Search results for: Cluster Redevelopment
807 Process of Analysis, Evaluation and Verification of the 'Real' Redevelopment of the Public Open Space at the Neighborhood’s Stairs: Case Study of Serres, Greece
Authors: Ioanna Skoufali
Abstract:
The present study is directed towards adaptation to climate change closely related to the phenomenon of the urban heat island (UHI). This issue is widespread and common to different urban realities, but particularly in Mediterranean cities that are characterized by dense urban. The attention of this work of redevelopment of the open space is focused on mitigation techniques aiming to solve local problems such as microclimatic parameters and the conditions of thermal comfort in summer, related to urban morphology. This quantitative analysis, evaluation, and verification survey involves the methodological elaboration applied in a real study case by Serres, through the experimental support of the ENVImet Pro V4.1 and BioMet software developed: i) in two phases concerning the anteoperam (phase a1 # 2013) and the post-operam (phase a2 # 2016); ii) in scenario A (+ 25% of green # 2017). The first study tends to identify the main intervention strategies, namely: the application of cool pavements, the increase of green surfaces, the creation of water surface and external fans; moreover, it obtains the minimum results achieved by the National Program 'Bioclimatic improvement project for public open space', EPPERAA (ESPA 2007-2013) related to the four environmental parameters illustrated below: the TAir = 1.5 o C, the TSurface = 6.5 o C, CDH = 30% and PET = 20%. In addition, the second study proposes a greater potential for improvement than postoperam intervention by increasing the vegetation within the district towards the SW/SE. The final objective of this in-depth design is to be transferable in homogeneous cases of urban regeneration processes with obvious effects on the efficiency of microclimatic mitigation and thermal comfort.Keywords: cool pavements, microclimate parameters (TAir, Tsurface, Tmrt, CDH), mitigation strategies, outdoor thermal comfort (PET & UTCI)
Procedia PDF Downloads 204806 Institutional Segmantation and Country Clustering: Implications for Multinational Enterprises Over Standardized Management
Authors: Jung-Hoon Han, Jooyoung Kwak
Abstract:
Distances between cultures, institutions are gaining academic attention once again since the classical debate on the validity of globalization. Despite the incessant efforts to define international segments with various concepts, no significant attempts have been made considering the institutional dimensions. Resource-based theory and institutional theory provides useful insights in assessing market environment and understanding when and how MNEs loose or gain advantages. This study consists of two parts: identifying institutional clusters and predicting the effect of MNEs’ origin on the applicability of competitive advantages. MNEs in one country cluster are expected to use similar management systems.Keywords: institutional theory, resource-based theory, institutional environment, cultural dimensions, cluster analysis, standardized management
Procedia PDF Downloads 489805 Care: A Cluster Based Approach for Reliable and Efficient Routing Protocol in Wireless Sensor Networks
Authors: K. Prasanth, S. Hafeezullah Khan, B. Haribalakrishnan, D. Arun, S. Jayapriya, S. Dhivya, N. Vijayarangan
Abstract:
The main goal of our approach is to find the optimum positions for the sensor nodes, reinforcing the communications in points where certain lack of connectivity is found. Routing is the major problem in sensor network’s data transfer between nodes. We are going to provide an efficient routing technique to make data signal transfer to reach the base station soon without any interruption. Clustering and routing are the two important key factors to be considered in case of WSN. To carry out the communication from the nodes to their cluster head, we propose a parameterizable protocol so that the developer can indicate if the routing has to be sensitive to either the link quality of the nodes or the their battery levels.Keywords: clusters, routing, wireless sensor networks, three phases, sensor networks
Procedia PDF Downloads 506804 A Spatial Autocorrelation Analysis of Women’s Mental Health and Walkability Index in Mashhad City, Iran, and Recommendations to Improve It
Authors: Mohammad Rahim Rahnama, Lia Shaddel
Abstract:
Today, along with the development of urbanism, its negative consequences on the health of citizens are emerging. Mental disorders are common in the big cities, while mental health enables individuals to become active citizens. Meanwhile, women have a larger share of mental problems. Depression and anxiety disorders have a higher prevalence rate among women and these disorders affect the health of future generations, too. Therefore, improving women’s mental health through the potentials offered by urban spaces are of paramount importance. The present study aims to first, evaluate the spatial autocorrelation of women’s mental health and walkable spaces and then present solutions, based on the findings, to improve the walkability index. To determine the spatial distribution of women’s mental health in Mashhad, Moran's I was used and 1000 questionnaire were handed out in various sub-districts of Mashhad. Moran's I was calculated to be 0.18 which indicates a cluster distribution pattern. The walkability index was calculated using the four variables pertaining to the length of walkable routes, mixed land use, retail floor area ratio, and household density. To determine spatial autocorrelation of mental health and the walkability index, bivariate Moran’s I was calculated. Moran's I was determined to be 0.37 which shows a direct spatial relationship between variables; 4 clusters in 9 sub-districts of Mashhad were created. In High-Low cluster, there was a negative spatial relationship and hence, to identify factors affecting walkability in urban spaces semi-structures interviews were conducted with 21 women in this cluster. The findings revealed that security is the major factor influencing women’s walking behavior in this cluster. In accordance with the findings, some suggestions are offered to improve the presence of women in this sub-district.Keywords: Mashhad, spatial autocorrelation, women’s mental health, walkability index
Procedia PDF Downloads 134803 A Multivariate Statistical Approach for Water Quality Assessment of River Hindon, India
Authors: Nida Rizvi, Deeksha Katyal, Varun Joshi
Abstract:
River Hindon is an important river catering the demand of highly populated rural and industrial cluster of western Uttar Pradesh, India. Water quality of river Hindon is deteriorating at an alarming rate due to various industrial, municipal and agricultural activities. The present study aimed at identifying the pollution sources and quantifying the degree to which these sources are responsible for the deteriorating water quality of the river. Various water quality parameters, like pH, temperature, electrical conductivity, total dissolved solids, total hardness, calcium, chloride, nitrate, sulphate, biological oxygen demand, chemical oxygen demand and total alkalinity were assessed. Water quality data obtained from eight study sites for one year has been subjected to the two multivariate techniques, namely, principal component analysis and cluster analysis. Principal component analysis was applied with the aim to find out spatial variability and to identify the sources responsible for the water quality of the river. Three Varifactors were obtained after varimax rotation of initial principal components using principal component analysis. Cluster analysis was carried out to classify sampling stations of certain similarity, which grouped eight different sites into two clusters. The study reveals that the anthropogenic influence (municipal, industrial, waste water and agricultural runoff) was the major source of river water pollution. Thus, this study illustrates the utility of multivariate statistical techniques for analysis and elucidation of multifaceted data sets, recognition of pollution sources/factors and understanding temporal/spatial variations in water quality for effective river water quality management.Keywords: cluster analysis, multivariate statistical techniques, river Hindon, water quality
Procedia PDF Downloads 467802 Percolation Transition in an Agglomeration of Spherical Particles
Authors: Johannes J. Schneider, Mathias S. Weyland, Peter Eggenberger Hotz, William D. Jamieson, Oliver Castell, Alessia Faggian, Rudolf M. Füchslin
Abstract:
Agglomerations of polydisperse systems of spherical particles are created in computer simulations using a simplified stochastic-hydrodynamic model: Particles sink to the bottom of the cylinder, taking into account gravity reduced by the buoyant force, the Stokes friction force, the added mass effect, and random velocity changes. Two types of particles are considered, with one of them being able to create connections to neighboring particles of the same type, thus forming a network within the agglomeration at the bottom of a cylinder. Decreasing the fraction of these particles, a percolation transition occurs. The critical regime is determined by investigating the maximum cluster size and the percolation susceptibility.Keywords: binary system, maximum cluster size, percolation, polydisperse
Procedia PDF Downloads 61801 Analysis of Expert Information in Linguistic Terms
Authors: O. Poleshchuk, E. Komarov
Abstract:
In this paper, semantic spaces with the properties of completeness and orthogonality (complete orthogonal semantic spaces) were chosen as models of expert evaluations. As the theoretical and practical studies have shown all the properties of complete orthogonal semantic spaces correspond to the thinking activity of experts that is why these semantic spaces were chosen for modeling. Two methods of construction such spaces were proposed. Models of comparative and fuzzy cluster analysis of expert evaluations were developed. The practical application of the developed methods has demonstrated their viability and validity.Keywords: expert evaluation, comparative analysis, fuzzy cluster analysis, theoretical and practical studies
Procedia PDF Downloads 531800 Investigation of Clusters of MRSA Cases in a Hospital in Western Kenya
Authors: Lillian Musila, Valerie Oundo, Daniel Erwin, Willie Sang
Abstract:
Staphylococcus aureus infections are a major cause of nosocomial infections in Kenya. Methicillin resistant S. aureus (MRSA) infections are a significant burden to public health and are associated with considerable morbidity and mortality. At a hospital in Western Kenya two clusters of MRSA cases emerged within short periods of time. In this study we explored whether these clusters represented a nosocomial outbreak by characterizing the isolates using phenotypic and molecular assays and examining epidemiological data to identify possible transmission patterns. Specimens from the site of infection of the subjects were collected, cultured and S. aureus isolates identified phenotypically and confirmed by APIStaph™. MRSA were identified by cefoxitin disk screening per CLSI guidelines. MRSA were further characterized based on their antibiotic susceptibility patterns and spa gene typing. Characteristics of cases with MRSA isolates were compared with those with MSSA isolated around the same time period. Two cases of MRSA infection were identified in the two week period between 21 April and 4 May 2015. A further 2 MRSA isolates were identified on the same day on 7 September 2015. The antibiotic resistance patterns of the two MRSA isolates in the 1st cluster of cases were different suggesting that these were distinct isolates. One isolate had spa type t2029 and the other had a novel spa type. The 2 isolates were obtained from urine and an open skin wound. In the 2nd cluster of MRSA isolates, the antibiotic susceptibility patterns were similar but isolates had different spa types: one was t037 and the other a novel spa type different from the novel MRSA spa type in the first cluster. Both cases in the second cluster were admitted into the hospital but one infection was community- and the other hospital-acquired. Only one of the four MRSA cases was classified as an HAI from an infection acquired post-operatively. When compared to other S. aureus strains isolated within the same time period from the same hospital only one spa type t2029 was found in both MRSA and non-MRSA strains. None of the cases infected with MRSA in the two clusters shared any common epidemiological characteristic such as age, sex or known risk factors for MRSA such as prolonged hospitalization or institutionalization. These data suggest that the observed MRSA clusters were multi strain clusters and not an outbreak of a single strain. There was no clear relationship between the isolates by spa type suggesting that no transmission was occurring within the hospital between these cluster cases but rather that the majority of the MRSA strains were circulating in the community. There was high diversity of spa types among the MRSA strains with none of the isolates sharing spa types. Identification of disease clusters in space and time is critical for immediate infection control action and patient management. Spa gene typing is a rapid way of confirming or ruling out MRSA outbreaks so that costly interventions are applied only when necessary.Keywords: cluster, Kenya, MRSA, spa typing
Procedia PDF Downloads 333799 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.Keywords: machine learning, stock market trading, logistic regression, cluster analysis, factor analysis, decision trees, neural networks, automated stock investment system
Procedia PDF Downloads 158798 SCNet: A Vehicle Color Classification Network Based on Spatial Cluster Loss and Channel Attention Mechanism
Authors: Fei Gao, Xinyang Dong, Yisu Ge, Shufang Lu, Libo Weng
Abstract:
Vehicle color recognition plays an important role in traffic accident investigation. However, due to the influence of illumination, weather, and noise, vehicle color recognition still faces challenges. In this paper, a vehicle color classification network based on spatial cluster loss and channel attention mechanism (SCNet) is proposed for vehicle color recognition. A channel attention module is applied to extract the features of vehicle color representative regions and reduce the weight of nonrepresentative color regions in the channel. The proposed loss function, called spatial clustering loss (SC-loss), consists of two channel-specific components, such as a concentration component and a diversity component. The concentration component forces all feature channels belonging to the same class to be concentrated through the channel cluster. The diversity components impose additional constraints on the channels through the mean distance coefficient, making them mutually exclusive in spatial dimensions. In the comparison experiments, the proposed method can achieve state-of-the-art performance on the public datasets, VCD, and VeRi, which are 96.1% and 96.2%, respectively. In addition, the ablation experiment further proves that SC-loss can effectively improve the accuracy of vehicle color recognition.Keywords: feature extraction, convolutional neural networks, intelligent transportation, vehicle color recognition
Procedia PDF Downloads 185797 A Literature Review on the Effect of Industrial Clusters and the Absorptive Capacity on Innovation
Authors: Enrique Claver Cortés, Bartolomé Marco Lajara, Eduardo Sánchez García, Pedro Seva Larrosa, Encarnación Manresa Marhuenda, Lorena Ruiz Fernández, Esther Poveda Pareja
Abstract:
In recent decades, the analysis of the effects of clustering as an essential factor for the development of innovations and the competitiveness of enterprises has raised great interest in different areas. Nowadays, companies have access to almost all tangible and intangible resources located and/or developed in any country in the world. However, despite the obvious advantages that this situation entails for companies, their geographical location has shown itself, increasingly clearly, to be a fundamental factor that positively influences their innovative performance and competitiveness. Industrial clusters could represent a unique level of analysis, positioned between the individual company and the industry, which makes them an ideal unit of analysis to determine the effects derived from company membership of a cluster. Also, the absorptive capacity (hereinafter 'AC') can mediate the process of innovation development by companies located in a cluster. The transformation and exploitation of knowledge could have a mediating effect between knowledge acquisition and innovative performance. The main objective of this work is to determine the key factors that affect the degree of generation and use of knowledge from the environment by companies and, consequently, their innovative performance and competitiveness. The elements analyzed are the companies' membership of a cluster and the AC. To this end, 30 most relevant papers published on this subject in the "Web of Science" database have been reviewed. Our findings show that, within a cluster, the knowledge coming from the companies' environment can significantly influence their innovative performance and competitiveness, although in this relationship, the degree of access and exploitation of the companies to this knowledge plays a fundamental role, which depends on a series of elements both internal and external to the company.Keywords: absorptive capacity, clusters, innovation, knowledge
Procedia PDF Downloads 132796 Improved Color-Based K-Mean Algorithm for Clustering of Satellite Image
Authors: Sangeeta Yadav, Mantosh Biswas
Abstract:
In this paper, we proposed an improved color based K-mean algorithm for clustering of satellite Image (SAR). Our method comprises of two stages. The first step is an interactive selection process where users are required to input the number of colors (ncolor), number of clusters, and then they are prompted to select the points in each color cluster. In the second step these points are given as input to K-mean clustering algorithm that clusters the image based on color and Minimum Square Euclidean distance. The proposed method reduces the mixed pixel problem to a great extent.Keywords: cluster, ncolor method, K-mean method, interactive selection process
Procedia PDF Downloads 297795 A Bayesian Hierarchical Poisson Model with an Underlying Cluster Structure for the Analysis of Measles in Colombia
Authors: Ana Corberan-Vallet, Karen C. Florez, Ingrid C. Marino, Jose D. Bermudez
Abstract:
In 2016, the Region of the Americas was declared free of measles, a viral disease that can cause severe health problems. However, since 2017, measles has reemerged in Venezuela and has subsequently reached neighboring countries. In 2018, twelve American countries reported confirmed cases of measles. Governmental and health authorities in Colombia, a country that shares the longest land boundary with Venezuela, are aware of the need for a strong response to restrict the expanse of the epidemic. In this work, we apply a Bayesian hierarchical Poisson model with an underlying cluster structure to describe disease incidence in Colombia. Concretely, the proposed methodology provides relative risk estimates at the department level and identifies clusters of disease, which facilitates the implementation of targeted public health interventions. Socio-demographic factors, such as the percentage of migrants, gross domestic product, and entry routes, are included in the model to better describe the incidence of disease. Since the model does not impose any spatial correlation at any level of the model hierarchy, it avoids the spatial confounding problem and provides a suitable framework to estimate the fixed-effect coefficients associated with spatially-structured covariates.Keywords: Bayesian analysis, cluster identification, disease mapping, risk estimation
Procedia PDF Downloads 153794 A Statistical Approach to Classification of Agricultural Regions
Authors: Hasan Vural
Abstract:
Turkey is a favorable country to produce a great variety of agricultural products because of her different geographic and climatic conditions which have been used to divide the country into four main and seven sub regions. This classification into seven regions traditionally has been used in order to data collection and publication especially related with agricultural production. Afterwards, nine agricultural regions were considered. Recently, the governmental body which is responsible of data collection and dissemination (Turkish Institute of Statistics-TIS) has used 12 classes which include 11 sub regions and Istanbul province. This study aims to evaluate these classification efforts based on the acreage of ten main crops in a ten years time period (1996-2005). The panel data grouped in 11 subregions has been evaluated by cluster and multivariate statistical methods. It was concluded that from the agricultural production point of view, it will be rather meaningful to consider three main and eight sub-agricultural regions throughout the country.Keywords: agricultural region, factorial analysis, cluster analysis,
Procedia PDF Downloads 416793 Cross-Cultural Analysis of the Impact of Project Atmosphere on Project Success and Failure
Authors: Omer Livvarcin, Mary Kay Park, Michael Miles
Abstract:
The current literature includes a few studies that mention the impact of relations between teams, the business environment, and experiences from previous projects. There is, however, limited research that treats the phenomenon of project atmosphere (PA) as a whole. This is especially true of research identifying parameters and sub-parameters, which allow project management (PM) teams to build a project culture that ultimately imbues project success. This study’s findings identify a number of key project atmosphere parameters and sub-parameters that affect project management success. One key parameter identified in the study is a cluster related to cultural concurrence, including artifacts such as policies and mores, values, perceptions, and assumptions. A second cluster centers on motivational concurrence, including such elements as project goals and team-member expectations, moods, morale, motivation, and organizational support. A third parameter cluster relates to experiential concurrence, with a focus on project and organizational memory, previous internal PM experience, and external environmental PM history and experience). A final cluster of parameters is comprised of those falling in the area of relational concurrence, including inter/intragroup relationships, role conflicts, and trust. International and intercultural project management data was collected and analyzed from the following countries: Canada, China, Nigeria, South Korea and Turkey. The cross-cultural nature of the data set suggests increased confidence that the findings will be generalizable across cultures and thus applicable for future international project management success. The intent of the identification of project atmosphere as a critical project management element is that a clear understanding of the dynamics of its sub-parameters upon projects may significantly improve the odds of success of future international and intercultural projects.Keywords: project management, project atmosphere, cultural concurrence, motivational concurrence, relational concurrence
Procedia PDF Downloads 318792 Genetic Divergence and Morphogenic Analysis of Sugarcane Red Rot Pathogen Colletotrichum falcatum under South Gujarat Condition
Authors: Prittesh Patel, Ramar Krishnamurthy
Abstract:
In the present study, nine strains of C. falcatum obtained from different places and cultivars were characterized for sporulation, growth rate, and 18S rRNA gene sequence. All isolates had characteristic fast-growing sparse and fleecy aerial mycelia on potato dextrose agar with sickle shape conidia (length x width: varied from 20.0 X 3.89 to 25.52 X 5.34 μm) and blackish to orange acervuli with setae (length x width: varied from 112.37X 2.78 to 167.66 X 6.73 μm). They could be divided into two groups on the base of morphology; P1, dense mycelia with concentric growth and P2, sparse mycelia with uneven growth. Genomic DNA isolation followed by PCR amplification with ITS1 and ITS4 primer produced ~550bp amplicons for all isolates. Phylogeny generated by 18S rRNA gene sequence confirmed the variation in isolates and mainly grouped into two clusters; cluster 1 contained CoC671 isolates (cfNAV and cfPAR) and Co86002 isolate (cfTIM). Other isolates cfMAD, cfKAM, and cfMAR were grouped into cluster 2. Remaining isolates did not fall into any cluster. Isolate cfGAN, collected from Co86032 was found highly diverse of all the nine isolates. In a nutshell, we found considerable genetic divergence and morphological variation within C. falcatum accessions collected from different areas of south Gujarat, India and these can be used for the breeding program.Keywords: Colletotrichum falcatum, ITS, morphology, red rot, sugarcane
Procedia PDF Downloads 127791 Evaluating the Factors Controlling the Hydrochemistry of Gaza Coastal Aquifer Using Hydrochemical and Multivariate Statistical Analysis
Authors: Madhat Abu Al-Naeem, Ismail Yusoff, Ng Tham Fatt, Yatimah Alias
Abstract:
Groundwater in Gaza strip is increasingly being exposed to anthropic and natural factors that seriously impacted the groundwater quality. Physiochemical data of groundwater can offer important information on changes in groundwater quality that can be useful in improving water management tactics. An integrative hydrochemical and statistical techniques (Hierarchical cluster analysis (HCA) and factor analysis (FA)) have been applied on the existence ten physiochemical data of 84 samples collected in (2000/2001) using STATA, AquaChem, and Surfer softwares to: 1) Provide valuable insight into the salinization sources and the hydrochemical processes controlling the chemistry of groundwater. 2) Differentiate the influence of natural processes and man-made activities. The recorded large diversity in water facies with dominance Na-Cl type that reveals a highly saline aquifer impacted by multiple complex hydrochemical processes. Based on WHO standards, only (15.5%) of the wells were suitable for drinking. HCA yielded three clusters. Cluster 1 is the highest in salinity, mainly due to the impact of Eocene saline water invasion mixed with human inputs. Cluster 2 is the lowest in salinity also due to Eocene saline water invasion but mixed with recent rainfall recharge and limited carbonate dissolution and nitrate pollution. Cluster 3 is similar in salinity to Cluster 2, but with a high diversity of facies due to the impact of many sources of salinity as sea water invasion, carbonate dissolution and human inputs. Factor analysis yielded two factors accounting for 88% of the total variance. Factor 1 (59%) is a salinization factor demonstrating the mixing contribution of natural saline water with human inputs. Factor 2 measure the hardness and pollution which explained 29% of the total variance. The negative relationship between the NO3- and pH may reveal a denitrification process in a heavy polluted aquifer recharged by a limited oxygenated rainfall. Multivariate statistical analysis combined with hydrochemical analysis indicate that the main factors controlling groundwater chemistry were Eocene saline invasion, seawater invasion, sewage invasion and rainfall recharge and the main hydrochemical processes were base ion and reverse ion exchange processes with clay minerals (water rock interactions), nitrification, carbonate dissolution and a limited denitrification process.Keywords: dendrogram and cluster analysis, water facies, Eocene saline invasion and sea water invasion, nitrification and denitrification
Procedia PDF Downloads 365790 The Effect of Hypertrophy Strength Training Using Traditional Set vs. Cluster Set on Maximum Strength and Sprinting Speed
Authors: Bjornar Kjellstadli, Shaher A. I. Shalfawi
Abstract:
The aim of this study was to investigate the effect of strength training Cluster set-method compared to traditional set-method 30 m sprinting time and maximum strength in squats and bench-press. Thirteen Physical Education students, 7 males and 6 females between the age of 19-28 years old were recruited. The students were random divided in three groups. Traditional set group (TSG) consist of 2 males and 2 females aged (±SD) (22.3 ± 1.5 years), body mass (79.2 ± 15.4 kg) and height (177.5 ± 11.3 cm). Cluster set group (CSG) consist of 3 males and 2 females aged (22.4 ± 3.29 years), body mass (81.0 ± 24.0 kg) and height (179.2 ± 11.8 cm) and a control group (CG) consist of 2 males and 2 females aged (21.5 ± 2.4 years), body mass (82.1 ± 17.4 kg) and height (175.5 ± 6.7 cm). The intervention consisted of performing squat and bench press at 70% of 1RM (twice a week) for 8 weeks using 10 repetition and 4 sets. Two types of strength-training methods were used , cluster set (CS) where the participants (CSG) performed 2 reps 5 times with a 10 s recovery in between reps and 50 s recovery between sets, and traditional set (TS) where the participants (TSG) performed 10 reps each set with 90 s recovery in between sets. The pre-tests and post-tests conducted were 1 RM in both squats and bench press, and 10 and 30 m sprint time. The 1RM test were performed with Eleiko XF barbell (20 kg), Eleiko weight plates, rack and bench from Hammerstrength. The speed test was measured with the Brower speed trap II testing system (Brower Timing Systems, Utah, USA). The participants received an individualized training program based on the pre-test of the 1RM. In addition, a mid-term test of 1RM was carried out to adjust training intensity. Each training session were supervised by the researchers. Beast sensors (Milano, Italy) were also used to monitor and quantify the training load for the participants. All groups had a statistical significant improvement in bench press 1RM (TSG 1RM from 56.3 ± 28.9 to 66 ± 28.5 kg; CSG 1RM from 69.8 ± 33.5 to 77.2 ± 34.1 kg and CG 1RM from 67.8 ± 26.6 to 72.2 ± 29.1 kg), whereas only the TSG (1RM from 84.3 ± 26.8 to 114.3 ± 26.5 kg) and CSG (1RM from 100.4 ± 33.9 to 129 ± 35.1 kg) had a statistical significant improvement in Squats 1RM (P < 0.05). However, a between groups examination reveals that there were no marked differences in 1RM squat performance between TSG and CSG (P > 0.05) and both groups had a marked improvements compared to the CG (P < 0.05). On the other hand, no differences between groups were observed in Bench press 1RM. The within groups results indicate that none of the groups had any marked improvement in the distances from 0-10 m and 10-30 m except the CSG which had a notable improvement in the distance from 10-30 m (-0.07 s; P < 0.05). Furthermore, no differences in sprinting abilities were observed between groups. The results from this investigation indicate that traditional set strength training at 70% of 1RM gave close results compared to Cluster set strength training at the same intensity. However, the results indicate that the cluster set had an effect on flying time (10-30 m) indicating that the velocity at which those repetitions were performed could be the explanation factor of this this improvement.Keywords: physical performance, 1RM, pushing velocity, velocity based training
Procedia PDF Downloads 165789 The Relationship Between Car Drivers' Background Information and Risky Events In I- Dreams Project
Authors: Dagim Dessalegn Haile
Abstract:
This study investigated the interaction between the drivers' socio-demographic background information (age, gender, and driving experience) and the risky events score in the i-DREAMS platform. Further, the relationship between the participants' background driving behavior and the i-DREAMS platform behavioral output scores of risky events was also investigated. The i-DREAMS acronym stands for Smart Driver and Road Environment Assessment and Monitoring System. It is a European Union Horizon 2020 funded project consisting of 13 partners, researchers, and industry partners from 8 countries. A total of 25 Belgian car drivers (16 male and nine female) were considered for analysis. Drivers' ages were categorized into ages 18-25, 26-45, 46-65, and 65 and older. Drivers' driving experience was also categorized into four groups: 1-15, 16-30, 31-45, and 46-60 years. Drivers are classified into two clusters based on the recorded score for risky events during phase 1 (baseline) using risky events; acceleration, deceleration, speeding, tailgating, overtaking, and lane discipline. Agglomerative hierarchical clustering using SPSS shows Cluster 1 drivers are safer drivers, and Cluster 2 drivers are identified as risky drivers. The analysis result indicated no significant relationship between age groups, gender, and experience groups except for risky events like acceleration, tailgating, and overtaking in a few phases. This is mainly because the fewer participants create less variability of socio-demographic background groups. Repeated measure ANOVA shows that cluster 2 drivers improved more than cluster 1 drivers for tailgating, lane discipline, and speeding events. A positive relationship between background drivers' behavior and i-DREAMS platform behavioral output scores is observed. It implies that car drivers who in the questionnaire data indicate committing more risky driving behavior demonstrate more risky driver behavior in the i-DREAMS observed driving data.Keywords: i-dreams, car drivers, socio-demographic background, risky events
Procedia PDF Downloads 70788 Subsidiary Strategy and Importance of Standards: Re-Interpreting the Integration-Responsiveness Framework
Authors: Jo-Ann Müller
Abstract:
The integration-responsiveness (IR) framework presents four distinct internationalization strategies which differ depending on the extent of pressure the company faces for local responsiveness and global integration. This study applies the framework to standards by examining differences in the relative importance of three types of standards depending on the role the subsidiary plays within the corporate group. Hypotheses are tested empirically in a two-stage procedure. First, the subsidiaries are grouped performing cluster analysis. In the second step, the relationship between cluster affiliation and subsidiary strategy is tested using multinomial Probit estimation. While the level of local responsiveness of a firm relates to the relative importance of national and international formal standards, the degree of vertical integration is associated with the application of internal company.Keywords: FDI, firm-level data, standards, subsidiary strategy
Procedia PDF Downloads 287787 The Study of Effect the Number of Cluster in the Branch on Vegetative Characteristics of Pistacia vera
Authors: Seyeh Hassan Eftekhar Afzali, Hamid Mohammadi
Abstract:
Pistachio is like almond but the second cycle of growth (third phase) has rather fast growth. This is caused to add final mass of product. When the germ grows, it and its cover are reached to the final size during six week period. As starting the second phase, the lignifications of pericarp is begun and continued for 4 or 6 weeks. Physiological maturity or easy separation of green from scutum is specified. This test was done according to random blocks of 6 orchards in the type of Ahmad Aghaie with 4 iterations. Vegetative properties of branch are investigated. The results of the bunch numbers on the growth of branch in current year are shown that the most growth of branch is happened by trimming of one and two bunches of the branch and the most diameter of the branch is happened by trimming of one to four bunches of branch. Trimming of a bunch is caused the most number of pistachio products in the bunch.Keywords: pistachio, cluster, bud, fruit, branch
Procedia PDF Downloads 476786 Application of Multivariate Statistics and Hydro-Chemical Approach for Groundwater Quality Assessment: A Study on Birbhum District, West Bengal, India
Authors: N. C. Ghosh, Niladri Das, Prolay Mondal, Ranajit Ghosh
Abstract:
Groundwater quality deterioration due to human activities has become a prime factor of modern life. The major concern of the study is to access spatial variation of groundwater quality and to identify the sources of groundwater chemicals and its impact on human health of the concerned area. Multivariate statistical techniques, cluster, principal component analysis, and hydrochemical fancies are been applied to measure groundwater quality data on 14 parameters from 107 sites distributed randomly throughout the Birbhum district. Five factors have been extracted using Varimax rotation with Kaiser Normalization. The first factor explains 27.61% of the total variance where high positive loading have been concentrated in TH, Ca, Mg, Cl and F (Fluoride). In the studied region, due to the presence of basaltic Rajmahal trap fluoride contamination is highly concentrated and that has an adverse impact on human health such as fluorosis. The second factor explains 24.41% of the total variance which includes Na, HCO₃, EC, and SO₄. The last factor or the fifth factor explains 8.85% of the total variance, and it includes pH which maintains the acidic and alkaline character of the groundwater. Hierarchical cluster analysis (HCA) grouped the 107 sampling station into two clusters. One cluster having high pollution and another cluster having less pollution. Moreover hydromorphological facies viz. Wilcox diagram, Doneen’s chart, and USSL diagram reveal the quality of the groundwater like the suitability of the groundwater for irrigation or water used for drinking purpose like permeability index of the groundwater, quality assessment of groundwater for irrigation. Gibb’s diagram depicts that the major portion of the groundwater of this region is rock dominated origin, as the western part of the region characterized by the Jharkhand plateau fringe comprises basalt, gneiss, granite rocks.Keywords: correlation, factor analysis, hydrological facies, hydrochemistry
Procedia PDF Downloads 213785 Detecting Local Clusters of Childhood Malnutrition in the Island Province of Marinduque, Philippines Using Spatial Scan Statistic
Authors: Novee Lor C. Leyso, Maylin C. Palatino
Abstract:
Under-five malnutrition continues to persist in the Philippines, particularly in the island Province of Marinduque, with prevalence of some forms of malnutrition even worsening in recent years. Local spatial cluster detection provides a spatial perspective in understanding this phenomenon as key in analyzing patterns of geographic variation, identification of community-appropriate programs and interventions, and focused targeting on high-risk areas. Using data from a province-wide household-based census conducted in 2014–2016, this study aimed to determine and evaluate spatial clusters of under-five malnutrition, across the province and within each municipality at the individual level using household location. Malnutrition was defined as weight-for-age z-score that fall outside the 2 standard deviations from the median of the WHO reference population. The Kulldorff’s elliptical spatial scan statistic in binomial model was used to locate clusters with high-risk of malnutrition, while adjusting for age and membership to government conditional cash transfer program as proxy for socio-economic status. One large significant cluster of under-five malnutrition was found southwest of the province, in which living in these areas at least doubles the risk of malnutrition. Additionally, at least one significant cluster were identified within each municipality—mostly located along the coastal areas. All these indicate apparent geographical variations across and within municipalities in the province. There were also similarities and disparities in the patterns of risk of malnutrition in each cluster across municipalities, and even within municipality, suggesting underlying causes at work that warrants further investigation. Therefore, community-appropriate programs and interventions should be identified and should be focused on high-risk areas to maximize limited government resources. Further studies are also recommended to determine factors affecting variations in childhood malnutrition considering the evidence of spatial clustering found in this study.Keywords: Binomial model, Kulldorff’s elliptical spatial scan statistic, Philippines, under-five malnutrition
Procedia PDF Downloads 141784 Statistical Analysis to Select Evacuation Route
Authors: Zaky Musyarof, Dwi Yono Sutarto, Dwima Rindy Atika, R. B. Fajriya Hakim
Abstract:
Each country should be responsible for the safety of people, especially responsible for the safety of people living in disaster-prone areas. One of those services is provides evacuation route for them. But all this time, the selection of evacuation route is seem doesn’t well organized, it could be seen that when a disaster happen, there will be many accumulation of people on the steps of evacuation route. That condition is dangerous to people because hampers evacuation process. By some methods in Statistical analysis, author tries to give a suggestion how to prepare evacuation route which is organized and based on people habit. Those methods are association rules, sequential pattern mining, hierarchical cluster analysis and fuzzy logic.Keywords: association rules, sequential pattern mining, cluster analysis, fuzzy logic, evacuation route
Procedia PDF Downloads 504783 Personality Based Tailored Learning Paths Using Cluster Analysis Methods: Increasing Students' Satisfaction in Online Courses
Authors: Orit Baruth, Anat Cohen
Abstract:
Online courses have become common in many learning programs and various learning environments, particularly in higher education. Social distancing forced in response to the COVID-19 pandemic has increased the demand for these courses. Yet, despite the frequency of use, online learning is not free of limitations and may not suit all learners. Hence, the growth of online learning alongside with learners' diversity raises the question: is online learning, as it currently offered, meets the needs of each learner? Fortunately, today's technology allows to produce tailored learning platforms, namely, personalization. Personality influences learner's satisfaction and therefore has a significant impact on learning effectiveness. A better understanding of personality can lead to a greater appreciation of learning needs, as well to assists educators ensure that an optimal learning environment is provided. In the context of online learning and personality, the research on learning design according to personality traits is lacking. This study explores the relations between personality traits (using the 'Big-five' model) and students' satisfaction with five techno-pedagogical learning solutions (TPLS): discussion groups, digital books, online assignments, surveys/polls, and media, in order to provide an online learning process to students' satisfaction. Satisfaction level and personality identification of 108 students who participated in a fully online learning course at a large, accredited university were measured. Cluster analysis methods (k-mean) were applied to identify learners’ clusters according to their personality traits. Correlation analysis was performed to examine the relations between the obtained clusters and satisfaction with the offered TPLS. Findings suggest that learners associated with the 'Neurotic' cluster showed low satisfaction with all TPLS compared to learners associated with the 'Non-neurotics' cluster. learners associated with the 'Consciences' cluster were satisfied with all TPLS except discussion groups, and those in the 'Open-Extroverts' cluster were satisfied with assignments and media. All clusters except 'Neurotic' were highly satisfied with the online course in general. According to the findings, dividing learners into four clusters based on personality traits may help define tailor learning paths for them, combining various TPLS to increase their satisfaction. As personality has a set of traits, several TPLS may be offered in each learning path. For the neurotics, however, an extended selection may suit more, or alternatively offering them the TPLS they less dislike. Study findings clearly indicate that personality plays a significant role in a learner's satisfaction level. Consequently, personality traits should be considered when designing personalized learning activities. The current research seeks to bridge the theoretical gap in this specific research area. Establishing the assumption that different personalities need different learning solutions may contribute towards a better design of online courses, leaving no learner behind, whether he\ she likes online learning or not, since different personalities need different learning solutions.Keywords: online learning, personality traits, personalization, techno-pedagogical learning solutions
Procedia PDF Downloads 105782 Improving the Bioprocess Phenotype of Chinese Hamster Ovary Cells Using CRISPR/Cas9 and Sponge Decoy Mediated MiRNA Knockdowns
Authors: Kevin Kellner, Nga Lao, Orla Coleman, Paula Meleady, Niall Barron
Abstract:
Chinese Hamster Ovary (CHO) cells are the prominent cell line used in biopharmaceutical production. To improve yields and find beneficial bioprocess phenotypes genetic engineering plays an essential role in recent research. The miR-23 cluster, specifically miR-24 and miR-27, was first identified as differentially expressed during hypothermic conditions suggesting a role in proliferation and productivity in CHO cells. In this study, we used sponge decoy technology to stably deplete the miRNA expression of the cluster. Furthermore, we implemented the CRISPR/Cas9 system to knockdown miRNA expression. Sponge constructs were designed for an imperfect binding of the miRNA target, protecting from RISC mediated cleavage. GuideRNAs for the CRISPR/Cas9 system were designed to target the seed region of the miRNA. The expression of mature miRNA and precursor were confirmed using RT-qPCR. For both approaches stable expressing mixed populations were generated and characterised in batch cultures. It was shown, that CRISPR/Cas9 can be implemented in CHO cells with achieving high knockdown efficacy of every single member of the cluster. Targeting of one miRNA member showed that its genomic paralog is successfully targeted as well. The stable depletion of miR-24 using CRISPR/Cas9 showed increased growth and specific productivity in a CHO-K1 mAb expressing cell line. This phenotype was further characterized using quantitative label-free LC-MS/MS showing 186 proteins differently expressed with 19 involved in proliferation and 26 involved in protein folding/translation. Targeting miR-27 in the same cell line showed increased viability in late stages of the culture compared to the control. To evaluate the phenotype in an industry relevant cell line; the miR-23 cluster, miR-24 and miR-27 were stably depleted in a Fc fusion CHO-S cell line which showed increased batch titers up to 1.5-fold. In this work, we highlighted that the stable depletion of the miR-23 cluster and its members can improve the bioprocess phenotype concerning growth and productivity in two different cell lines. Furthermore, we showed that using CRISPR/Cas9 is comparable to the traditional sponge decoy technology.Keywords: Chinese Hamster ovary cells, CRISPR/Cas9, microRNAs, sponge decoy technology
Procedia PDF Downloads 200781 Artificial Intelligence: Obstacles Patterns and Implications
Authors: Placide Poba-Nzaou, Anicet Tchibozo, Malatsi Galani, Ali Etkkali, Erwin Halim
Abstract:
Artificial intelligence (AI) is a general-purpose technology that is transforming many industries, working life and society by stimulating economic growth and innovation. Despite the huge potential of benefits to be generated, the adoption of AI varies from one organization to another, from one region to another, and from one industry to another, due in part to obstacles that can inhibit an organization or organizations located in a specific geographic region or operating in a specific industry from adopting AI technology. In this context, these obstacles and their implications for AI adoption from the perspective of configurational theory is important for at least three reasons: (1) understanding these obstacles is the first step in enabling policymakers and providers to make an informed decision in stimulating AI adoption (2) most studies have investigating obstacles or challenges of AI adoption in isolation with linear assumptions while configurational theory offers a holistic and multifaceted way of investigating the intricate interactions between perceived obstacles and barriers helping to assess their synergetic combination while holding assumptions of non-linearity leading to insights that would otherwise be out of the scope of studies investigating these obstacles in isolation. This study aims to pursue two objectives: (1) characterize organizations by uncovering the typical profiles of combinations of 15 internal and external obstacles that may prevent organizations from adopting AI technology, (2) assess the variation in terms of intensity of AI adoption associated with each configuration. We used data from a survey of AI adoption by organizations conducted throughout the EU27, Norway, Iceland and the UK (N=7549). Cluster analysis and discriminant analysis help uncover configurations of organizations based on the 15 obstacles, including eight external and seven internal. Second, we compared the clusters according to AI adoption intensity using an analysis of variance (ANOVA) and a Tamhane T2 post hoc test. The study uncovers three strongly separated clusters of organizations based on perceived obstacles to AI adoption. The clusters are labeled according to their magnitude of perceived obstacles to AI adoption: (1) Cluster I – High Level of perceived obstacles (N = 2449, 32.4%)(2) Cluster II – Low Level of perceived obstacles (N =1879, 24.9%) (3) Cluster III – Moderate Level of perceived obstacles (N =3221, 42.7%). The proposed taxonomy goes beyond the normative understanding of perceived obstacles to AI adoption and associated implications: it provides a well-structured and parsimonious lens that is useful for policymakers, AI technology providers, and researchers. Surprisingly, the ANOVAs revealed a “high level of perceived obstacles” cluster associated with a significantly high intensity of AI adoption.Keywords: Artificial intelligence (AI), obstacles, adoption, taxonomy.
Procedia PDF Downloads 107780 The Role of Knowledge Management in Innovation: Spanish Evidence
Authors: María Jesús Luengo-Valderrey, Mónica Moso-Díez
Abstract:
In the knowledge-based economy, innovation is considered essential in order to achieve survival and growth in organizations. On the other hand, knowledge management is currently understood as one of the keys to innovation process. Both factors are generally admitted as generators of competitive advantage in organizations. Specifically, activities on R&D&I and those that generate internal knowledge have a positive influence in innovation results. This paper examines this effect and if it is similar or not is what we aimed to quantify in this paper. We focus on the impact that proportion of knowledge workers, the R&D&I investment, the amounts destined for ICTs and training for innovation have on the variation of tangible and intangibles returns for the sector of high and medium technology in Spain. To do this, we have performed an empirical analysis on the results of questionnaires about innovation in enterprises in Spain, collected by the National Statistics Institute. First, using clusters methodology, the behavior of these enterprises regarding knowledge management is identified. Then, using SEM methodology, we performed, for each cluster, the study about cause-effect relationships among constructs defined through variables, setting its type and quantification. The cluster analysis results in four groups in which cluster number 1 and 3 presents the best performance in innovation with differentiating nuances among them, while clusters 2 and 4 obtained divergent results to a similar innovative effort. However, the results of SEM analysis for each cluster show that, in all cases, knowledge workers are those that affect innovation performance most, regardless of the level of investment, and that there is a strong correlation between knowledge workers and investment in knowledge generation. The main findings reached is that Spanish high and medium technology companies improve their innovation performance investing in internal knowledge generation measures, specially, in terms of R&D activities, and underinvest in external ones. This, and the strong correlation between knowledge workers and the set of activities that promote the knowledge generation, should be taken into account by managers of companies, when making decisions about their investments for innovation, since they are key for improving their opportunities in the global market.Keywords: high and medium technology sector, innovation, knowledge management, Spanish companies
Procedia PDF Downloads 238779 Wheat Cluster Farming Approach: Challenges and Prospects for Smallholder Farmers in Ethiopia
Authors: Hanna Mamo Ergando
Abstract:
Climate change is already having a severe influence on agriculture, affecting crop yields, the nutritional content of main grains, and livestock productivity. Significant adaptation investments will be necessary to sustain existing yields and enhance production and food quality to fulfill demand. Climate-smart agriculture (CSA) provides numerous potentials in this regard, combining a focus on enhancing agricultural output and incomes while also strengthening resilience and responding to climate change. To improve agriculture production and productivity, the Ethiopian government has adopted and implemented a series of strategies, including the recent agricultural cluster farming that is practiced as an effort to change, improve, and transform subsistence farming to modern, productive, market-oriented, and climate-smart approach through farmers production cluster. Besides, greater attention and focus have been given to wheat production and productivity by the government, and wheat is the major crop grown in cluster farming. Therefore, the objective of this assessment was to examine various opportunities and challenges farmers face in a cluster farming system. A qualitative research approach was used to generate primary and secondary data. Respondents were chosen using the purposeful sampling technique. Accordingly, experts from the Federal Ministry of Agriculture, the Ethiopian Agricultural Transformation Institute, the Ethiopian Agricultural Research Institute, and the Ethiopian Environment Protection Authority were interviewed. The assessment result revealed that farming in clusters is an economically viable technique for sustaining small, resource-limited, and socially disadvantaged farmers' agricultural businesses. The method assists farmers in consolidating their products and delivering them in bulk to save on transportation costs while increasing income. Smallholders' negotiating power has improved as a result of cluster membership, as has knowledge and information spillover. The key challenges, on the other hand, were identified as a lack of timely provision of modern inputs, insufficient access to credit services, conflict of interest in crop selection, and a lack of output market for agro-processing firms. Furthermore, farmers in the cluster farming approach grow wheat year after year without crop rotation or diversification techniques. Mono-cropping has disadvantages because it raises the likelihood of disease and insect outbreaks. This practice may result in long-term consequences, including soil degradation, reduced biodiversity, and economic risk for farmers. Therefore, the government must devote more resources to addressing the issue of environmental sustainability. Farmers' access to complementary services that promote production and marketing efficiencies through infrastructure and institutional services has to be improved. In general, the assessment begins with some hint that leads to a deeper study into the efficiency of the strategy implementation, upholding existing policy, and scaling up good practices in a sustainable and environmentally viable manner.Keywords: cluster farming, smallholder farmers, wheat, challenges, opportunities
Procedia PDF Downloads 227778 Clustering Based and Centralized Routing Table Topology of Control Protocol in Mobile Wireless Sensor Networks
Authors: Mbida Mohamed, Ezzati Abdellah
Abstract:
A strong challenge in the wireless sensor networks (WSN) is to save the energy and have a long life time in the network without having a high rate of loss information. However, topology control (TC) protocols are designed in a way that the network is divided and having a standard system of exchange packets between nodes. In this article, we will propose a clustering based and centralized routing table protocol of TC (CBCRT) which delegates a leader node that will encapsulate a single routing table in every cluster nodes. Hence, if a node wants to send packets to the sink, it requests the information's routing table of the current cluster from the node leader in order to root the packet.Keywords: mobile wireless sensor networks, routing, topology of control, protocols
Procedia PDF Downloads 276