Search results for: sustainable supply chain performance
4781 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport
Authors: Dominic Wentworth-Linton, Shian Gao
Abstract:
This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.Keywords: CFD simulation, Internal combustion engine, Intake system, Dynamometer test
Procedia PDF Downloads 2894780 Data Collection in Protected Agriculture for Subsequent Big Data Analysis: Methodological Evaluation in Venezuela
Authors: Maria Antonieta Erna Castillo Holly
Abstract:
During the last decade, data analysis, strategic decision making, and the use of artificial intelligence (AI) tools in Latin American agriculture have been a challenge. In some countries, the availability, quality, and reliability of historical data, in addition to the current data recording methodology in the field, makes it difficult to use information systems, complete data analysis, and their support for making the right strategic decisions. This is something essential in Agriculture 4.0. where the increase in the global demand for fresh agricultural products of tropical origin, during all the seasons of the year requires a change in the production model and greater agility in the responses to the consumer market demands of quality, quantity, traceability, and sustainability –that means extensive data-. Having quality information available and updated in real-time on what, how much, how, when, where, at what cost, and the compliance with production quality standards represents the greatest challenge for sustainable and profitable agriculture in the region. The objective of this work is to present a methodological proposal for the collection of georeferenced data from the protected agriculture sector, specifically in production units (UP) with tall structures (Greenhouses), initially for Venezuela, taking the state of Mérida as the geographical framework, and horticultural products as target crops. The document presents some background information and explains the methodology and tools used in the 3 phases of the work: diagnosis, data collection, and analysis. As a result, an evaluation of the process is carried out, relevant data and dashboards are displayed, and the first satellite maps integrated with layers of information in a geographic information system are presented. Finally, some improvement proposals and tentatively recommended applications are added to the process, understanding that their objective is to provide better qualified and traceable georeferenced data for subsequent analysis of the information and more agile and accurate strategic decision making. One of the main points of this study is the lack of quality data treatment in the Latin America area and especially in the Caribbean basin, being one of the most important points how to manage the lack of complete official data. The methodology has been tested with horticultural products, but it can be extended to other tropical crops.Keywords: greenhouses, protected agriculture, data analysis, geographic information systems, Venezuela
Procedia PDF Downloads 1364779 Soil Mixed Constructed Permeable Reactive Barrier for Groundwater Remediation: Field Observation
Authors: Ziyda Abunada
Abstract:
In-situ remediation of contaminated land with deep mixing can deliver a multi-technique remedial strategy. A field trail includes permeable reactive barrier (PRB) took place at a severely contaminated site in Yorkshire to the north of the UK through the SMiRT (Soil Mix Remediation Technology) project in May 2011. SMiRT involved the execution of the largest research field trials in the UK to provide field validation. Innovative modified bentonite materials in combination with zeolite and organoclay were used to construct six different walls of a hexagonal PRB. Field monitoring, testing and site cores were collected from the PRB twice: once 2 months after the construction and again in March 2014 (almost 34 months later).This paper presents an overview of the results of the PRB materials’ relative performance with some initial 3-year time-related assessment. Results from the monitoring program and the site cores are presented. Some good correlations are seen together with some clear difference among the materials’ efficiency. These preliminary observations represent a potential for further investigations and highlighted the main lessons learned in a filed scale.Keywords: in-situ remediation, groundwater, permeable reactive barrier, site cores
Procedia PDF Downloads 2084778 Evaluation of the Physico-Chemical and Microbial Properties of the Compost Leachate (CL) to Assess Its Role in the Bioremediation of Polyaromatic Hydrocarbons (PAHs)
Authors: Omaima A. Sharaf, Tarek A. Moussa, Said M. Badr El-Din, H. Moawad
Abstract:
Background: Polycyclic aromatic hydrocarbons (PAHs) pose great environmental and human health concerns for their widespread occurrence, persistence, and carcinogenic properties. PAHs releases due to anthropogenic activities to the wider environment have led to higher concentrations of these contaminants than would be expected from natural processes alone. This may result in a wide range of environmental problems that can accumulate in agricultural ecosystems, which threatened to become a negative impact on sustainable agricultural development. Thus, this study aimed to evaluate the physico-chemical, and microbial properties of the compost leachate (CL) to assess its role as nutrient and microbial source (biostimulation/bioaugmentation) for developing a cost-effective bioremediation technology for PAHs contaminated sites. Material and Methods: PAHs-degrading bacteria were isolated from CL that was collected from a composting site located in central Scotland, UK. Isolation was carried out by enrichment using phenanthrene (PHR), pyrene (PYR) and benzo(a)pyrene (BaP) as the sole source of carbon and energy. The isolates were characterized using a variety of phenotypic and molecular properties. Six different isolates were identified based on the difference in morphological and biochemical tests. The efficiency of these isolates in PAHs utilization was assessed. Further analysis was performed to define taxonomical status and phylogenic relation between the most potent PAHs-utilizing bacterial strains and other standard strains, using molecular approach by partial 16S rDNA gene sequence analysis. Results indicated that the 16S rDNA sequence analysis confirmed the results of biochemical identification, as both of biochemical and molecular identification of the isolates assigned them to Bacillus licheniformis, Pseudomonas aeruginosa, Alcaligenes faecalis, Serratia marcescens, Enterobacter cloacae and Providenicia which were identified as the prominent PAHs-utilizers isolated from CL. Conclusion: This study indicates that the CL samples contain a diverse population of PAHs-degrading bacteria and the use of CL may have a potential for bioremediation of PAHs contaminated sites.Keywords: polycyclic aromatic hydrocarbons, physico-chemical analyses, compost leachate, microbial and biochemical analyses, phylogenic relations, 16S rDNA sequence analysis
Procedia PDF Downloads 2684777 Evaluating The Effects of Fundamental Analysis on Earnings Per Share Concept in Stock Valuation in the Zimbabwe Stock Exchange Market
Authors: Brian Basvi
Abstract:
A technique for analyzing a security's intrinsic value is called fundamental analysis. It involves looking at relevant financial, economic, and other qualitative and quantitative aspects. Earnings Per Share (EPS), a crucial metric in fundamental analysis, is calculated by dividing a company's net income by the total number of outstanding shares. With more than 70 listed businesses, the Zimbabwe Stock Exchange (ZSE) is the primary stock exchange in Zimbabwe. This study applies the EPS financial ratio and stock valuation techniques to historical stock data from 68 companies listed on the Zimbabwe Stock Exchange. According to a ZSE study, EPS significantly affects share prices that are listed on the market. The study's objective was to assess how fundamental analysis affected the idea of EPS in ZSE stock valuation. It concluded that EPS is an important consideration for investors when they make judgments about their investments. According to the study's findings, fundamental analysis is a useful tool for ZSE investors since it offers insightful information about a company's financial performance and aids in decision-making. Investors can have a better understanding of a company's underlying worth and prospects for future growth by looking into EPS and other basic aspects.Keywords: fundamental analysis, stock valuation, EPS, share pricing
Procedia PDF Downloads 524776 Modeling and Dynamics Analysis for Intelligent Skid-Steering Vehicle Based on Trucksim-Simulink
Authors: Yansong Zhang, Xueyuan Li, Junjie Zhou, Xufeng Yin, Shihua Yuan, Shuxian Liu
Abstract:
Aiming at the verification of control algorithms for skid-steering vehicles, a vehicle simulation model of 6×6 electric skid-steering unmanned vehicle was established based on Trucksim and Simulink. The original transmission and steering mechanism of Trucksim are removed, and the electric skid-steering model and a closed-loop controller for the vehicle speed and yaw rate are built in Simulink. The simulation results are compared with the ones got by theoretical formulas. The results show that the predicted tire mechanics and vehicle kinematics of Trucksim-Simulink simulation model are closed to the theoretical results. Therefore, it can be used as an effective approach to study the dynamic performance and control algorithm of skid-steering vehicle. In this paper, a method of motion control based on feed forward control is also designed. The simulation results show that the feed forward control strategy can make the vehicle follow the target yaw rate more quickly and accurately, which makes the vehicle have more maneuverability.Keywords: skid-steering, Trucksim-Simulink, feedforward control, dynamics
Procedia PDF Downloads 3264775 Nonlinear Finite Element Modeling of Reinforced Concrete Flat Plate-Inclined Column Connection
Authors: Rabab Allouzi, Amer Alkloub
Abstract:
As the complex shaped buildings become a popular trend for architects, this paper is presented to investigate the performance of reinforced concrete flat plate-inclined column connection. The studies on the inclined column and flat plate connections are not sufficient in comparison to those on the conventional structures. The effect of column angle of inclination on the punching shear strength is found significant and studied herein. This paper presents a non-linear finite element based modeling approach to estimate behavior of RC flat plate inclined column connection. Results from simulations of RC flat plate-straight column connection show good agreement with experimental response of specimens tested by other researchers. The model is further used to study the response of inclined columns to punching at various ranges of inclination angles. The inclination angle can be included in the punching shear strength provisions provided by ACI 318-14 to account for the effect of column inclination.Keywords: punching shear, non-linear finite element, inclined columns, reinforced concrete connection
Procedia PDF Downloads 2514774 Correlation between Fuel Consumption and Voyage Related Ship Operational Energy Efficiency Measures: An Analysis from Noon Data
Authors: E. Bal Beşikçi, O. Arslan
Abstract:
Fuel saving has become one of the most important issue for shipping in terms of fuel economy and environmental impact. Lowering fuel consumption is possible for both new ships and existing ships through enhanced energy efficiency measures, technical and operational respectively. The limitations of applying technical measures due to the long payback duration raise the potential of operational changes for energy efficient ship operations. This study identifies operational energy efficiency measures related voyage performance management. We use ‘noon’ data to examine the correlation between fuel consumption and operational parameters- revolutions per minute (RPM), draft, trim, (beaufort number) BN and relative wind direction, which are used as measures of ship energy efficiency. The results of this study reveal that speed optimization is the most efficient method as fuel consumption depends heavily on RPM. In conclusion, this study will provide ship operators with the strategic approach for evaluating the priority of the operational energy efficiency measures against high fuel prices and carbon emissions.Keywords: ship, voyage related operational energy Efficiency measures, fuel consumption, pearson's correlation coefficient
Procedia PDF Downloads 6184773 Regulation of the Commercial Credits in the Foreign Exchange Operations
Authors: Marija Vicic
Abstract:
The purpose of commercial credit regulation in an unified way under Law on Foreign Exchange Operations in Republic of Serbia allows an easier state monitoring of credit operations performed by non-professionals on foreign exchange market. By broadly defining the term “commercial credits“, the state (i.e. National Bank of Serbia) is given the authority to monitor the performance of all obligations under commercial contracts in which the obligations are not performed simultaneously. In the first part of the paper, the author analyses the economic gist of commercial credits with the purpose of giving an insight into their special treatment. The author examines the term „commercial credits“ given in Law on foreign exchange operations and the difference between financial credits and irregular commercial credits (exports and imports of goods and services deemed to be commercial credits) is particularly highlighted. In the second part, the author emphasizes the specifics of commercial credit contracts, especially the effects of special requests for the parties to these contracts to notify National Bank of Serbia and specific regulations regarding maturity of obligations under these commercial credits and the assignment and compensation of the said contracts.Keywords: commercial credit, foreign exchange operations, commercial transactions, deferred payment, advance payment, (non) resident
Procedia PDF Downloads 4244772 Cloud Computing in Data Mining: A Technical Survey
Authors: Ghaemi Reza, Abdollahi Hamid, Dashti Elham
Abstract:
Cloud computing poses a diversity of challenges in data mining operation arising out of the dynamic structure of data distribution as against the use of typical database scenarios in conventional architecture. Due to immense number of users seeking data on daily basis, there is a serious security concerns to cloud providers as well as data providers who put their data on the cloud computing environment. Big data analytics use compute intensive data mining algorithms (Hidden markov, MapReduce parallel programming, Mahot Project, Hadoop distributed file system, K-Means and KMediod, Apriori) that require efficient high performance processors to produce timely results. Data mining algorithms to solve or optimize the model parameters. The challenges that operation has to encounter is the successful transactions to be established with the existing virtual machine environment and the databases to be kept under the control. Several factors have led to the distributed data mining from normal or centralized mining. The approach is as a SaaS which uses multi-agent systems for implementing the different tasks of system. There are still some problems of data mining based on cloud computing, including design and selection of data mining algorithms.Keywords: cloud computing, data mining, computing models, cloud services
Procedia PDF Downloads 4834771 Solving of Types Mathematical Routine and Non-Routine Problems in Algebra
Authors: Verónica Díaz Quezada
Abstract:
The importance given to the development of the problem solving skill and the requirement to solve problems framed in mathematical or real life contexts, in practice, they are not evidence in relation to the teaching of proportional variations. This qualitative and descriptive study aims to (1) to improve problem solving ability of high school students in Chile, (ii) to elaborate and describe a didactic intervention strategy based on learning situations in proportional variations, focused on solving types of routine problems of various contexts and non-routine problems. For this purpose, participant observation was conducted, test of mathematics problems and an opinion questionnaire to thirty-six high school students. Through the results, the highest academic performance is evidenced in the routine problems of purely mathematical context, realistic, fantasy context, and non-routine problems, except in the routine problems of real context and compound proportionality problems. The results highlight the need to consider in the curriculum different types of problems in the teaching of mathematics that relate the discipline to everyday life situationsKeywords: algebra, high school, proportion variations, nonroutine problem solving, routine problem solving
Procedia PDF Downloads 1474770 Design of Cartesian Robot for Electric Vehicle Wireless Charging Systems
Authors: Kaan Karaoglu, Raif Bayir
Abstract:
In this study, a cartesian robot is developed to improve the performance and efficiency of wireless charging of electric vehicles. The cartesian robot has three axes, each of which moves linearly. Magnetic positioning is used to align the cartesian robot transmitter charging pad. There are two different wireless charging methods, static and dynamic, for charging electric vehicles. The current state of charge information (SOC State of Charge) and location information are received wirelessly from the electric vehicle. Based on this information, the power to be transmitted is determined, and the transmitter and receiver charging pads are aligned for maximum efficiency. With this study, a fully automated cartesian robot structure will be used to charge electric vehicles with the highest possible efficiency. With the wireless communication established between the electric vehicle and the charging station, the charging status will be monitored in real-time. The cartesian robot developed in this study is a fully automatic system that can be easily used in static wireless charging systems with vehicle-machine communication.Keywords: electric vehicle, wireless charging systems, energy efficiency, cartesian robot, location detection, trajectory planning
Procedia PDF Downloads 794769 Evaluation of Trapping Efficiency of Slow Released Formulations of Methyl Eugenol with Lanolin Wax against Bactrocera zonata
Authors: Waleed Afzal Naveed, Muhammd Dildar Gogi, Muhammad Sufian, Muhammad Amjad Ali, Muhammad Junaid Nisar, Mubashar Iqbal, Amna Jalal, Faisal Munir
Abstract:
The study was carried out to evaluate the performance of Slow-Released Formulations (SRF) of Methyl eugenol with Lanolin wax in orchard of the University of Agriculture Faisalabad, Pakistan against fruit flies. Lanolin wax was mixed with methyl eugenol in nine ratios (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10). The results revealed that SRFₗₗ-7 trapped 42.1 flies /day/trap, exhibited an attractancy index (AI) of 51.71%, proved strongly attractive SRFₗₗ for B. zonata and was categorized as Class-III slow-released formulation (AI > 50%). The SRFₗₗ-2, SRFₗₗ-3, SRFₗₗ-4, SRFₗₗ-5, SRFₗₗ-6, SRFₗₗ-8 and SRFₗₗ-9 trapped 17.7, 27.9, 32.3, 23.8, 28.3, 37.8 and 19.9 flies /day/trap, exhibited an attractancy index (AI) of 20.54%, 41.02%, 26.00%, 34.15%, 43.50%, 49.86% and 46.07% AI respectively, proved moderately attractive slow-released formulations for B. zonata and were categorized as Class-II slow-released formulations (AI = 11-50%). However, SRFₗₗ-1 trapped 14.8 flies /day/trap, exhibited 0.71% AI proved little or nonattractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (AI < 11%).Keywords: Bactrocera zonata, slow-released formulation, lenoline wax, methyl euginol
Procedia PDF Downloads 2404768 Association between Polygenic Risk of Alzheimer's Dementia, Brain MRI and Cognition in UK Biobank
Authors: Rachana Tank, Donald. M. Lyall, Kristin Flegal, Joey Ward, Jonathan Cavanagh
Abstract:
Alzheimer’s research UK estimates by 2050, 2 million individuals will be living with Late Onset Alzheimer’s disease (LOAD). However, individuals experience considerable cognitive deficits and brain pathology over decades before reaching clinically diagnosable LOAD and studies have utilised gene candidate studies such as genome wide association studies (GWAS) and polygenic risk (PGR) scores to identify high risk individuals and potential pathways. This investigation aims to determine whether high genetic risk of LOAD is associated with worse brain MRI and cognitive performance in healthy older adults within the UK Biobank cohort. Previous studies investigating associations of PGR for LOAD and measures of MRI or cognitive functioning have focused on specific aspects of hippocampal structure, in relatively small sample sizes and with poor ‘controlling’ for confounders such as smoking. Both the sample size of this study and the discovery GWAS sample are bigger than previous studies to our knowledge. Genetic interaction between loci showing largest effects in GWAS have not been extensively studied and it is known that APOE e4 poses the largest genetic risk of LOAD with potential gene-gene and gene-environment interactions of e4, for this reason we also analyse genetic interactions of PGR with the APOE e4 genotype. High genetic loading based on a polygenic risk score of 21 SNPs for LOAD is associated with worse brain MRI and cognitive outcomes in healthy individuals within the UK Biobank cohort. Summary statistics from Kunkle et al., GWAS meta-analyses (case: n=30,344, control: n=52,427) will be used to create polygenic risk scores based on 21 SNPs and analyses will be carried out in N=37,000 participants in the UK Biobank. This will be the largest study to date investigating PGR of LOAD in relation to MRI. MRI outcome measures include WM tracts, structural volumes. Cognitive function measures include reaction time, pairs matching, trail making, digit symbol substitution and prospective memory. Interaction of the APOE e4 alleles and PGR will be analysed by including APOE status as an interaction term coded as either 0, 1 or 2 e4 alleles. Models will be adjusted partially for adjusted for age, BMI, sex, genotyping chip, smoking, depression and social deprivation. Preliminary results suggest PGR score for LOAD is associated with decreased hippocampal volumes including hippocampal body (standardised beta = -0.04, P = 0.022) and tail (standardised beta = -0.037, P = 0.030), but not with hippocampal head. There were also associations of genetic risk with decreased cognitive performance including fluid intelligence (standardised beta = -0.08, P<0.01) and reaction time (standardised beta = 2.04, P<0.01). No genetic interactions were found between APOE e4 dose and PGR score for MRI or cognitive measures. The generalisability of these results is limited by selection bias within the UK Biobank as participants are less likely to be obese, smoke, be socioeconomically deprived and have fewer self-reported health conditions when compared to the general population. Lack of a unified approach or standardised method for calculating genetic risk scores may also be a limitation of these analyses. Further discussion and results are pending.Keywords: Alzheimer's dementia, cognition, polygenic risk, MRI
Procedia PDF Downloads 1174767 An Efficient Algorithm for Solving the Transmission Network Expansion Planning Problem Integrating Machine Learning with Mathematical Decomposition
Authors: Pablo Oteiza, Ricardo Alvarez, Mehrdad Pirnia, Fuat Can
Abstract:
To effectively combat climate change, many countries around the world have committed to a decarbonisation of their electricity, along with promoting a large-scale integration of renewable energy sources (RES). While this trend represents a unique opportunity to effectively combat climate change, achieving a sound and cost-efficient energy transition towards low-carbon power systems poses significant challenges for the multi-year Transmission Network Expansion Planning (TNEP) problem. The objective of the multi-year TNEP is to determine the necessary network infrastructure to supply the projected demand in a cost-efficient way, considering the evolution of the new generation mix, including the integration of RES. The rapid integration of large-scale RES increases the variability and uncertainty in the power system operation, which in turn increases short-term flexibility requirements. To meet these requirements, flexible generating technologies such as energy storage systems must be considered within the TNEP as well, along with proper models for capturing the operational challenges of future power systems. As a consequence, TNEP formulations are becoming more complex and difficult to solve, especially for its application in realistic-sized power system models. To meet these challenges, there is an increasing need for developing efficient algorithms capable of solving the TNEP problem with reasonable computational time and resources. In this regard, a promising research area is the use of artificial intelligence (AI) techniques for solving large-scale mixed-integer optimization problems, such as the TNEP. In particular, the use of AI along with mathematical optimization strategies based on decomposition has shown great potential. In this context, this paper presents an efficient algorithm for solving the multi-year TNEP problem. The algorithm combines AI techniques with Column Generation, a traditional decomposition-based mathematical optimization method. One of the challenges of using Column Generation for solving the TNEP problem is that the subproblems are of mixed-integer nature, and therefore solving them requires significant amounts of time and resources. Hence, in this proposal we solve a linearly relaxed version of the subproblems, and trained a binary classifier that determines the value of the binary variables, based on the results obtained from the linearized version. A key feature of the proposal is that we integrate the binary classifier into the optimization algorithm in such a way that the optimality of the solution can be guaranteed. The results of a study case based on the HRP 38-bus test system shows that the binary classifier has an accuracy above 97% for estimating the value of the binary variables. Since the linearly relaxed version of the subproblems can be solved with significantly less time than the integer programming counterpart, the integration of the binary classifier into the Column Generation algorithm allowed us to reduce the computational time required for solving the problem by 50%. The final version of this paper will contain a detailed description of the proposed algorithm, the AI-based binary classifier technique and its integration into the CG algorithm. To demonstrate the capabilities of the proposal, we evaluate the algorithm in case studies with different scenarios, as well as in other power system models.Keywords: integer optimization, machine learning, mathematical decomposition, transmission planning
Procedia PDF Downloads 894766 Nano-Pesticides: Recent Emerging Tool for Sustainable Agricultural Practices
Authors: Ekta, G. K. Darbha
Abstract:
Nanotechnology offers the potential of simultaneously increasing efficiency as compared to their bulk material as well as reducing harmful environmental impacts of pesticides in field of agriculture. The term nanopesticide covers different pesticides that are cumulative of several surfactants, polymers, metal ions, etc. of nanometer size ranges from 1-1000 nm and exhibit abnormal behavior (high efficacy and high specific surface area) of nanomaterials. Commercial formulations of pesticides used by farmers nowadays cannot be used effectively due to a number of problems associated with them. For example, more than 90% of applied formulations are either lost in the environment or unable to reach the target area required for effective pest control. Around 20−30% of pesticides are lost through emissions. A number of factors (application methods, physicochemical properties of the formulations, and environmental conditions) can influence the extent of loss during application. It is known that among various formulations, polymer-based formulations show the greatest potential due to their greater efficacy, slow release and protection against premature degradation of active ingredient as compared to other commercial formulations. However, the nanoformulations can have a significant effect on the fate of active ingredient as well as may release some new ingredients by reacting with existing soil contaminants. Environmental fate of these newly generated species is still not explored very well which is essential to field scale experiments and hence a lot to be explored in the field of environmental fate, nanotoxicology, transport properties and stability of such formulations. In our preliminary work, we have synthesized polymer based nanoformulation of commercially used weedicide atrazine. Atrazine belongs to triazine class of herbicide, which is used in the effective control of seed germinated dicot weeds and grasses. It functions by binding to the plastoquinone-binding protein in PS-II. Plant death results from starvation and oxidative damage caused by breakdown in electron transport system. The stability of the suspension of nanoformulation containing herbicide has been evaluated by considering different parameters like polydispersity index, particle diameter, zeta-potential under different environmental relevance condition such as pH range 4-10, temperature range from 25°C to 65°C and stability of encapsulation also have been studied for different amount of added polymer. Morphological characterization has been done by using SEM.Keywords: atrazine, nanoformulation, nanopesticide, nanotoxicology
Procedia PDF Downloads 2604765 Ultra Reliable Communication: Availability Analysis in 5G Cellular Networks
Authors: Yosra Benchaabene, Noureddine Boujnah, Faouzi Zarai
Abstract:
To meet the growing demand of users, the fifth generation (5G) will continue to provide services to higher data rates with higher carrier frequencies and wider bandwidths. As part of the 5G communication paradigm, Ultra Reliable Communication (URC) is envisaged as an important technology pillar for providing anywhere and anytime services to end users. Ultra Reliable Communication (URC) is considered an important technology that why it has become an active research topic. In this work, we analyze the availability of a service in the space domain. We characterize spatially available areas consisting of all locations that meet a performance requirement with confidence, and we define cell availability and system availability, individual user availability, and user-oriented system availability. Poisson point process (PPP) and Voronoi tessellation are adopted to model the spatial characteristics of a cell deployment in heterogeneous networks. Numerical results are presented, also highlighting the effect of different system parameters on the achievable link availability.Keywords: URC, dependability and availability, space domain analysis, Poisson point process, Voronoi Tessellation
Procedia PDF Downloads 1274764 Aliens in Space: Reflections on an Applied Theatre Project in a Medium Secure Hospital
Authors: Ashley Barnes
Abstract:
This paper will consider the ways in which varied notions of Space played a central role in a 12-week drama project with patients in a Medium Secure Hospital in the UK. In the project, the patients devised and performed a series of sketches, inspired by Science Fiction films, which echoed their own experience of alienation. During the project, the familiar and rigorously regulated Activity Room became a site of imagination, adventure and laughter; transforming the atmosphere of the hospital and allowing the patients to be transported to another space entirely. A space that was as much in their heads as in the physical domain. It will be argued that, although work created in an institution such as a Medium Secure Hospital is infused with hegemonic associations and meanings, the starting point for such work should be to seek an empty space in which the participants can allow their imaginations to be released. This work sits within a range of contexts and will be consciously interdisciplinary. It will draw from Human Geography and Criminology, as well as Performance and Applied Theatre Literature. It is hoped that this paper will build upon the literature that relates to the very particular environment of Secure Hospitals and to provide a starting point for further practical exploration.Keywords: criminal justice, mental health, science fiction films, space and place
Procedia PDF Downloads 2254763 Mathematical Modelling and Performance Investigating of Salt Gradient Solar Pond
Authors: Umesh Kumar Sinha, Monika
Abstract:
The author has tried to increase the efficiency of storage zone of a salt gradient solar pond, storing heat and delivering it to different uses by extracting heat from the storage zone of a salt gradient solar pond (SGSP). A mathematical analysis has demonstrated that the heat extraction from the storage zone might potentially produce heat at a reasonably high temperature of up to 115 degrees centigrade, which increases the efficiency of the salt gradient solar pond when compared to a corrugated bottom solar pond to a conventional salt gradient solar pond. The C++ program was implemented to get the simulation results. The system and operating characteristics of the salt gradient solar pond, such as the depth of the pond, heat extraction rate, heat capacity rate, and area enhancement factor (β), have been found to have a variety of effects on efficiency and temperature distribution. It has been reported that system and operating factors affect the temperature distribution in the solar pond.Keywords: solar pond, heat extraction rate, simulation results using C⁺⁺, area enhancement factor (β), surface convective zone, gradient zone, storage zone
Procedia PDF Downloads 234762 Partially Fluorinated Electrolyte for Lithium-Ion Batteries
Authors: Gebregziabher Brhane Berhe, Bing Joe Hwange, Wei-Nien Su
Abstract:
For a high-voltage cell, severe capacity fading is usually observed when the commercially carbonate-based electrolyte is employed due to the oxidative decomposition of solvents. To mitigate this capacity fading, an advanced electrolyte of fluoroethylene carbonate, ethyl methyl carbonate (EMC), and 1,1,2,2-Tetrafluoroetyle-2,2,3,3-tetrafluoropropyl ether (TTE) (in vol. ratio of 3:2:5) is dissolved with oxidative stability. A high-voltage lithium-ion battery was designed by coupling sulfured carbon anode from polyacrylonitrile (S-C(PAN)) and LiN0.5Mn1.5 O4 (LNMO) cathode. The discharged capacity of the cell made with modified electrolyte reaches 688 mAhg-1S a rate of 2 C, while only 19 mAhg-1S for the control electrolyte. The adopted electrolyte can effectively stabilize the sulfurized carbon anode and LNMO cathode surfaces, as the X-ray photoelectron spectroscopy (XPS) results confirmed. The developed robust high-voltage lithium-ion battery enjoys wider oxidative stability, high rate capability, and good cyclic performance, which can be attributed to the partially fluorinated electrolyte formulations with balanced viscosity and conductivity.Keywords: high voltage, LNMO, fluorinated electrolyte, lithium-ion batteries
Procedia PDF Downloads 744761 Using Optimal Cultivation Strategies for Enhanced Biomass and Lipid Production of an Indigenous Thraustochytrium sp. BM2
Authors: Hsin-Yueh Chang, Pin-Chen Liao, Jo-Shu Chang, Chun-Yen Chen
Abstract:
Biofuel has drawn much attention as a potential substitute to fossil fuels. However, biodiesel from waste oil, oil crops or other oil sources can only satisfy partial existing demands for transportation. Due to the feature of being clean, green and viable for mass production, using microalgae as a feedstock for biodiesel is regarded as a possible solution for a low-carbon and sustainable society. In particular, Thraustochytrium sp. BM2, an indigenous heterotrophic microalga, possesses the potential for metabolizing glycerol to produce lipids. Hence, it is being considered as a promising microalgae-based oil source for biodiesel production and other applications. This study was to optimize the culture pH, scale up, assess the feasibility of producing microalgal lipid from crude glycerol and apply operation strategies following optimal results from shake flask system in a 5L stirred-tank fermenter for further enhancing lipid productivities. Cultivation of Thraustochytrium sp. BM2 without pH control resulted in the highest lipid production of 3944 mg/L and biomass production of 4.85 g/L. Next, when initial glycerol and corn steep liquor (CSL) concentration increased five times (50 g and 62.5 g, respectively), the overall lipid productivity could reach 124 mg/L/h. However, when using crude glycerol as a sole carbon source, direct addition of crude glycerol could inhibit culture growth. Therefore, acid and metal salt pretreatment methods were utilized to purify the crude glycerol. Crude glycerol pretreated with acid and CaCl₂ had the greatest overall lipid productivity 131 mg/L/h when used as a carbon source and proved to be a better substitute for pure glycerol as carbon source in Thraustochytrium sp. BM2 cultivation medium. Engineering operation strategies such as fed-batch and semi-batch operation were applied in the cultivation of Thraustochytrium sp. BM2 for the improvement of lipid production. In cultivation of fed-batch operation strategy, harvested biomass 132.60 g and lipid 69.15 g were obtained. Also, lipid yield 0.20 g/g glycerol was same as in batch cultivation, although with poor overall lipid productivity 107 mg/L/h. In cultivation of semi-batch operation strategy, overall lipid productivity could reach 158 mg/L/h due to the shorter cultivation time. Harvested biomass and lipid achieved 232.62 g and 126.61 g respectively. Lipid yield was improved from 0.20 to 0.24 g/g glycerol. Besides, product costs of three kinds of operation strategies were also calculated. The lowest product cost 12.42 $NTD/g lipid was obtained while employing semi-batch operation strategy and reduced 33% in comparison with batch operation strategy.Keywords: heterotrophic microalga Thrasutochytrium sp. BM2, microalgal lipid, crude glycerol, fermentation strategy, biodiesel
Procedia PDF Downloads 1534760 Analysis of Alliin and Allicin Contents in Allium tuncelianum
Authors: M. Ipek, A. Cansev, A. Ipek, Y. Sahan
Abstract:
Allium tuncelianum is a close relative of cultivated garlic (A. sativum L.) and naturally grows only in eastern part of Turkey. This species has mild garlic odor and therefore, it is locally consumed as garlic by collecting from its natural flora. This over collection threatens the species to extinction. Although it has morphological resemblance to cultivated garlic, the nutritional value of the species has not been characterized very well. Alliin and allicin are two predominant organosulfur compounds found in cultivated garlic. Allicin derived from alliin precursor gives garlic characteristic odor and most of the garlic health benefits are attributed to this compound. The aims of this work were to determine alliin and allicin contents of A. tuncelianum and to compare them with those of cultivated garlic, onion (A. cepa L.) and leek (A. porrum L.). Alliin and allicin were extracted from 400 mg lyophilized samples and 10 µl extracts were measured with high-performance liquid chromatography attached with diode array detector. The alliin contents of A. tuncelianum genotypes ranged from 2.5 to 7.0 mg/g and the allicin contents changed from 0.5 to 1.5 mg/g, whereas alliin and allicin contents of garlic genotypes ranged from 20.0 to 30.0 mg/g and 3.0 to 6.0 mg/g, respectively. On the other hand, we did not detect any measurable alliin and allicin in onion or leek tissues. In conclusion, alliin and allicin contents of A. tuncelianum were characterized first time in this study, which are about 20% of alliin and allicin contents of cultivated garlic.Keywords: allicin, alliin, Allium tuncelianum, garlic
Procedia PDF Downloads 3724759 Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Authors: Jiangbo Shi, Zeyu Gao, Chen Li
Abstract:
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with precisely annotated masks which is hard to obtain. Training with weakly labeled data is a popular solution for reducing the workload of annotation. In this paper, we propose a novel meta-learning-based nuclei segmentation method which follows the label correction paradigm to leverage data with noisy masks. Specifically, we design a fully conventional meta-model that can correct noisy masks by using a small amount of clean meta-data. Then the corrected masks are used to supervise the training of the segmentation model. Meanwhile, a bi-level optimization method is adopted to alternately update the parameters of the main segmentation model and the meta-model. Extensive experimental results on two nuclear segmentation datasets show that our method achieves the state-of-the-art result. In particular, in some noise scenarios, it even exceeds the performance of training on supervised data.Keywords: deep learning, histopathological image, meta-learning, nuclei segmentation, weak annotations
Procedia PDF Downloads 1434758 Strategic Analysis of Energy and Impact Assessment of Microalgae Based Biodiesel and Biogas Production in Outdoor Raceway Pond: A Life Cycle Perspective
Authors: T. Sarat Chandra, M. Maneesh Kumar, S. N. Mudliar, V. S. Chauhan, S. Mukherji, R. Sarada
Abstract:
The life cycle assessment (LCA) of biodiesel production from freshwater microalgae Scenedesmus dimorphus cultivated in open raceway pond is performed. Various scenarios for biodiesel production were simulated using primary and secondary data. The parameters varied in the modelled scenarios were related to biomass productivity, mode of culture mixing and type of energy source. The process steps included algae cultivation in open raceway ponds, harvesting by chemical flocculation, dewatering by mechanical drying option (MDO) followed by extraction, reaction and purification. Anaerobic digestion of defatted algal biomass (DAB) for biogas generation is considered as a co-product allocation and the energy derived from DAB was thereby used in the upstream of the process. The scenarios were analysed for energy demand, emissions and environmental impacts within the boundary conditions grounded on "cradle to gate" inventory. Across all the Scenarios, cultivation via raceway pond was observed to be energy intensive process. The mode of culture mixing and biomass productivity determined the energy requirements of the cultivation step. Emissions to Freshwater were found to be maximum contributing to 93-97% of total emissions in all the scenarios. Global warming potential (GWP) was the found to be major environmental impact accounting to about 99% of total environmental impacts in all the modelled scenarios. It was noticed that overall emissions and impacts were directly related to energy demand and an inverse relationship was observed with biomass productivity. The geographic location of an energy source affected the environmental impact of a given process. The integration of defatted algal remnants derived electricity with the cultivation system resulted in a 2% reduction in overall energy demand. Direct biogas generation from microalgae post harvesting is also analysed. Energy surplus was observed after using part of the energy in upstream for biomass production. Results suggest biogas production from microalgae post harvesting as an environmentally viable and sustainable option compared to biodiesel production.Keywords: biomass productivity, energy demand, energy source, Lifecycle Assessment (LCA), microalgae, open raceway pond
Procedia PDF Downloads 2924757 Shotcrete Performance Optimisation and Audit Using 3D Laser Scanning
Authors: Carlos Gonzalez, Neil Slatcher, Marcus Properzi, Kan Seah
Abstract:
In many underground mining operations, shotcrete is used for permanent rock support. Shotcrete thickness is a critical measure of the success of this process. 3D Laser Mapping, in conjunction with Jetcrete, has developed a 3D laser scanning system specifically for measuring the thickness of shotcrete. The system is mounted on the shotcrete spraying machine and measures the rock faces before and after spraying. The calculated difference between the two 3D surface models is measured as the thickness of the sprayed concrete. Typical work patterns for the shotcrete process required a rapid and automatic system. The scanning takes place immediately before and after the application of the shotcrete so no convergence takes place in the interval between scans. Automatic alignment of scans without targets was implemented which allows for the possibility of movement of the spraying machine between scans. Case studies are presented where accuracy tests are undertaken and automatic audit reports are calculated. The use of 3D imaging data for the calculation of shotcrete thickness is an important tool for geotechnical engineers and contract managers, and this could become the new state-of-the-art methodology for the mining industry.Keywords: 3D imaging, shotcrete, surface model, tunnel stability
Procedia PDF Downloads 2954756 Digital Twin for a Floating Solar Energy System with Experimental Data Mining and AI Modelling
Authors: Danlei Yang, Luofeng Huang
Abstract:
The integration of digital twin technology with renewable energy systems offers an innovative approach to predicting and optimising performance throughout the entire lifecycle. A digital twin is a continuously updated virtual replica of a real-world entity, synchronised with data from its physical counterpart and environment. Many digital twin companies today claim to have mature digital twin products, but their focus is primarily on equipment visualisation. However, the core of a digital twin should be its model, which can mirror, shadow, and thread with the real-world entity, which is still underdeveloped. For a floating solar energy system, a digital twin model can be defined in three aspects: (a) the physical floating solar energy system along with environmental factors such as solar irradiance and wave dynamics, (b) a digital model powered by artificial intelligence (AI) algorithms, and (c) the integration of real system data with the AI-driven model and a user interface. The experimental setup for the floating solar energy system, is designed to replicate real-ocean conditions of floating solar installations within a controlled laboratory environment. The system consists of a water tank that simulates an aquatic surface, where a floating catamaran structure supports a solar panel. The solar simulator is set up in three positions: one directly above and two inclined at a 45° angle in front and behind the solar panel. This arrangement allows the simulation of different sun angles, such as sunrise, midday, and sunset. The solar simulator is positioned 400 mm away from the solar panel to maintain consistent solar irradiance on its surface. Stability for the floating structure is achieved through ropes attached to anchors at the bottom of the tank, which simulates the mooring systems used in real-world floating solar applications. The floating solar energy system's sensor setup includes various devices to monitor environmental and operational parameters. An irradiance sensor measures solar irradiance on the photovoltaic (PV) panel. Temperature sensors monitor ambient air and water temperatures, as well as the PV panel temperature. Wave gauges measure wave height, while load cells capture mooring force. Inclinometers and ultrasonic sensors record heave and pitch amplitudes of the floating system’s motions. An electric load measures the voltage and current output from the solar panel. All sensors collect data simultaneously. Artificial neural network (ANN) algorithms are central to developing the digital model, which processes historical and real-time data, identifies patterns, and predicts the system’s performance in real time. The data collected from various sensors are partly used to train the digital model, with the remaining data reserved for validation and testing. The digital twin model combines the experimental setup with the ANN model, enabling monitoring, analysis, and prediction of the floating solar energy system's operation. The digital model mirrors the functionality of the physical setup, running in sync with the experiment to provide real-time insights and predictions. It provides useful industrial benefits, such as informing maintenance plans as well as design and control strategies for optimal energy efficiency. In long term, this digital twin will help improve overall solar energy yield whilst minimising the operational costs and risks.Keywords: digital twin, floating solar energy system, experiment setup, artificial intelligence
Procedia PDF Downloads 214755 Sustainable Production of Algae through Nutrient Recovery in the Biofuel Conversion Process
Authors: Bagnoud-Velásquez Mariluz, Damergi Eya, Grandjean Dominique, Frédéric Vogel, Ludwig Christian
Abstract:
The sustainability of algae to biofuel processes is seriously affected by the energy intensive production of fertilizers. Large amounts of nitrogen and phosphorus are required for a large-scale production resulting in many cases in a negative impact of the limited mineral resources. In order to meet the algal bioenergy opportunity it appears crucial the promotion of processes applying a nutrient recovery and/or making use of renewable sources including waste. Hydrothermal (HT) conversion is a promising and suitable technology for microalgae to generate biofuels. Besides the fact that water is used as a “green” reactant and solvent and that no biomass drying is required, the technology offers a great potential for nutrient recycling. This study evaluated the possibility to treat the water HT effluent by the growth of microalgae while producing renewable algal biomass. As already demonstrated in previous works by the authors, the HT aqueous product besides having N, P and other important nutrients, presents a small fraction of organic compounds rarely studied. Therefore, extracted heteroaromatic compounds in the HT effluent were the target of the present research; they were profiled using GC-MS and LC-MS-MS. The results indicate the presence of cyclic amides, piperazinediones, amines and their derivatives. The most prominent nitrogenous organic compounds (NOC’s) in the extracts were carefully examined by their effect on microalgae, namely 2-pyrrolidinone and β-phenylethylamine (β-PEA). These two substances were prepared at three different concentrations (10, 50 and 150 ppm). This toxicity bioassay used three different microalgae strains: Phaeodactylum tricornutum, Chlorella sorokiniana and Scenedesmus vacuolatus. The confirmed IC50 was for all cases ca. 75ppm. Experimental conditions were set up for the growth of microalgae in the aqueous phase by adjusting the nitrogen concentration (the key nutrient for algae) to fit that one established for a known commercial medium. The values of specific NOC’s were lowered at concentrations of 8.5 mg/L 2-pyrrolidinone; 1mg/L δ-valerolactam and 0.5 mg/L β-PEA. The growth with the diluted HT solution was kept constant with no inhibition evidence. An additional ongoing test is addressing the possibility to apply an integrated water cleanup step making use of the existent hydrothermal catalytic facility.Keywords: hydrothermal process, microalgae, nitrogenous organic compounds, nutrient recovery, renewable biomass
Procedia PDF Downloads 4144754 Order Optimization of a Telecommunication Distribution Center through Service Lead Time
Authors: Tamás Hartványi, Ferenc Tóth
Abstract:
European telecommunication distribution center performance is measured by service lead time and quality. Operation model is CTO (customized to order) namely, a high mix customization of telecommunication network equipment and parts. CTO operation contains material receiving, warehousing, network and server assembly to order and configure based on customer specifications. Variety of the product and orders does not support mass production structure. One of the success factors to satisfy customer is to have a proper aggregated planning method for the operation in order to have optimized human resources and highly efficient asset utilization. Research will investigate several methods and find proper way to have an order book simulation where practical optimization problem may contain thousands of variables and the simulation running times of developed algorithms were taken into account with high importance. There are two operation research models that were developed, customer demand is given in orders, no change over time, customer demands are given for product types, and changeover time is constant.Keywords: CTO, aggregated planning, demand simulation, changeover time
Procedia PDF Downloads 2704753 Waste Bone Based Catalyst: Characterization and Esterification Application
Authors: Amit Keshav
Abstract:
Waste bone, produced in large quantity (8-10 kg./day) from a slaughterhouse, could be a cheap (cost $0.20 per kg) substitute for commercial catalysts. In the present work, catalyst for esterification reaction was prepared from waste bone and characterized by various techniques. Bone was deoiled and then sulfonated. Fourier-transform infrared spectroscopy (FTIR) spectra of prepared catalyst predicted –OH vibration at 3416 and 1630 cm⁻¹, S-O stretching at 1124 cm⁻¹ and intense bands of hydroxypatite in a region between 500 and 700 cm⁻¹. X-ray diffraction (XRD) predicts peaks of hydroxyapatite, CaO, and tricalcium phosphate. Scanning electron microscope (SEM) was employed to reveal the presence of non-uniformity deposited fine particles on the catalyst surface that represents active acidic sites. The prepared catalyst was employed to study its performance on esterification reaction between acrylic acid and ethanol in a molar ratio of 1:1 at a set temperature of 60 °C. Results show an equilibrium conversion of 49% which is matched to the commercial catalysts employed in literature. Thus waste bone could be a good catalyst for acrylic acid removal from waste industrial streams via the process of esterification.Keywords— Heterogeneous catalyst, characterization, esterification, equilibrium conversionKeywords: heterogeneous catalyst, characterization, esterification, equilibrium conversion
Procedia PDF Downloads 1514752 Comparison of Statistical Methods for Estimating Missing Precipitation Data in the River Subbasin Lenguazaque, Colombia
Authors: Miguel Cañon, Darwin Mena, Ivan Cabeza
Abstract:
In this work was compared and evaluated the applicability of statistical methods for the estimation of missing precipitations data in the basin of the river Lenguazaque located in the departments of Cundinamarca and Boyacá, Colombia. The methods used were the method of simple linear regression, distance rate, local averages, mean rates, correlation with nearly stations and multiple regression method. The analysis used to determine the effectiveness of the methods is performed by using three statistical tools, the correlation coefficient (r2), standard error of estimation and the test of agreement of Bland and Altmant. The analysis was performed using real rainfall values removed randomly in each of the seasons and then estimated using the methodologies mentioned to complete the missing data values. So it was determined that the methods with the highest performance and accuracy in the estimation of data according to conditions that were counted are the method of multiple regressions with three nearby stations and a random application scheme supported in the precipitation behavior of related data sets.Keywords: statistical comparison, precipitation data, river subbasin, Bland and Altmant
Procedia PDF Downloads 470