irreversible loss of vision, particularly in the huge population across rural India. The barriers to eye examination of all diabetic patients are socioeconomic factors, lack of referrals, poor access to the healthcare system, lack of knowledge, insufficient number of ophthalmologists, and lack of networking between physicians, diabetologists and ophthalmologists. A few diabetic patients often visit a healthcare facility for their general checkup, but their eye condition remains largely undetected until the patient is symptomatic. This work aims to focus on the design and development of a fully automated intelligent decision system for screening retinal fundus images towards detection of the pathophysiology caused by microaneurysm in the early stage of the diseases. Automated detection of microaneurysm is a challenging problem due to the variation in color and the variation introduced by the field of view, inhomogeneous illumination, and pathological abnormalities. We have developed aconvolutional neural network for efficient detection of microaneurysm. A loss function is also developed to handle severe class imbalance due to very small size of microaneurysms compared to background. The network is able to locate the salient region containing microaneurysms in case of noisy images captured by non-mydriatic cameras. The ground truth of microaneurysms is created by expert ophthalmologists for MESSIDOR database as well as private database, collected from Indian patients. The network is trained from scratch using the fundus images of MESSIDOR database. The proposed method is evaluated on DIARETDB1 and the private database. The method is successful in detection of microaneurysms for dilated and non-dilated types of fundus images acquired from different medical centres. The proposed algorithm could be used for development of AI based affordable and accessible system, to provide service at grass root-level primary healthcare units spread across the country to cater to the need of the rural people unaware of the severe impact of DR.

Keywords: retinal fundus image, deep convolutional neural network, early detection of microaneurysms, screening of diabetic retinopathy

Procedia PDF Downloads 140