Search results for: uninterruptible power supply (UPS)
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8245

Search results for: uninterruptible power supply (UPS)

6805 Equivalent Electrical Model of a Shielded Pulse Planar Transformer in Isolated Gate Drivers for SiC MOSFETs

Authors: Loreine Makki, Marc Anthony Mannah, Christophe Batard, Nicolas Ginot, Julien Weckbrodt

Abstract:

Planar transformers are extensively utilized in high-frequency, high power density power electronic converters. The breakthrough of wide-bandgap technology compelled power electronic system miniaturization while inducing pivotal effects on system modeling and manufacturing within the power electronics industry. A significant consideration to simulate and model the unanticipated parasitic parameters emerges with the requirement to mitigate electromagnetic disturbances. This paper will present an equivalent circuit model of a shielded pulse planar transformer quantifying leakage inductance and resistance in addition to the interwinding capacitance of the primary and secondary windings. ANSYS Q3D Extractor was utilized to model and simulate the transformer, intending to study the immunity of the simulated equivalent model to high dv/dt occurrences. A convenient correlation between simulation and experimental results is presented.

Keywords: Planar transformers, wide-band gap, equivalent circuit model, shielded, ANSYS Q3D Extractor, dv/dt

Procedia PDF Downloads 206
6804 Fast Robust Switching Control Scheme for PWR-Type Nuclear Power Plants

Authors: Piyush V. Surjagade, Jiamei Deng, Paul Doney, S. R. Shimjith, A. John Arul

Abstract:

In sophisticated and complex systems such as nuclear power plants, maintaining the system's stability in the presence of uncertainties and disturbances and obtaining a fast dynamic response are the most challenging problems. Thus, to ensure the satisfactory and safe operation of nuclear power plants, this work proposes a new fast, robust optimal switching control strategy for pressurized water reactor-type nuclear power plants. The proposed control strategy guarantees a substantial degree of robustness, fast dynamic response over the entire operational envelope, and optimal performance during the nominal operation of the plant. To improve the robustness, obtain a fast dynamic response, and make the system optimal, a bank of controllers is designed. Various controllers, like a baseline proportional-integral-derivative controller, an optimal linear quadratic Gaussian controller, and a robust adaptive L1 controller, are designed to perform distinct tasks in a specific situation. At any instant of time, the most suitable controller from the bank of controllers is selected using the switching logic unit that designates the controller by monitoring the health of the nuclear power plant or transients. The proposed switching control strategy optimizes the overall performance and increases operational safety and efficiency. Simulation studies have been performed considering various uncertainties and disturbances that demonstrate the applicability and effectiveness of the proposed switching control strategy over some conventional control techniques.

Keywords: switching control, robust control, optimal control, nuclear power control

Procedia PDF Downloads 137
6803 Coordinated Voltage Control in a Radial Distribution System

Authors: Shivarudraswamy, Anubhav Shrivastava, Lakshya Bhat

Abstract:

Distributed generation has indeed become a major area of interest in recent years. Distributed Generation can address large number of loads in a power line and hence has better efficiency over the conventional methods. However there are certain drawbacks associated with it, increase in voltage being the major one. This paper addresses the voltage control at the buses for an IEEE 30 bus system by regulating reactive power. For carrying out the analysis, the suitable location for placing distributed generators (DG) is identified through load flow analysis and seeing where the voltage profile is dipping. MATLAB programming is used to regulate the voltage at all buses within +/-5% of the base value even after the introduction of DG’s. Three methods for regulation of voltage are discussed. A sensitivity based analysis is later carried out to determine the priority among the various methods listed in the paper.

Keywords: distributed generators, distributed system, reactive power, voltage control

Procedia PDF Downloads 501
6802 Simulation of Photovoltaic Array for Specified Ratings of Converter

Authors: Smita Pareek, Ratna Dahiya

Abstract:

The power generated by solar photovoltaic (PV) module depends on surrounding irradiance, temperature, shading conditions, and shading pattern. This paper presents a simulation of photovoltaic module using Matlab/Simulink. PV Array is also simulated by series and parallel connections of modules and their characteristics curves are given. Further PV module topology/configuration are proposed for 5.5kW inverter available in the literature. Shading of a PV array either complete or partial can have a significant impact on its power output and energy yield; therefore, the simulated model characteristics curves (I-V and P-V) are drawn for uniform shading conditions (USC) and then output power, voltage and current are calculated for variation in insolation for shading conditions. Additionally the characteristics curves are also given for a predetermined shadowing condition.

Keywords: array, series, parallel, photovoltaic, partial shading

Procedia PDF Downloads 566
6801 Experimental Verification of On-Board Power Generation System for Vehicle Application

Authors: Manish Kumar, Krupa Shah

Abstract:

The usage of renewable energy sources is increased day by day to overcome the dependency on fossil fuels. The wind energy is considered as a prominent source of renewable energy. This paper presents an approach for utilizing wind energy obtained from moving the vehicle for cell-phone charging. The selection of wind turbine, blades, generator, etc. is done to have the most efficient system. The calculation procedure for power generated and drag force is shown to know the effectiveness of the proposal. The location of the turbine is selected such that the system remains symmetric, stable and has the maximum induced wind. The calculation of the generated power at different velocity is presented. The charging is achieved for the speed 30 km/h and the system works well till 60 km/h. The model proposed seems very useful for the people traveling long distances in the absence of mobile electricity. The model is very economical and easy to fabricate. It has very less weight and area that makes it portable and comfortable to carry along. The practical results are shown by implementing the portable wind turbine system on two-wheeler.

Keywords: cell-phone charging, on-board power generation, wind energy, vehicle

Procedia PDF Downloads 296
6800 55 dB High Gain L-Band EDFA Utilizing Single Pump Source

Authors: M. H. Al-Mansoori, W. S. Al-Ghaithi, F. N. Hasoon

Abstract:

In this paper, we experimentally investigate the performance of an efficient high gain triple-pass L-band Erbium-Doped Fiber (EDF) amplifier structure with a single pump source. The amplifier gain and noise figure variation with EDF pump power, input signal power and wavelengths have been investigated. The generated backward Amplified Spontaneous Emission (ASE) noise of the first amplifier stage is suppressed by using a tunable band-pass filter. The amplifier achieves a signal gain of 55 dB with low noise figure of 3.8 dB at -50 dBm input signal power. The amplifier gain shows significant improvement of 12.8 dB compared to amplifier structure without ASE suppression.

Keywords: optical amplifiers, EDFA, L-band, optical networks

Procedia PDF Downloads 353
6799 Grid Tied Photovoltaic Power on School Roof

Authors: Yeong-cheng Wang, Jin-Yinn Wang, Ming-Shan Lin, Jian-Li Dong

Abstract:

To universalize the adoption of sustainable energy, the R.O.C. government encourages public buildings to introduce the PV power station on the building roof, whereas most old buildings did not include the considerations of photovoltaic (PV) power facilities in the design phase. Several factors affect the PV electricity output, the temperature is the key one, different PV technologies have different temperature coefficients. Other factors like PV panel azimuth, panel inclination from the horizontal plane, and row to row distance of PV arrays, mix up at the beginning of system design. The goal of this work is to maximize the annual energy output of a roof mount PV system. Tables to simplify the design work are developed; the results can be used for engineering project quote directly.

Keywords: optimal inclination, array azimuth, annual output

Procedia PDF Downloads 678
6798 Analysis of Critical Success Factors for Implementing Industry 4.0 and Circular Economy to Enhance Food Traceability

Authors: Mahsa Pishdar

Abstract:

Food traceability through the supply chain is facing increased demand. IoT and blockchain are among the tools under consideration in the Industry 4.0 era that could be integrated to help implementation of the Circular Economy (CE) principles while enhancing food traceability solutions. However, such tools need intellectual system, and infrastructureto be settled as guidance through the way, helping overcoming obstacles. That is why the critical success factors for implementing Industry 4.0 and circular economy principles in food traceability concept are analyzed in this paper by combination of interval type 2 fuzzy Worst Best Method and Measurement Alternatives and Ranking according to Compromise Solution (Interval Type 2 fuzzy WBM-MARCOS). Results indicate that “Knowledge of Industry 4.0 obligations and CE principle” is the most important factor that is the basis of success following by “Management commitment and support”. This will assist decision makers to seize success in gaining a competitive advantage while reducing costs through the supply chain.

Keywords: food traceability, industry 4.0, internet of things, block chain, best worst method, marcos

Procedia PDF Downloads 207
6797 Comparative Study between Classical P-Q Method and Modern Fuzzy Controller Method to Improve the Power Quality of an Electrical Network

Authors: A. Morsli, A. Tlemçani, N. Ould Cherchali, M. S. Boucherit

Abstract:

This article presents two methods for the compensation of harmonics generated by a nonlinear load. The first is the classic method P-Q. The second is the controller by modern method of artificial intelligence specifically fuzzy logic. Both methods are applied to an Active Power Filter shunt (APFs) based on a three-phase voltage converter at five levels NPC topology. In calculating the harmonic currents of reference, we use the algorithm P-Q and pulse generation, we use the intersective PWM. For flexibility and dynamics, we use fuzzy logic. The results give us clear that the rate of Harmonic Distortion issued by fuzzy logic is better than P-Q.

Keywords: fuzzy logic controller, P-Q method, pulse width modulation (PWM), shunt active power filter (sAPF), total harmonic distortion (THD)

Procedia PDF Downloads 549
6796 Assessment of Memetic and Genetic Algorithm for a Flexible Integrated Logistics Network

Authors: E. Behmanesh, J. Pannek

Abstract:

The distribution-allocation problem is known as one of the most comprehensive strategic decision. In real-world cases, it is impossible to solve a distribution-allocation problem in traditional ways with acceptable time. Hence researchers develop efficient non-traditional techniques for the large-term operation of the whole supply chain. These techniques provide near-optimal solutions particularly for large scales test problems. This paper, presents an integrated supply chain model which is flexible in the delivery path. As the solution methodology, we apply a memetic algorithm with a novelty in population presentation. To illustrate the performance of the proposed memetic algorithm, LINGO optimization software serves as a comparison basis for small size problems. In large size cases that we are dealing with in the real world, the Genetic algorithm as the second metaheuristic algorithm is considered to compare the results and show the efficiency of the memetic algorithm.

Keywords: integrated logistics network, flexible path, memetic algorithm, genetic algorithm

Procedia PDF Downloads 376
6795 Water Productivity as an Indicator of Bioenergetic Sustainability in Sugarcane

Authors: Rubens Duarte Coelho, Timóteo Herculino da Silva Barros, Jefferson de Olveira Costa

Abstract:

Brazil has an electrical matrix of predominantly renewable origin, with emphasis on water sources, which account for 65.2%, biomass energy for 8.2%, wind for 6.8% and solar for 0.13% of the domestic supply. Among these sources, sugarcane cultivation stands out, aiming both at the production of bioethanol and biomass to supply “clean energy”. However, like all other crops, sugar cane demands a large volume of a natural resource that is increasingly “scarce” in quantity and quality: water. Adequate and strategic water management throughout the entire sugarcane cycle is of fundamental importance, and water productivity can be used to adjust irrigation planning and decision-making, increasing the productivity of stalks, bioethanol, biomass, and sugar. In this way, water productivity is a good indicator for analysis and decision-making considering the sustainability of cultivation, as it allows evaluation of the variation in the ratio between production and the amount of water used, suggesting values that maximize the use of this natural resource. In this context, studies that relate water demand, in this case, expressed by water productivity, with the energy production of this crop, in this case, expressed by the production of bioethanol, biomass and sugar, are fundamental to obtaining an efficient production of renewable energy, which aims at the rational use of natural resources, especially water. The objective of the present work was to evaluate the response of sugarcane varieties subjected to different water availability to obtain better sustainability in bioenergy production, presenting water productivity indices for Bioethanol, Sugar and Biomass. The variety that responded best was RB966928, with a bioethanol yield of 68.7 L Mg-1. Future research should focus on the water response under each of the sugarcane fractions in terms of their elemental composition so that the influence of water on the energy supply of this crop can be better understood.

Keywords: energy matrix, water use, water use efficiency, sustainability

Procedia PDF Downloads 77
6794 The Technique of Mobilization of the Colon for Pull-Through Procedure in Hirschsprung's Disease

Authors: Medet K. Khamitov, Marat M. Ospanov, Vasiliy M. Lozovoy, Zhenis N. Sakuov, Dastan Z. Rustemov

Abstract:

With a high rectosigmoid transitional zone in children with Hirschsprung’s disease, the upper rectal, sigmoid, left colon arteries are ligated during the pull-through of the descending part of the colon. As a result, the inferior mesenteric artery ceases to participate in the blood supply to the descending part of the colon. As a result, the reduced colon is supplied with blood only by the middle colon artery, which originates from the superior mesenteric artery. Insufficiency of blood supply to the reduced colon is the cause of the development of chronic hypoxia of the intestinal wall or necrosis of the reduced descending colon. Some surgeons prefer to preserve the left colon artery. However, it is possible to stretch the mesentery, which can lead to bowel retraction to anastomotic leaks and stenosis. Chronic hypoxia of the reduced colon, in turn, is the cause of acquired (secondary) aganglionosis. The highest frequency of anastomotic leaks is observed in children older than five years. The purpose is to reduce the risk of complications in the pull-through procedure of the descending part of the colon in patients with Hirschsprung’s disease by ensuring its sufficient mobility and maintaining blood supply to the lower mesenteric artery. Methodology and events. Two children aged 5 and 7 years with Hirschsprung’s disease were operated under the conditions of the hospital in Nur-Sultan. The diagnosis was made using x-ray contrast enema and histological examination. Operational technique. After revision of the left part of the colon and assessment of the architectonics of its blood vessels, parietal mobilization of the affected sigmoid and rectum was performed on laparotomy access, while maintaining the arterial and venous terminal arcades of the sigmoid vessels. Then, the descending branch of the left colon artery was crossed (if there is an insufficient length of the reduced intestine, the left colonic artery itself may also be crossed). This manipulation provides additional mobility of the pull-through descending part of the colon. The resulting "windows" in the mesentery of the reduced intestine were sutured to prevent the development of an internal hernia. Formed a full-blooded, sufficiently long transplant from the transverse loops of the splenic angle and the descending parts of the colon with blood supply from the upper and lower mesenteric artery, freely, without tension, is reduced to the rectal zone with the coloanal anastomosis 1.5 cm above the dentate line. Results. The postoperative period was uneventful. Patients were discharged on the 7th day. The observation was carried out for six months. In no case, there was a bowel retraction, anastomotic leak, anastomotic stenosis, or other complications. Conclusion. The presented technique of mobilization of the colon for the pull-through procedure in a high transitional rectosigmoid zone of Hirschsprung’s disease allows to maintain normal blood supply to the distal part of the colon and to avoid the tension of the colon. The technique allows reducing the risk of anastomotic leak, bowel necrosis, chronic ischemia, to exclude colon retraction and anastomotic stenosis.

Keywords: blood supply, children, colon mobilization, Hirschsprung's disease, pull-through

Procedia PDF Downloads 147
6793 Modeling of Oxygen Supply Profiles in Stirred-Tank Aggregated Stem Cells Cultivation Process

Authors: Vytautas Galvanauskas, Vykantas Grincas, Rimvydas Simutis

Abstract:

This paper investigates a possible practical solution for reasonable oxygen supply during the pluripotent stem cells expansion processes, where the stem cells propagate as aggregates in stirred-suspension bioreactors. Low glucose and low oxygen concentrations are preferred for efficient proliferation of pluripotent stem cells. However, strong oxygen limitation, especially inside of cell aggregates, can lead to cell starvation and death. In this research, the oxygen concentration profile inside of stem cell aggregates in a stem cell expansion process was predicted using a modified oxygen diffusion model. This profile can be realized during the stem cells cultivation process by manipulating the oxygen concentration in inlet gas or inlet gas flow. The proposed approach is relatively simple and may be attractive for installation in a real pluripotent stem cell expansion processes.

Keywords: aggregated stem cells, dissolved oxygen profiles, modeling, stirred-tank, 3D expansion

Procedia PDF Downloads 306
6792 Comparison of Stationary and Two-Axis Tracking System of 50MW Photovoltaic Power Plant in Al-Kufra, Libya: Landscape Impact and Performance

Authors: Yasser Aldali

Abstract:

The scope of this paper is to evaluate and compare the potential of LS-PV (Large Scale Photovoltaic Power Plant) power generation systems in the southern region of Libya at Al-Kufra for both stationary and tracking systems. A Microsoft Excel-VBA program has been developed to compute slope radiation, dew-point, sky temperature, and then cell temperature, maximum power output and module efficiency of the system for stationary system and for tracking system. The results for energy production show that the total energy output is 114GWh/year for stationary system and 148 GWh/year for tracking system. The average module efficiency for the stationary system is 16.6% and 16.2% for the tracking system. The values of electricity generation capacity factor (CF) and solar capacity factor (SCF) for stationary system were found to be 26% and 62.5% respectively and 34% and 82% for tracking system. The GCR (Ground Cover Ratio) for a stationary system is 0.7, which corresponds to a tilt angle of 24°. The GCR for tracking system was found to be 0.12. The estimated ground area needed to build a 50MW PV plant amounts to approx. 0.55 km2 for a stationary PV field constituted by HIT PV arrays and approx. 91 MW/km2. In case of a tracker PV field, the required ground area amounts approx. 2.4k m2 and approx. 20.5 MW/km2.

Keywords: large scale photovoltaic power plant, two-axis tracking system, stationary system, landscape impact

Procedia PDF Downloads 451
6791 Artificial Intelligence Techniques for Enhancing Supply Chain Resilience: A Systematic Literature Review, Holistic Framework, and Future Research

Authors: Adane Kassa Shikur

Abstract:

Today’s supply chains (SC) have become vulnerable to unexpected and ever-intensifying disruptions from myriad sources. Consequently, the concept of supply chain resilience (SCRes) has become crucial to complement the conventional risk management paradigm, which has failed to cope with unexpected SC disruptions, resulting in severe consequences affecting SC performances and making business continuity questionable. Advancements in cutting-edge technologies like artificial intelligence (AI) and their potential to enhance SCRes by improving critical antecedents in the different phases have attracted the attention of scholars and practitioners. The research from academia and the practical interest of the industry have yielded significant publications at the nexus of AI and SCRes during the last two decades. However, the applications and examinations have been primarily conducted independently, and the extant literature is dispersed into research streams despite the complex nature of SCRes. To close this research gap, this study conducts a systematic literature review of 106 peer-reviewed articles by curating, synthesizing, and consolidating up-to-date literature and presents the state-of-the-art development from 2010 to 2022. Bayesian networks are the most topical ones among the 13 AI techniques evaluated. Concerning the critical antecedents, visibility is the first ranking to be realized by the techniques. The study revealed that AI techniques support only the first 3 phases of SCRes (readiness, response, and recovery), and readiness is the most popular one, while no evidence has been found for the growth phase. The study proposed an AI-SCRes framework to inform research and practice to approach SCRes holistically. It also provided implications for practice, policy, and theory as well as gaps for impactful future research.

Keywords: ANNs, risk, Bauesian networks, vulnerability, resilience

Procedia PDF Downloads 102
6790 Evaluation of the Electric Vehicle Impact in Distribution System

Authors: Sania Maghsodloo, Sirus Mohammadi

Abstract:

Electric Vehicle (EV) technology is expected to take a major share in the light-vehicle market in the coming decades. Transportation electrification has become an important issue in recent decades and the large scale deployment of EVs has yet to be achieved. The smart coordination of EV demand addresses an improvement in the flexibility of power systems and reduces the costs of power system investment. The uncertainty in EV drivers’ behaviour is one of the main problems to solve to obtain an optimal integration of EVs into power systems Charging of EVs will put an extra burden on the distribution grid and in some cases adjustments will need to be made. The stochastic process of the driving pattern is done to make the outcome of the project more realistic. Based on the stochastic data, the optimization of charging plans is made.

Keywords: electric vehicles (PEVs), smart grid, Monticello, distribution system

Procedia PDF Downloads 552
6789 Performance Evaluation of Discrete Fourier Transform Algorithm Based PMU for Wide Area Measurement System

Authors: Alpesh Adeshara, Rajendrasinh Jadeja, Praghnesh Bhatt

Abstract:

Implementation of advanced technologies requires sophisticated instruments that deal with the operation, control, restoration and protection of rapidly growing power system network under normal and abnormal conditions. Presently, the applications of Phasor Measurement Unit (PMU) are widely found in real time operation, monitoring, controlling and analysis of power system network as it eliminates the various limitations of Supervisory Control and Data Acquisition System (SCADA) conventionally used in power system. The use of PMU data is very rapidly increasing its importance for online and offline analysis. Wide Area Measurement System (WAMS) is developed as new technology by use of multiple PMUs in power system. The present paper proposes a model of MATLAB based PMU using Discrete Fourier Transform (DFT) algorithm and evaluation of its operation under different contingencies. In this paper, PMU based two bus system having WAMS network is presented as a case study.

Keywords: GPS global positioning system, PMU phasor measurement system, WAMS wide area monitoring system, DFT, PDC

Procedia PDF Downloads 497
6788 Development and Investigation of Sustainable Wireless Sensor Networks for forest Ecosystems

Authors: Shathya Duobiene, Gediminas Račiukaitis

Abstract:

Solar-powered wireless sensor nodes work best when they operate continuously with minimal energy consumption. Wireless Sensor Networks (WSNs) are a new technology opens up wide studies, and advancements are expanding the prevalence of numerous monitoring applications and real-time aid for environments. The Selective Surface Activation Induced by Laser (SSAIL) technology is an exciting development that gives the design of WSNs more flexibility in terms of their shape, dimensions, and materials. This research work proposes a methodology for using SSAIL technology for forest ecosystem monitoring by wireless sensor networks. WSN monitoring the temperature and humidity were deployed, and their architectures are discussed. The paper presents the experimental outcomes of deploying newly built sensor nodes in forested areas. Finally, a practical method is offered to extend the WSN's lifespan and ensure its continued operation. When operational, the node is independent of the base station's power supply and uses only as much energy as necessary to sense and transmit data.

Keywords: internet of things (IoT), wireless sensor network, sensor nodes, SSAIL technology, forest ecosystem

Procedia PDF Downloads 75
6787 Power, Pluralism, and History: Norms in International Societies

Authors: Nicole Cervenka

Abstract:

On the question of norms in international politics, scholars are divided over whether norms are a tool for power politics or a genuine reflection of an emergent international society. The line is drawn between rationalism and idealism, but this dialectical relationship needs to be broken down if we hope to come to a comprehensive understanding of how norms play out in international society. The concept of an elusive international society is a simplification of a more pluralistic, cosmopolitan, and diverse collection of international societies. The English School effectively overcomes realist-idealist dichotomies and provides a pluralistic, comprehensive explanation and description of international societies through its application to two distinct areas: human rights as well as security and war. We argue that international norms have always been present in human rights, war, and international security, forming international societies that can be complimentary or oppositional, beneficial or problematic. Power politics are present, but they can only be regarded as partially explanatory of the role of norms in international politics, which must also include history, international law, the media, NGOs, and others to fully represent the normative influences in international societies. A side-by-side comparison of international norms of war/security and human rights show how much international societies converge. World War II was a turning point in terms of international law, these forces of international society have deeper historical roots. Norms of human rights and war/security are often norms of restraint, guiding appropriate treatment of individuals. This can at times give primacy to the individual over the sovereign state. However, state power politics and hegemony are still intact. It cannot be said that there is an emergent international society—international societies are part of broader historical backdrops. Furthermore, states and, more generally, power politics, are important components in international societies, but international norms are far from mere tools of power politics. They define a more diverse, complicated, and ever-present conception of international societies.

Keywords: English school, international societies, norms, pluralism

Procedia PDF Downloads 384
6786 Adaptable Path to Net Zero Carbon: Feasibility Study of Grid-Connected Rooftop Solar PV Systems with Rooftop Rainwater Harvesting to Decrease Urban Flooding in India

Authors: Rajkumar Ghosh, Ananya Mukhopadhyay

Abstract:

India has seen enormous urbanization in recent years, resulting in increased energy consumption and water demand in its metropolitan regions. Adoption of grid-connected solar rooftop systems and rainwater collection has gained significant popularity in urban areas to address these challenges while also boosting sustainability and environmental consciousness. Grid-connected solar rooftop systems offer a long-term solution to India's growing energy needs. Solar panels are erected on the rooftops of residential and commercial buildings to generate power by utilizing the abundant solar energy available across the country. Solar rooftop systems generate clean, renewable electricity, reducing reliance on fossil fuels and lowering greenhouse gas emissions. This is compatible with India's goal of reducing its carbon footprint. Urban residents and companies can save money on electricity by generating their own and possibly selling excess power back to the grid through net metering arrangements. India gives several financial incentives (subsidies 40% for system capacity 1 kW to 3 kW) to stimulate the building of solar rooftop systems, making them an economically viable option for city dwellers. India provides subsidies up to 70% to special states such as Uttarakhand, Sikkim, Himachal Pradesh, Jammu & Kashmir, and Lakshadweep. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating pressure on traditional energy sources and improving air quality. Incorporating solar rooftops into urban infrastructure contributes to sustainable urban expansion by alleviating demand on existing energy sources and improving power supply reliability. Rainwater harvesting is another key component of India's sustainable urban development. It comprises collecting and storing rainwater for use in non-potable water applications such as irrigation, toilet flushing, and groundwater recharge. Rainwater gathering 2 helps to conserve water resources by lowering the demand for freshwater sources. This technology is crucial in water-stressed areas to ensure a sustainable water supply. Excessive rainwater runoff in metropolitan areas can lead to Urban flooding. Solar PV system with Rooftop Rainwater harvesting systems absorb and channel excess rainwater, which helps to reduce flooding and waterlogging in Smart cities. Rainwater harvesting systems are inexpensive and quick to set up, making them a tempting option for city dwellers and businesses looking to save money on water. Rainwater harvesting systems are now compulsory in several Indian states for specified types of buildings (bye law, Rooftop space ≥ 300 sq. m.), ensuring widespread adoption. Finally, grid-connected solar rooftop systems and rainwater collection are important to India's long-term urban development. They not only reduce the environmental impact of urbanization, but also empower individuals and businesses to control their energy and water requirements. The G20 summit will focus on green financing, fossil fuel phaseout, and renewable energy transition. The G20 Summit in New Delhi reaffirmed India's commitment to battle climate change by doubling renewable energy capacity. To address climate change and mitigate global warming, India intends to attain 280 GW of solar renewable energy by 2030 and Net Zero carbon emissions by 2070. With continued government support and increased awareness, these strategies will help India develop a more resilient and sustainable urban future.

Keywords: grid-connected solar PV system, rooftop rainwater harvesting, urban flood, groundwater, urban flooding, net zero carbon emission

Procedia PDF Downloads 93
6785 Design of an Automatic Saw Cutting Machine for Wood and Aluminum

Authors: Jawad Ul Haq, Evan Mazur, Ahmed Qureshi, Mohamed Al-Hussein

Abstract:

The uses of wood in furniture, building, bridges and aluminum in transportation and construction, make aluminum and forest economy a prominent matter in North America. Machines available to date to cut the aforementioned materials are mostly industry oriented with complex structure and operations which require special training and skill. Furthermore, requirements such as pneumatics, 3-phase supply are associated with cost, maintenance, and safety hazards. Power saws are very useful tools used to cut and shape materials; however, they can cause serious hand injuries. Operator’s hands in table saw are vulnerable as they are used to guide pieces into the saw. Apart from hands, saw operator is also prone to material being kicked back out of the saw or sustain eye or respiratory injuries due to rapidly flying sawdust and other debris. In this paper, design of an automatic saw cutting machine has been proposed to ensure safety, portability, usage at domestic level and capability to cut both aluminum and wood. This paper demonstrates detailed Mechanical design in SOLIDWORKS and Control Systems using Programmable Logic Controller (PLC), based on the aforementioned design objectives.

Keywords: programmable logic controller, saw cutting, control, automation

Procedia PDF Downloads 273
6784 Hydraulic Design of Proposed Ranney Well for Water Supply Scheme in Kurukshetra

Authors: Gaurav Kumar, Baldev Setia

Abstract:

Water is essential for sustenance of life and the ecosystem. Among the various uses of water, the water required for drinking and domestics has the priority over other needs. Water that is required for human consumption must be available in sufficient quantity and should be of good quality. Keeping in view the futuristic needs of water of Kurukshetra town, a durable and cost-effective water supply system with the help of Ranney well has been proposed. This has been proposed on the premise that Brahmsarovar, the largest static water body in the state of Haryana provides sufficient recharge to the groundwater aquifer. In the study, a 30 year design period has been adopted and the water demand up to the year 2050 has been computed. The proposed Ranney well to be constructed in the vicinity of the Brahmsarovar will have a caisson of diameter of 12 m and will be laid at a depth of 30 m below MSL. The laterals, 20 in number, 300 mm in diameter and 15 m in length will be located in two layer separated by 1.5 m. the impact on environment because of the construction and working of the Ranney well is also studied and it has been found that there are no adverse impacts of the proposed scheme. However, the present study is limited to the hydraulics design of the scheme and does not address the structural design of components of Ranney well and the cost involved.

Keywords: drawdown, Ranney well, LPCD, MSL, transmissibility, storativity

Procedia PDF Downloads 302
6783 The Effect of Velocity Increment by Blockage Factor on Savonius Hydrokinetic Turbine Performance

Authors: Thochi Seb Rengma, Mahendra Kumar Gupta, P. M. V. Subbarao

Abstract:

Hydrokinetic turbines can be used to produce power in inaccessible villages located near rivers. The hydrokinetic turbine uses the kinetic energy of the water and maybe put it directly into the natural flow of water without dams. For off-grid power production, the Savonius-type vertical axis turbine is the easiest to design and manufacture. This proposal uses three-dimensional computational fluid dynamics (CFD) simulations to measure the considerable interaction and complexity of turbine blades. Savonius hydrokinetic turbine (SHKT) performance is affected by a blockage in the river, canals, and waterways. Putting a large object in a water channel causes water obstruction and raises local free stream velocity. The blockage correction factor or velocity increment measures the impact of velocity on the performance. SHKT performance is evaluated by comparing power coefficient (Cp) with tip-speed ratio (TSR) at various blockage ratios. The maximum Cp was obtained at a TSR of 1.1 with a blockage ratio of 45%, whereas TSR of 0.8 yielded the highest Cp without blockage. The greatest Cp of 0.29 was obtained with a 45% blockage ratio compared to a Cp max of 0.18 without a blockage.

Keywords: savonius hydrokinetic turbine, blockage ratio, vertical axis turbine, power coefficient

Procedia PDF Downloads 134
6782 Blueprinting of a Normalized Supply Chain Processes: Results in Implementing Normalized Software Systems

Authors: Bassam Istanbouli

Abstract:

With the technology evolving every day and with the increase in global competition, industries are always under the pressure to be the best. They need to provide good quality products at competitive prices, when and how the customer wants them.  In order to achieve this level of service, products and their respective supply chain processes need to be flexible and evolvable; otherwise changes will be extremely expensive, slow and with many combinatorial effects. Those combinatorial effects impact the whole organizational structure, from a management, financial, documentation, logistics and specially the information system Enterprise Requirement Planning (ERP) perspective. By applying the normalized system concept/theory to segments of the supply chain, we believe minimal effects, especially at the time of launching an organization global software project. The purpose of this paper is to point out that if an organization wants to develop a software from scratch or implement an existing ERP software for their business needs and if their business processes are normalized and modular then most probably this will yield to a normalized and modular software system that can be easily modified when the business evolves. Another important goal of this paper is to increase the awareness regarding the design of the business processes in a software implementation project. If the blueprints created are normalized then the software developers and configurators will use those modular blueprints to map them into modular software. This paper only prepares the ground for further studies;  the above concept will be supported by going through the steps of developing, configuring and/or implementing a software system for an organization by using two methods: The Software Development Lifecycle method (SDLC) and the Accelerated SAP implementation method (ASAP). Both methods start with the customer requirements, then blue printing of its business processes and finally mapping those processes into a software system.  Since those requirements and processes are the starting point of the implementation process, then normalizing those processes will end up in a normalizing software.

Keywords: blueprint, ERP, modular, normalized

Procedia PDF Downloads 140
6781 Mediating Role of 'Investment Recovery' and 'Competitiveness' on the Impact of Green Supply Chain Management Practices over Firm Performance: An Empirical Study Based on Textile Industry of Pakistan

Authors: Mehwish Jawaad

Abstract:

Purpose: The concept of GrSCM (Green Supply Chain Management) in the academic and research field is still thought to be in the development stage especially in Asian Emerging Economies. The purpose of this paper is to contribute significantly to the first wave of empirical investigation on GrSCM Practices and Firm Performance measures in Pakistan. The aim of this research is to develop a more holistic approach towards investigating the impact of Green Supply Chain Management Practices (Ecodesign, Internal Environmental Management systems, Green Distribution, Green Purchasing and Cooperation with Customers) on multiple dimensions of Firm Performance Measures (Economic Performance, Environmental Performance and Operational Performance) with a mediating role of Investment Recovery and Competitiveness. This paper also serves as an initiative to identify if the relationship between Investment Recovery and Firm Performance Measures is mediated by Competitiveness. Design/ Methodology/Approach: This study is based on survey Data collected from 272, ISO (14001) Certified Textile Firms Based in Lahore, Faisalabad, and Karachi which are involved in Spinning, Dyeing, Printing or Bleaching. A Theoretical model was developed incorporating the constructs representing Green Activities and Firm Performance Measures of a firm. The data was analyzed using Partial Least Square Structural Equation Modeling. Senior and Mid-level managers provided the data reflecting the degree to which their organizations deal with both internal and external stakeholders to improve the environmental sustainability of their supply chain. Findings: Of the 36 proposed Hypothesis, 20 are considered valid and significant. The statistics result reveal that GrSCM practices positively impact Environmental Performance followed by Economic and Operational Performance. Investment Recovery acts as a strong mediator between Intra organizational Green activities and performance outcomes. The relationship of Reverse Logistics influencing outcomes is significantly mediated by Competitiveness. The pressure originating from customers exert significant positive influence on the firm to adopt Green Practices consequently leading to higher outcomes. Research Contribution/Originality: Underpinning the Resource dependence theory and as a first wave of investigating the impact of Green Supply chain on performance outcomes in Pakistan, this study intends to make a prominent mark in the field of research. Investment and Competitiveness together are tested as a mediator for the first time in this arena. Managerial implications: Practitioner is provided with a framework for assessing the synergistic impact of GrSCM practices on performance. Upgradation of Accreditations and Audit Programs on regular basis are the need of the hour. Making the processes leaner with the sale of excess inventories and scrap helps the firm to work more efficiently and productively.

Keywords: economic performance, environmental performance, green supply chain management practices, operational performance, sustainability, a textile sector of Pakistan

Procedia PDF Downloads 226
6780 Distributed Energy Storage as a Potential Solution to Electrical Network Variance

Authors: V. Rao, A. Bedford

Abstract:

As the efficient performance of national grid becomes increasingly important to maintain the electrical network stability, the balance between the generation and the demand must be effectively maintained. To do this, any losses that occur in the power network must be reduced by compensating for it. In this paper, one of the main cause for the losses in the network is identified as the variance, which hinders the grid’s power carrying capacity. The reason for the variance in the grid is investigated and identified as the rise in the integration of renewable energy sources (RES) such as wind and solar power. The intermittent nature of these RES along with fluctuating demands gives rise to variance in the electrical network. The losses that occur during this process is estimated by analyzing the network’s power profiles. Whilst researchers have identified different ways to tackle this problem, little consideration is given to energy storage. This paper seeks to redress this by considering the role of energy storage systems as potential solutions to reduce variance in the network. The implementation of suitable energy storage systems based on different applications is presented in this paper as part of variance reduction method and thus contribute towards maintaining a stable and efficient grid operation.

Keywords: energy storage, electrical losses, national grid, renewable energy, variance

Procedia PDF Downloads 318
6779 The Effect of Microgrid on Power System Oscillatory Stability

Authors: Burak Yildirim, Muhsin Tunay Gencoglu

Abstract:

This publication shows the effects of Microgrid (MG) integration on the power systems oscillating stability. Generated MG model power systems were applied to the IEEE 14 bus test system which is widely used in stability studies. Stability studies were carried out with the help of eigenvalue analysis over linearized system models. In addition, Hopf bifurcation point detection was performed to show the effect of MGs on the system loadability margin. In the study results, it is seen that MGs affect system stability positively by increasing system loadability margin and has a damper effect on the critical modes of the system and the electromechanical local modes, but they make the damping amount of the electromechanical interarea modes reduce.

Keywords: Eigenvalue analysis, microgrid, Hopf bifurcation, oscillatory stability

Procedia PDF Downloads 293
6778 Heat Sink Optimization for a High Power Wearable Thermoelectric Module

Authors: Zohreh Soleimani, Sally Salome Shahzad, Stamatis Zoras

Abstract:

As a result of current energy and environmental issues, the human body is known as one of the promising candidate for converting wasted heat to electricity (Seebeck effect). Thermoelectric generator (TEG) is one of the most prevalent means of harvesting body heat and converting that to eco-friendly electrical power. However, the uneven distribution of the body heat and its curvature geometry restrict harvesting adequate amount of energy. To perfectly transform the heat radiated by the body into power, the most direct solution is conforming the thermoelectric generators (TEG) with the arbitrary surface of the body and increase the temperature difference across the thermoelectric legs. Due to this, a computational survey through COMSOL Multiphysics is presented in this paper with the main focus on the impact of integrating a flexible wearable TEG with a corrugated shaped heat sink on the module power output. To eliminate external parameters (temperature, air flow, humidity), the simulations are conducted within indoor thermal level and when the wearer is stationary. The full thermoelectric characterization of the proposed TEG fabricated by a wavy shape heat sink has been computed leading to a maximum power output of 25µW/cm2 at a temperature gradient nearly 13°C. It is noteworthy that for the flexibility of the proposed TEG and heat sink, the applicability and efficiency of the module stay high even on the curved surfaces of the body. As a consequence, the results demonstrate the superiority of such a TEG to the most state of the art counterparts fabricated with no heat sink and offer a new train of thought for the development of self-sustained and unobtrusive wearable power suppliers which generate energy from low grade dissipated heat from the body.

Keywords: device simulation, flexible thermoelectric module, heat sink, human body heat

Procedia PDF Downloads 151
6777 Role of Energy Storage in Renewable Electricity Systems in The Gird of Ethiopia

Authors: Dawit Abay Tesfamariam

Abstract:

Ethiopia’s Climate- Resilient Green Economy (ECRGE) strategy focuses mainly on generating and proper utilization of renewable energy (RE). Nonetheless, the current electricity generation of the country is dominated by hydropower. The data collected in 2016 by Ethiopian Electric Power (EEP) indicates that the intermittent RE sources from solar and wind energy were only 8 %. On the other hand, the EEP electricity generation plan in 2030 indicates that 36.1 % of the energy generation share will be covered by solar and wind sources. Thus, a case study was initiated to model and compute the balance and consumption of electricity in three different scenarios: 2016, 2025, and 2030 using the EnergyPLAN Model (EPM). Initially, the model was validated using the 2016 annual power-generated data to conduct the EnergyPLAN (EP) analysis for two predictive scenarios. The EP simulation analysis using EPM for 2016 showed that there was no significant excess power generated. Thus, the EPM was applied to analyze the role of energy storage in RE in Ethiopian grid systems. The results of the EP simulation analysis showed there will be excess production of 402 /7963 MW average and maximum, respectively, in 2025. The excess power was in the three rainy months of the year (June, July, and August). The outcome of the model also showed that in the dry seasons of the year, there would be excess power production in the country. Consequently, based on the validated outcomes of EP indicates, there is a good reason to think about other alternatives for the utilization of excess energy and storage of RE. Thus, from the scenarios and model results obtained, it is realistic to infer that if the excess power is utilized with a storage system, it can stabilize the grid system and be exported to support the economy. Therefore, researchers must continue to upgrade the current and upcoming storage system to synchronize with potentials that can be generated from renewable energy.

Keywords: renewable energy, power, storage, wind, energy plan

Procedia PDF Downloads 78
6776 Integrated Power Saving for Multiple Relays and UEs in LTE-TDD

Authors: Chun-Chuan Yang, Jeng-Yueng Chen, Yi-Ting Mai, Chen-Ming Yang

Abstract:

In this paper, the design of integrated sleep scheduling for relay nodes and user equipments under a Donor eNB (DeNB) in the mode of Time Division Duplex (TDD) in LTE-A is presented. The idea of virtual time is proposed to deal with the discontinuous pattern of the available radio resource in TDD, and based on the estimation of the traffic load, three power saving schemes in the top-down strategy are presented. Associated mechanisms in each scheme including calculation of the virtual subframe capacity, the algorithm of integrated sleep scheduling, and the mapping mechanisms for the backhaul link and the access link are presented in the paper. Simulation study shows the advantage of the proposed schemes in energy saving over the standard DRX scheme.

Keywords: LTE-A, relay, TDD, power saving

Procedia PDF Downloads 517