Search results for: tomato yield prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4699

Search results for: tomato yield prediction

3259 Exogenous Application of Silicon through the Rooting Medium Modulate Growth, Ion Uptake, and Antioxidant Activity of Barley (Hordeum vulgare L.) Under Salt Stress

Authors: Sibgha Noreen, Muhammad Salim Akhter, Seema Mahmood

Abstract:

Salt stress is an abiotic stress that causes a heavy toll on growth and development and also reduces the productivity of arable and horticultural crops. Globally, a quarter of total arable land has fallen prey to this menace, and more is being encroached because of the usage of brackish water for irrigation purposes. Though barley is categorized as salt-tolerant crop, but cultivars show a wide genetic variability in response to it. In addressing salt stress, silicon nutrition would be a facile tool for enhancing salt tolerant to sustain crop production. A greenhouse study was conducted to evaluate the response of barley (Hordeum vulgare L.) cultivars to silicon nutrition under salt stress. The treatments included [(a) four barley cultivars (Jou-87, B-14002, B-14011, B-10008); (b) two salt levels (0, 200 mM, NaCl); and (c) two silicon levels (0, 200ppm, K2SiO3. nH2O), arranged in a factorial experiment in a completely randomized design with 16 treatments and repeated 4 times. Plants were harvested at 15 days after exposure to different experimental salinity and silicon foliar conditions. Results revealed that various physiological and biochemical attributes differed significantly (p<0.05) in response to different treatments and their interactive effects. Cultivar “B-10008” excelled in biological yield, chlorophyll constituents, antioxidant enzymes, and grain yield compared to other cultivars. The biological yield of shoot and root organs was reduced by 27.3 and 26.5 percent under salt stress, while it was increased by 14.5 and 18.5 percent by exogenous application of silicon over untreated check, respectively. The imposition of salt stress at 200 mM caused a reduction in total chlorophyll content, chl ‘a’ , ‘b’ and ratio a/b by 10.6,16.8,17.1 and 7.1, while spray of 200 ppm silicon improved the quantum of the constituents by 10.4,12.1,10.2,10.3 over untreated check, respectively. The quantum of free amino acids and protein content was enhanced in response to salt stress and the spray of silicon nutrients. The amounts of superoxide dismutase, catalases, peroxidases, hydrogen peroxide, and malondialdehyde contents rose to 18.1, 25.7, 28.1, 29.5, and 17.6 percent over non-saline conditions under salt stress. However, the values of these antioxidants were reduced in proportion to salt stress by 200 ppm silicon applied as rooting medium on barley crops. The salt stress caused a reduction in the number of tillers, number of grains per spike, and 100-grain weight to the amount of 29.4, 8.6, and 15.8 percent; however, these parameters were improved by 7.1, 10.3, and 9.6 percent by foliar spray of silicon over untreated crop, respectively. It is concluded that the barley cultivar “B-10008” showed greater tolerance and adaptability to saline conditions. The yield of barley crops could be potentiated by a foliar spray of 200 ppm silicon at the vegetative growth stage under salt stress.

Keywords: salt stress, silicon nutrition, chlorophyll constituents, antioxidant enzymes, barley crop

Procedia PDF Downloads 38
3258 Genetic Screening of Sahiwal Bulls for Higher Fertility

Authors: Atul C. Mahajan, A. K. Chakravarty, V. Jamuna, C. S. Patil, Neeraj Kashyap, Bharti Deshmukh, Vijay Kumar

Abstract:

The selection of Sahiwal bulls on the basis of dams best lactation milk yield under breeding programme in herd of the country neglecting fertility traits leads to deterioration in their performances and economy. The goal of this study was to explore polymorphism of CRISP2 gene and their association with semen traits (Post Thaw Motility, Hypo-osmotic Swelling Test, Acrosome Integrity, DNA Fragmentation and capacitation status), scrotal circumference, expected predicted difference (EPD) for milk yield and fertility. Sahiwal bulls included in present study were 60 bulls used in breeding programme as well as 50 young bulls yet to be included in breeding programme. All the Sahiwal bulls were found to be polymorphic for CRISP2 gene (AA, AG and GG) present within exon 7 to the position 589 of CRISP2 mRNA by using PCR-SSCP and Sequencing. Semen analysis were done on 60 breeding bulls frozen semen doses pertaining to four season (winter, summer, rainy and autumn). The scrotal circumference was measured from existing Sahiwal breeding bulls in the herd (n=47). The effect of non-genetic factors on reproduction traits were studied by least-squares technique and the significant difference of means between subclasses of season, period, parity and age group were tested. The data were adjusted for the significant non-genetic factors to remove the differential environmental effects. The adjusted data were used to generate traits like Waiting Period (WP), Pregnancy Rate (PR), Expected Predicted Difference (EPD) of fertility, respectively. Genetic and phenotypic parameters of reproduction traits were estimated. The overall least-squares means of Age at First Calving (AFC), Service Period (SP) and WP were estimated as 36.69 ± 0.18 months, 120.47 ± 8.98 days and 79.78 ± 3.09 days respectively. Season and period of birth had significant effect (p < 0.01) on AFC. AFC was highest during autumn season of birth followed by summer, winter and rainy. Season and period of calving had significant effect (p < 0.01) on SP and WP of sahiwal cows. The WP for Sahiwal cows was standardized based on four developed predicted model for pregnancy rate 42, 63, 84 and 105 days using all lactation records. The WP for Sahiwal cows were standardized as 42 days. A selection criterion was developed for Sahiwal breeding bulls and young Sahiwal bulls on the basis of EPD of fertility. The genotype has significant effect on expected predicted difference of fertility and some semen parameters like post thaw motility and HOST. AA Genotype of CRISP2 gene revealed better EPD for fertility than EPD of milk yield. AA genotype of CRISP2 gene has higher scrotal circumference than other genotype. For young Sahiwal bulls only AA genotypes were present with similar patterns. So on the basis of association of genotype with seminal traits, EPD of milk yield and EPD for fertility status, AA and AG genotype of CRISP2 gene was better for higher fertility in Sahiwal bulls.

Keywords: expected predicted difference, fertility, sahiwal, waiting period

Procedia PDF Downloads 584
3257 Statistical Scientific Investigation of Popular Cultural Heritage in the Relationship between Astronomy and Weather Conditions in the State of Kuwait

Authors: Ahmed M. AlHasem

Abstract:

The Kuwaiti society has long been aware of climatic changes and their annual dates and trying to link them to astronomy in an attempt to forecast the future weather conditions. The reason for this concern is that many of the economic, social and living activities of the society depend deeply on the nature of the weather conditions directly and indirectly. In other words, Kuwaiti society, like the case of many human societies, has in the past tried to predict climatic conditions by linking them to astronomy or popular statements to indicate the timing of climate changes. Accordingly, this study was devoted to scientific investigation based on the statistical analysis of climatic data to show the accuracy and compatibility of some of the most important elements of the cultural heritage in relation to climate change and to relate it scientifically to precise climatic measurements for decades. The research has been divided into 10 topics, each topic has been focused on one legacy, whether by linking climate changes to the appearance/disappearance of star or a popular statement inherited through generations, through explain the nature and timing and thereby statistical analysis to indicate the proportion of accuracy based on official climatic data since 1962. The study's conclusion is that the relationship is weak and, in some cases, non-existent between the popular heritage and the actual climatic data. Therefore, it does not have a dependable relationship and a reliable scientific prediction between both the popular heritage and the forecast of weather conditions.

Keywords: astronomy, cultural heritage, statistical analysis, weather prediction

Procedia PDF Downloads 122
3256 Genetic Analysis of Rust Resistance Genes in Global Wheat

Authors: Aktar-Uz-Zaman, M. Tuhina-Khatun, Mohamed Hanafi Musa

Abstract:

Three rust diseases: leaf (brown) rust caused by Puccinia triticina Eriks, stripe (yellow) rust caused by Puccinia striiformis West, and stem (black) rust caused by Puccinia graminis f. sp. tritici are economically important diseases of wheat in world wide. Yield loss due to leaf rust is 40% in susceptible cultivars. Yield losses caused by the stem rust pathogens in the mid of 20 century reached 20-30% in Eastern and Central Europe and the most virulent stem rust race Ug99 emerged first in Uganda and after that in Kenya, Ethiopia, Yemen, in the Middle East and South Asia. Yield losses were estimated up to 100%, whereas, up to 80% have been reported in Kenya during 1999. In case of stripe rust, severity level has been recorded 60% - 70% as compared to 100% severity of susceptible check in disease screening nurseries in Kenya. Improvement of resistant varieties or cultivars is the sustainable, economical and environmentally friendly approaches for increasing the global wheat production to suppress the rust diseases. More than 68 leaf rust, 49 stripe rust and 53 stem rust resistance genes have been identified in the global wheat cultivars or varieties using different molecular breeding approaches. Among these, Lr1, Lr9, Lr10, Lr19, Lr21, Lr24, Lr25, Lr28, Lr29, Lr34, Lr35, Lr37, Lr39, Lr47, Lr51, Lr3bg, Lr18, Lr40, Lr46, and Lr50 leaf rust resistance genes have been identified by using molecular, enzymatic and microsatellite markers from African, Asian, European cultivars of hexaploid wheat (Triticum aestivum), durum wheat and diploid wheat species. These genes are located on 20, of the 21 chromosomes of hexaploid wheat. Similarly, Sr1, Sr2, Sr24, and Sr3, Sr31 stem rust resistance genes have been recognized from wheat cultivars of Pakistan, India, Kenya, and Uganda etc. A race of P. striiformis (stripe rust) Yr9, Yr18, and Yr29 was first observed in East Africa, Italy, Pakistan and India wheat cultivars. These stripe rust resistance genes are located on chromosomes 1BL, 4BL, 6AL, 3BS and 6BL in bread wheat cultivars. All these identified resistant genes could be used for notable improvement of susceptible wheat cultivars in the future.

Keywords: hexaploid wheat, resistance genes, rust disease, triticum aestivum

Procedia PDF Downloads 482
3255 ANOVA-Based Feature Selection and Machine Learning System for IoT Anomaly Detection

Authors: Muhammad Ali

Abstract:

Cyber-attacks and anomaly detection on the Internet of Things (IoT) infrastructure is emerging concern in the domain of data-driven intrusion. Rapidly increasing IoT risk is now making headlines around the world. denial of service, malicious control, data type probing, malicious operation, DDos, scan, spying, and wrong setup are attacks and anomalies that can affect an IoT system failure. Everyone talks about cyber security, connectivity, smart devices, and real-time data extraction. IoT devices expose a wide variety of new cyber security attack vectors in network traffic. For further than IoT development, and mainly for smart and IoT applications, there is a necessity for intelligent processing and analysis of data. So, our approach is too secure. We train several machine learning models that have been compared to accurately predicting attacks and anomalies on IoT systems, considering IoT applications, with ANOVA-based feature selection with fewer prediction models to evaluate network traffic to help prevent IoT devices. The machine learning (ML) algorithms that have been used here are KNN, SVM, NB, D.T., and R.F., with the most satisfactory test accuracy with fast detection. The evaluation of ML metrics includes precision, recall, F1 score, FPR, NPV, G.M., MCC, and AUC & ROC. The Random Forest algorithm achieved the best results with less prediction time, with an accuracy of 99.98%.

Keywords: machine learning, analysis of variance, Internet of Thing, network security, intrusion detection

Procedia PDF Downloads 125
3254 Polymorphisms of STAT5A and DGAT1 Genes and Their Associations with Milk Trait in Egyptian Goats

Authors: Othman Elmahdy Othman

Abstract:

The objectives of this study were to identify polymorphisms in the STAT5A using Restriction Fragment Length Polymorphism and DGAT1 using Single-Strand Conformation Polymorphism genes among three Egyptian goat breeds (Barki, Zaraibi, and Damascus) as well as investigate the effect of their genotypes on milk composition traits of Zaraibi goats. One hundred and fifty blood samples were collected for DNA extraction, 60 from Zaraibi, 40 from Damascus and 50 from Barki breeds. Fat, protein and lactose percentages were determined in Zaraibi goat milk using an automatic milk analyzer. Two genotypes, CC and CT (for STAT5A) and C-C- and C-C+ (for DGAT1), were identified in the three Egyptian goat breeds with different frequencies. The associations between these genotypes and milk fat, protein and lactose were determined in Zaraibi breed. The results showed that the STAT5A genotypes had significant effects on milk yield, protein, fat and lactose with the superiority of CT genotype over CC. Regarding DGAT1 polymorphism, the result showed the only association between it with milk fat where the animals with C-C+ genotype had greater milk fat than animals possess C-C- genotype. The association of combined genotypes with milk trait declared that the does with heterozygous genotypes for both genes are preferred than does with homozygous genotypes where the animals with CTC-C+ have more milk yield, fat and protein than those with CCC-C- genotype. In conclusion, the result showed that C/T and C-/C+ SNPs of STAT5A and DGAT1 genes respectively may be useful markers for assisted selection programs to improve goat milk composition

Keywords: DGAT1, genetic polymorphism, milk trait, STAT5A

Procedia PDF Downloads 163
3253 A Dynamic Solution Approach for Heart Disease Prediction

Authors: Walid Moudani

Abstract:

The healthcare environment is generally perceived as being information rich yet knowledge poor. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. In fact, valuable knowledge can be discovered from application of data mining techniques in healthcare system. In this study, a proficient methodology for the extraction of significant patterns from the coronary heart disease warehouses for heart attack prediction, which unfortunately continues to be a leading cause of mortality in the whole world, has been presented. For this purpose, we propose to enumerate dynamically the optimal subsets of the reduced features of high interest by using rough sets technique associated to dynamic programming. Therefore, we propose to validate the classification using Random Forest (RF) decision tree to identify the risky heart disease cases. This work is based on a large amount of data collected from several clinical institutions based on the medical profile of patient. Moreover, the experts’ knowledge in this field has been taken into consideration in order to define the disease, its risk factors, and to establish significant knowledge relationships among the medical factors. A computer-aided system is developed for this purpose based on a population of 525 adults. The performance of the proposed model is analyzed and evaluated based on set of benchmark techniques applied in this classification problem.

Keywords: multi-classifier decisions tree, features reduction, dynamic programming, rough sets

Procedia PDF Downloads 410
3252 Identification of Hepatocellular Carcinoma Using Supervised Learning Algorithms

Authors: Sagri Sharma

Abstract:

Analysis of diseases integrating multi-factors increases the complexity of the problem and therefore, development of frameworks for the analysis of diseases is an issue that is currently a topic of intense research. Due to the inter-dependence of the various parameters, the use of traditional methodologies has not been very effective. Consequently, newer methodologies are being sought to deal with the problem. Supervised Learning Algorithms are commonly used for performing the prediction on previously unseen data. These algorithms are commonly used for applications in fields ranging from image analysis to protein structure and function prediction and they get trained using a known dataset to come up with a predictor model that generates reasonable predictions for the response to new data. Gene expression profiles generated by DNA analysis experiments can be quite complex since these experiments can involve hypotheses involving entire genomes. The application of well-known machine learning algorithm - Support Vector Machine - to analyze the expression levels of thousands of genes simultaneously in a timely, automated and cost effective way is thus used. The objectives to undertake the presented work are development of a methodology to identify genes relevant to Hepatocellular Carcinoma (HCC) from gene expression dataset utilizing supervised learning algorithms and statistical evaluations along with development of a predictive framework that can perform classification tasks on new, unseen data.

Keywords: artificial intelligence, biomarker, gene expression datasets, hepatocellular carcinoma, machine learning, supervised learning algorithms, support vector machine

Procedia PDF Downloads 429
3251 Information Management Approach in the Prediction of Acute Appendicitis

Authors: Ahmad Shahin, Walid Moudani, Ali Bekraki

Abstract:

This research aims at presenting a predictive data mining model to handle an accurate diagnosis of acute appendicitis with patients for the purpose of maximizing the health service quality, minimizing morbidity/mortality, and reducing cost. However, acute appendicitis is the most common disease which requires timely accurate diagnosis and needs surgical intervention. Although the treatment of acute appendicitis is simple and straightforward, its diagnosis is still difficult because no single sign, symptom, laboratory or image examination accurately confirms the diagnosis of acute appendicitis in all cases. This contributes in increasing morbidity and negative appendectomy. In this study, the authors propose to generate an accurate model in prediction of patients with acute appendicitis which is based, firstly, on the segmentation technique associated to ABC algorithm to segment the patients; secondly, on applying fuzzy logic to process the massive volume of heterogeneous and noisy data (age, sex, fever, white blood cell, neutrophilia, CRP, urine, ultrasound, CT, appendectomy, etc.) in order to express knowledge and analyze the relationships among data in a comprehensive manner; and thirdly, on applying dynamic programming technique to reduce the number of data attributes. The proposed model is evaluated based on a set of benchmark techniques and even on a set of benchmark classification problems of osteoporosis, diabetes and heart obtained from the UCI data and other data sources.

Keywords: healthcare management, acute appendicitis, data mining, classification, decision tree

Procedia PDF Downloads 350
3250 Evaluation of Nitrogen Fixation Capabilities of Selected Pea Lines Grown under Different Environmental Conditions in Canadian Prairie

Authors: Chao Yang, Rosalind Bueckert, Jeff Schoenau, Axel Diederichsen, Hossein Zakeri, Tom Warkentin

Abstract:

Pea is a very popular pulse crop that widely grew in Western Canadian prairie. However, the N fixation capabilities of these pea lines were not well evaluated under local environmental conditions. In this study, 2 supernodulating mutants Frisson P64 Sym29, Frisson P88 Sym28 along with their wild parent Frisson, 1 hypernodulating mutant Rondo-nod3 (fix+) along with its wild parent Rondo, 1 non-nodulating mutant Frisson P56 (nod-) and 2 commercial pea cultivar CDC Meadow and CDC Dakota which are widely planted in Western Canada were selected in order to evaluate the capabilities of their BNF, biomass, and yield production in symbiosis with R. leguminosarumbv. viciae, Our results showed different environmental conditions and variation of pea lines could both significantly impact days to flowering (DTF), days to podding (DTP), biomass and yield of tested pea lines (P < 0.0001), suggesting consideration of environmental factors could be important when selecting pea cultivar for local farming under different soil zones in Western Canada. Significant interaction effects between environmental conditions and pea lines were found on pea N fixation as well (P = 0.001), suggesting changes in N fixation capability of the same pea cultivar when grown under different environmental conditions. Our results provide useful information for farming and better opportunity for selection of pea cultivars with higher N-fixing capacity during breeding programs in Western Canada.

Keywords: Canadian prairie, environmental condition, N fixation, pea cultivar

Procedia PDF Downloads 344
3249 The Yield of Neuroimaging in Patients Presenting to the Emergency Department with Isolated Neuro-Ophthalmological Conditions

Authors: Dalia El Hadi, Alaa Bou Ghannam, Hala Mostafa, Hana Mansour, Ibrahim Hashim, Soubhi Tahhan, Tharwat El Zahran

Abstract:

Introduction: Neuro-ophthalmological emergencies require prompt assessment and management to avoid vision or life-threatening sequelae. Some would require neuroimaging. Most commonly used are the CT and MRI of the Brain. They can be over-used when not indicated. Their yield remains dependent on multiple factors relating to the clinical scenario. Methods: A retrospective cross-sectional study was conducted by reviewing the electronic medical records of patients presenting to the Emergency Department (ED) with isolated neuro-ophthalmologic complaints. For each patient, data were collected on the clinical presentation, whether neuroimaging was performed (and which type), and the result of neuroimaging. Analysis of the performed neuroimaging was made, and its yield was determined. Results: A total of 211 patients were reviewed. The complaints or symptoms at presentation were: blurry vision, change in the visual field, transient vision loss, floaters, double vision, eye pain, eyelid droop, headache, dizziness and others such as nausea or vomiting. In the ED, a total of 126 neuroimaging procedures were performed. Ninety-four imagings (74.6%) were normal, while 32 (25.4%) had relevant abnormal findings. Only 2 symptoms were significant for abnormal imaging: blurry vision (p-value= 0.038) and visual field change (p-value= 0.014). While 4 physical exam findings had significant abnormal imaging: visual field defect (p-value= 0.016), abnormal pupil reactivity (p-value= 0.028), afferent pupillary defect (p-value= 0.018), and abnormal optic disc exam (p-value= 0.009). Conclusion: Risk indicators for abnormal neuroimaging in the setting of neuro-ophthalmological emergencies are blurred vision or changes in the visual field on history taking. While visual field irregularities, abnormal pupil reactivity with or without afferent pupillary defect, or abnormal optic discs, are risk factors related to physical testing. These findings, when present, should sway the ED physician towards neuroimaging but still individualizing each case is of utmost importance to prevent time-consuming, resource-draining, and sometimes unnecessary workup. In the end, it suggests a well-structured patient-centered algorithm to be followed by ED physicians.

Keywords: emergency department, neuro-ophthalmology, neuroimaging, risk indicators

Procedia PDF Downloads 179
3248 Efficiency of Natural Metabolites on Quality Milk Production in Mixed Breed Cows.

Authors: Mariam Azam, Sajjad Ur Rahman, Mukarram Bashir, Muhammad Tahir, Seemal Javaid, Jawad, Aoun Muhammad, Muhammad Zohaib, Hannan Khan

Abstract:

Products of microbial origin are of great importance as they have proved their value in healthcare and nutrition, use of these microbial metabolites acquired from partially fermented soya hulls and wheat bran along with Saccharomyces cerevisiae (DL-22 S/N) substantiates to be a great source for an increase in the total milk production and quality yield.1×109 CFU/ml cells of Saccharomyces cerevisiae (DL-22 S/N) were further grown under in-vivo conditions for the assessment of quality milk production. Two groups with twelve cows, each having the same physical characteristics (Group A and Group B), were under study, Group A was daily fed with 12gm of biological metabolites and 22% protein-pelleted feed. On the other hand, the animals of Group B were provided with no metabolites in their feed. In thirty days of trial, improvement in the overall health, body score, milk protein, milk fat, yield, incidence rate of mastitis, ash, and solid not fat (SNF) was observed. The collected data showed that the average quality milk production was elevated up to 0.45 liter/h/d. However, a reduction in the milk fats up to 0.45% and uplift in the SNF value up to 0.53% of cow milk was also observed. At the same time, the incidence rate of mastitis recorded for the animals under trial was reduced to half, and improved non specific immunity was reported.

Keywords: microbial metabolites, post-biotics, animal supplements, animal nutrition, proteins, animal production, fermentation

Procedia PDF Downloads 101
3247 Agronomic Test to Determine the Efficiency of Hydrothermally Treated Alkaline Igneous Rocks and Their Potassium Fertilizing Capacity

Authors: Aaron Herve Mbwe Mbissik, Lotfi Khiari, Otmane Raji, Abdellatif Elghali, Abdelkarim Lajili, Muhammad Ouabid, Martin Jemo, Jean-Louis Bodinier

Abstract:

Potassium (K) is an essential macronutrient for plant growth, helping to regulate several physiological and metabolic processes. Evaporite-related potash salts, mainly sylvite minerals (K chloride or KCl), are the principal source of K for the fertilizer industry. However, due to the high potash-supply risk associated with its considerable price fluctuations and uneven geographic distribution for most agriculture-based developing countries, the development of alternative sources of fertilizer K is imperative to maintain adequate crop yield, reduce yield gaps, and food security. Alkaline Igneous rocks containing significant K-rich silicate minerals such as K feldspar are increasingly seen as the best alternative available. However, these rocks may require to be hydrothermally treatment to enhance the release of potassium. In this study, we evaluate the fertilizing capacity of raw and hydrothermally treated K-bearing silicate rocks from different areas in Morocco. The effectiveness of rock powders was tested in a greenhouse experiment using ryegrass (Lolium multiflorum) by comparing them to a control (no K added) and to a conventional fertilizer (muriate of potash: MOP or KCl). The trial was conducted in a randomized complete block design with three replications, and plants were grown on K-depleted soils for three growing cycles. To achieve our objective, in addition to the analysis of the muriate response curve and the different biomasses, we also examined three necessary coefficients, namely: the K uptake, then apparent K recovery (AKR), and the relative K efficiency (RKE). The results showed that based on the optimum economic rate of MOP (230 kg.K.ha⁻¹) and the optimum yield (44 000 kg.K.ha⁻¹), the efficiency of K silicate rocks was as high as that of MOP. Although the plants took up only half of the K supplied by the powdered rock, the hydrothermal material was found to be satisfactory, with a biomass value reaching the optimum economic limit until the second crop cycle. In comparison, the AKR of the MOP (98.6%) and its RKE in the 1st cycle were higher than our materials: 39% and 38%, respectively. Therefore, the raw and hydrothermal materials mixture could be an appropriate solution for long-term agronomic use based on the obtained results.

Keywords: K-uptake, AKR, RKE, K-bearing silicate rock, MOP

Procedia PDF Downloads 90
3246 Soil Matric Potential Based Irrigation in Rice: A Solution to Water Scarcity

Authors: S. N. C. M. Dias, Niels Schuetze, Franz Lennartz

Abstract:

The current focus in irrigated agriculture will move from maximizing crop production per unit area towards maximizing the crop production per unit amount of water (water productivity) used. At the same time, inadequate water supply or deficit irrigation will be the only solution to cope with water scarcity in the near future. Soil matric potential based irrigation plays an important role in such deficit irrigated agriculture to grow any crop including rice. Rice as the staple food for more than half of the world population, grows mainly under flooded conditions. It requires more water compared to other upland cereals. A major amount of this water is used in the land preparation and is lost at field level due to evaporation, deep percolation, and seepage. A field experimental study was conducted in the experimental premises of rice research and development institute of Sri Lanka in Kurunegala district to estimate the water productivity of rice under deficit irrigation. This paper presents the feasibility of improving current irrigation management in rice cultivation under water scarce conditions. The experiment was laid out in a randomized complete block design with four different irrigation treatments with three replicates. Irrigation treatments were based on soil matric potential threshold values. Treatment W0 was maintained between 60-80mbars. W1 was maintained between 80-100mbars. Other two dry treatments W2 and W3 were maintained at 100-120 mbar and 120 -140 mbar respectively. The sprinkler system was used to irrigate each plot individually upon reaching the maximum threshold value in respective treatment. Treatments were imposed two weeks after seed establishment and continued until two weeks before physiological maturity. Fertilizer applications, weed management, and other management practices were carried out per the local recommendations. Weekly plant growth measurements, daily climate parameters, soil parameters, soil tension values, and water content were measured throughout the growing period. Highest plant growth and grain yield (5.61t/ha) were observed in treatment W2 followed by W0, W1, and W3 in comparison to the reference yield (5.23t/ha) of flooded rice grown in the study area. Water productivity was highest in W3. Concerning the irrigation water savings, grain yield, and water productivity together, W2 showed the better performance. Rice grown under unsaturated conditions (W2) shows better performance compared to the continuously saturated conditions(W0). In conclusion, soil matric potential based irrigation is a promising practice in irrigation management in rice. Higher irrigation water savings can be achieved in this method. This strategy can be applied to a wide range of locations under different climates and soils. In future studies, higher soil matric potential values can be applied to evaluate the maximum possible values for rice to get higher water savings at minimum yield losses.

Keywords: irrigation, matric potential, rice, water scarcity

Procedia PDF Downloads 198
3245 Studies on Irrigation and Nutrient Interactions in Sweet Orange (Citrus sinensis Osbeck)

Authors: S. M. Jogdand, D. D. Jagtap, N. R. Dalal

Abstract:

Sweet orange (Citrus sinensis Osbeck) is one of the most important commercially cultivated fruit crop in India. It stands on second position amongst citrus group after mandarin. Irrigation and fertigation are vital importance of sweet orange orchard and considered to be the most critical cultural operations. The soil acts as the reservoir of water and applied nutrients, the interaction between irrigation and fertigation leads to the ultimate quality and production of fruits. The increasing cost of fertilizers and scarcity of irrigation water forced the farmers for optimum use of irrigation and nutrients. The experiment was conducted with object to find out irrigation and nutrient interaction in sweet orange to optimize the use of both the factors. The experiment was conducted in medium to deep soil. The irrigation level I3,drip irrigation at 90% ER (effective rainfall) and fertigation level F3 80% RDF (recommended dose of fertilizer) recorded significantly maximum plant height, plant spread, canopy volume, number of fruits, weight of fruit, fruit yield kg/plant and t/ha followed by F2 , fertigation with 70% RDF. The interaction effect of irrigation and fertigation on growth was also significant and the maximum plant height, E-W spread, N-S spread, canopy volume, highest number of fruits, weight of fruit and yield kg/plant and t/ha was recorded in T9 i.e. I3F3 drip irrigation at 90% ER and fertigation with 80% of RDF followed by I3F2 drip irrigation at 90% ER and fertigation with 70% of RDF.

Keywords: sweet orange, fertigation, irrigation, interactions

Procedia PDF Downloads 180
3244 Modeling Stream Flow with Prediction Uncertainty by Using SWAT Hydrologic and RBNN Neural Network Models for Agricultural Watershed in India

Authors: Ajai Singh

Abstract:

Simulation of hydrological processes at the watershed outlet through modelling approach is essential for proper planning and implementation of appropriate soil conservation measures in Damodar Barakar catchment, Hazaribagh, India where soil erosion is a dominant problem. This study quantifies the parametric uncertainty involved in simulation of stream flow using Soil and Water Assessment Tool (SWAT), a watershed scale model and Radial Basis Neural Network (RBNN), an artificial neural network model. Both the models were calibrated and validated based on measured stream flow and quantification of the uncertainty in SWAT model output was assessed using ‘‘Sequential Uncertainty Fitting Algorithm’’ (SUFI-2). Though both the model predicted satisfactorily, but RBNN model performed better than SWAT with R2 and NSE values of 0.92 and 0.92 during training, and 0.71 and 0.70 during validation period, respectively. Comparison of the results of the two models also indicates a wider prediction interval for the results of the SWAT model. The values of P-factor related to each model shows that the percentage of observed stream flow values bracketed by the 95PPU in the RBNN model as 91% is higher than the P-factor in SWAT as 87%. In other words the RBNN model estimates the stream flow values more accurately and with less uncertainty. It could be stated that RBNN model based on simple input could be used for estimation of monthly stream flow, missing data, and testing the accuracy and performance of other models.

Keywords: SWAT, RBNN, SUFI 2, bootstrap technique, stream flow, simulation

Procedia PDF Downloads 370
3243 Development of Precise Ephemeris Generation Module for Thaichote Satellite Operations

Authors: Manop Aorpimai, Ponthep Navakitkanok

Abstract:

In this paper, the development of the ephemeris generation module used for the Thaichote satellite operations is presented. It is a vital part of the flight dynamics system, which comprises, the orbit determination, orbit propagation, event prediction and station-keeping maneuver modules. In the generation of the spacecraft ephemeris data, the estimated orbital state vector from the orbit determination module is used as an initial condition. The equations of motion are then integrated forward in time to predict the satellite states. The higher geopotential harmonics, as well as other disturbing forces, are taken into account to resemble the environment in low-earth orbit. Using a highly accurate numerical integrator based on the Burlish-Stoer algorithm the ephemeris data can be generated for long-term predictions, by using a relatively small computation burden and short calculation time. Some events occurring during the prediction course that are related to the mission operations, such as the satellite’s rise/set viewed from the ground station, Earth and Moon eclipses, the drift in ground track as well as the drift in the local solar time of the orbital plane are all detected and reported. When combined with other modules to form a flight dynamics system, this application is aimed to be applied for the Thaichote satellite and successive Thailand’s Earth-observation missions.

Keywords: flight dynamics system, orbit propagation, satellite ephemeris, Thailand’s Earth Observation Satellite

Procedia PDF Downloads 377
3242 Microbial Bioagent Triggered Biochemical Response in Tea (Camellia sinensis) Inducing Resistance against Grey Blight Disease and Yield Enhancement

Authors: Popy Bora, L. C. Bora, A. Bhattacharya, Sehnaz S. Ahmed

Abstract:

Microbial bioagents, viz., Pseudomonas fluorescens, Bacillus subtilis, and Trichoderma viride were assessed for their ability to suppress grey blight caused by Pestalotiopsis theae, a major disease of tea crop in Assam. The expression of defense-related phytochemicals due to the application of these bioagents was also evaluated. The individual bioagents, as well as their combinations, were screened for their bioefficacy against P. theae in vitro using nutrient agar (NA) as basal medium. The treatment comprising a combination of the three bioagents, P. fluorescens, B. subtilis, and T. viride showed significantly the highest inhibition against the pathogen. Bioformulation of effective bioagent combinations was further evaluated under field condition, where significantly highest reduction of grey blight (90.30%), as well as the highest increase in the green leaf yield (10.52q/ha), was recorded due to application of the bioformulation containing the three bioagents. The application of the three bioformulation also recorded an enhanced level of caffeine (4.15%) and polyphenols (22.87%). A significant increase in the enzymatic activity of phenylalanine ammonia-lyase, peroxidase and polyphenol oxidase were recorded in the plants treated with the microbial bioformulation of the three bioagents. The present investigation indicates the role of microbial agents in suppressing disease, inducing plant defense response, as well as improving the quality of tea.

Keywords: enzymatic activity, grey blight, microbial bioagents, Pestalotiopsis theae, phytochemicals, plant defense, tea

Procedia PDF Downloads 141
3241 Increasing Sustainability of Melanin Bio-Production Using Seawater

Authors: Harsha Thaira, Ritu Raval, Keyur Raval

Abstract:

Melanin has immense applications in the field of agriculture, cosmetics and pharmaceutical industries due to its photo-protective, UV protective and anti- oxidant activities. However, its production is limited to costly chemical methods or harsh extractive methods from hair which ultimately gives poor yields. This makes the cost of melanin very high, to the extent of US Dollar 300 per gram. Some microorganisms are reported to produce melanin under stress conditions. Out of all melanin producing organisms, Pseudomonas stutzeri can grow in sea water and produce melanin under saline stress. The objective of this study was to develop a sea water based bioprocess. Effects of different growth media and process parameters on melanin production using sea water were investigated. The marine bacterial strain Pseudomonas stutzeri HMGM-7(MTCC 11712) was selected and the effect of different media such as Nutrient Broth (NB), Luria Bertini (LB) broth, Bushnell- Haas broth (BHB) and Trypticase Soy broth (TSB) and various medium components were investigated with one factor at a time approach. Parameters like shaking frequency, inoculum age, inoculum size, pH and temperature were also investigated in order to obtain the optimum conditions for maximum melanin production. The highest yield of melanin concentration, 0.306 g/L, was obtained in Trypticase Soy broth at 36 hours. The yield was 1.88 times higher than the melanin obtained before optimization, 0.163 g/L at 36 hours. Studies are underway to optimize medium constituents to further enhance melanin production.

Keywords: melanin, marine, bioprocess, pseudomonas

Procedia PDF Downloads 277
3240 Impact of Nano-Anatase TiO₂ on the Germination Indices and Seedling Growth of Some Plant Species

Authors: Rayhaneh Amooaghaie, Maryam Norouzi

Abstract:

In this study, the effects of nTiO₂ on seed germination and growth of six plant species (wheat, soybean, tomato, canola, cucumber, and lettuce) were evaluated in petri dish (direct exposure) and in soil in a greenhouse experiment (soil exposure). Data demonstrate that under both culture conditions, low or mild concentrations of nTiO₂ either stimulated or had no effect on seed germination, root growth and vegetative biomass while high concentrations had an inhibitory effect. However, results showed that the impacts of nTiO₂ on plant growth in soil were partially consistent with those observed in pure culture. Based on both experiment sets, among above six species, lettuce and canola were the most susceptible and the most tolerant species to nTiO₂ toxicity. However, results revealed the impacts of nTiO₂ on plant growth in soil were less than petri dish exposure probability due to dilution in soil and complexation/aggregation of nTiO₂ that would lead to lower exposure of plants. The high concentrations of nTiO₂ caused significant reductions in fresh and dry weight of aerial parts and root and chlorophyll and carotenoids contents of all species which also coincided with further accumulation of malondialdehyde (MDA). These findings suggest that decreasing growth might be the result of an nTiO₂-induced oxidative stress and disturbance of photosynthesis systems.

Keywords: chlorophyll, lipid peroxidation, nano TiO₂, seed germination

Procedia PDF Downloads 165
3239 An Efficient Hybrid Feedstock Pretreatment Technique for the Release of Fermentable Sugar from Cassava Peels for Biofuel Production

Authors: Gabriel Sanjo Aruwajoye, E. B. Gueguim Kana

Abstract:

Agricultural residues present a low-cost feedstock for bioenergy production around the world. Cassava peels waste are rich in organic molecules that can be readily converted to value added products such as biomaterials and biofuels. However, due to the presence of high proportion of structural carbohydrates and lignin, the hydrolysis of this feedstock is imperative to achieve maximum substrate utilization and energy yield. This study model and optimises the release of Fermentable Sugar (FS) from cassava peels waste using the Response Surface Methodology. The investigated pretreatment input parameters consisted of soaking temperature (oC), soaking time (hours), autoclave duration (minutes), acid concentration (% v/v), substrate solid loading (% w/v) within the range of 30 to 70, 0 to 24, 5 to 20, 0 to 5 and 2 to 10 respectively. The Box-Behnken design was used to generate 46 experimental runs which were investigated for FS release. The obtained data were used to fit a quadratic model. A coefficient of determination of 0.87 and F value of 8.73 was obtained indicating the good fitness of the model. The predicted optimum pretreatment conditions were 69.62 oC soaking temperature, 2.57 hours soaking duration, 5 minutes autoclave duration, 3.68 % v/v HCl and 9.65 % w/v solid loading corresponding to FS yield of 91.83g/l (0.92 g/g cassava peels) thus 58% improvement on the non-optimised pretreatment. Our findings demonstrate an efficient pretreatment model for fermentable sugar release from cassava peels waste for various bioprocesses.

Keywords: feedstock pretreatment, cassava peels, fermentable sugar, response surface methodology

Procedia PDF Downloads 366
3238 Commuters Trip Purpose Decision Tree Based Model of Makurdi Metropolis, Nigeria and Strategic Digital City Project

Authors: Emmanuel Okechukwu Nwafor, Folake Olubunmi Akintayo, Denis Alcides Rezende

Abstract:

Decision tree models are versatile and interpretable machine learning algorithms widely used for both classification and regression tasks, which can be related to cities, whether physical or digital. The aim of this research is to assess how well decision tree algorithms can predict trip purposes in Makurdi, Nigeria, while also exploring their connection to the strategic digital city initiative. The research methodology involves formalizing household demographic and trips information datasets obtained from extensive survey process. Modelling and Prediction were achieved using Python Programming Language and the evaluation metrics like R-squared and mean absolute error were used to assess the decision tree algorithm's performance. The results indicate that the model performed well, with accuracies of 84% and 68%, and low MAE values of 0.188 and 0.314, on training and validation data, respectively. This suggests the model can be relied upon for future prediction. The conclusion reiterates that This model will assist decision-makers, including urban planners, transportation engineers, government officials, and commuters, in making informed decisions on transportation planning and management within the framework of a strategic digital city. Its application will enhance the efficiency, sustainability, and overall quality of transportation services in Makurdi, Nigeria.

Keywords: decision tree algorithm, trip purpose, intelligent transport, strategic digital city, travel pattern, sustainable transport

Procedia PDF Downloads 20
3237 Role of Pulp Volume Method in Assessment of Age and Gender in Lucknow, India, an Observational Study

Authors: Anurag Tripathi, Sanad Khandelwal

Abstract:

Age and gender determination are required in forensic for victim identification. There is secondary dentine deposition throughout life, resulting in decreased pulp volume and size. Evaluation of pulp volume using Cone Beam Computed Tomography (CBCT)is a noninvasive method to evaluate the age and gender of an individual. The study was done to evaluate the efficacy of pulp volume method in the determination of age and gender.Aims/Objectives: The study was conducted to estimate age and determine sex by measuring tooth pulp volume with the help of CBCT. An observational study of one year duration on CBCT data of individuals was conducted in Lucknow. Maxillary central incisors (CI) and maxillary canine (C) of the randomly selected samples were assessed for measurement of pulp volume using a software. Statistical analysis: Chi Square Test, Arithmetic Mean, Standard deviation, Pearson’s Correlation, Linear & Logistic regression analysis. Results: The CBCT data of Ninety individuals with age range between 18-70 years was evaluated for pulp volume of central incisor and canine (CI & C). The Pearson correlation coefficient between the tooth pulp volume (CI & C) and chronological age suggested that pulp volume decreased with age. The validation of the equations for sex determination showed higher prediction accuracy for CI (56.70%) and lower for C (53.30%).Conclusion: Pulp volume obtained from CBCT is a reliable indicator for age estimation and gender prediction.

Keywords: forensic, dental age, pulp volume, cone beam computed tomography

Procedia PDF Downloads 99
3236 Biogas Production from Pistachio (Pistacia vera L.) Processing Waste

Authors: İ. Çelik, Goksel Demirer

Abstract:

Turkey is the third largest producer of pistachio (Pistacia vera L.) after Iran and United States. Harvested pistachio nuts are covered with organic hull which is removed by de-hulling process. Most of the pistachio by-products which are produced during de-hulling process are considered as agricultural waste and often mixed with soil, to a lesser extent are used as feedstuff by local livestock farmers and a small portion is used as herbal medicine. Due to its high organic and phenolic content as well as high solids concentration, pistachio processing wastes create significant waste management problems unless they are properly managed. However, there is not a well-established waste management method compensating the waste generated during the processing of pistachios. This study investigated the anaerobic treatability and biogas generation potential of pistachio hull waste. The effect of pre-treatment on biogas generation potential was investigated. For this purpose, Biochemical Methane Potential (BMP) Assays were conducted for two Chemical Oxygen Demand (COD) concentrations of 22 and 33 g tCOD l-1 at the absence and presence of chemical and thermal pre-treatment methods. The results revealed anaerobic digestion of the pistachio de-hulling wastes and subsequent biogas production as a renewable energy source are possible. The observed percent COD removal and methane yield values of the pre-treated pistachio de-hulling waste samples were significantly higher than the raw pistachio de-hulling waste. The highest methane yield was observed as 213.4 ml CH4/g COD.

Keywords: pistachio de-hulling waste, biogas, renewable energy, pre-treatment

Procedia PDF Downloads 215
3235 Computational Fluid Dynamics Simulation of Reservoir for Dwell Time Prediction

Authors: Nitin Dewangan, Nitin Kattula, Megha Anawat

Abstract:

Hydraulic reservoir is the key component in the mobile construction vehicles; most of the off-road earth moving construction machinery requires bigger side hydraulic reservoirs. Their reservoir construction is very much non-uniform and designers used such design to utilize the space available under the vehicle. There is no way to find out the space utilization of the reservoir by oil and validity of design except virtual simulation. Computational fluid dynamics (CFD) helps to predict the reservoir space utilization by vortex mapping, path line plots and dwell time prediction to make sure the design is valid and efficient for the vehicle. The dwell time acceptance criteria for effective reservoir design is 15 seconds. The paper will describe the hydraulic reservoir simulation which is carried out using CFD tool acuSolve using automated mesh strategy. The free surface flow and moving reference mesh is used to define the oil flow level inside the reservoir. The first baseline design is not able to meet the acceptance criteria, i.e., dwell time below 15 seconds because the oil entry and exit ports were very close. CFD is used to redefine the port locations for the reservoir so that oil dwell time increases in the reservoir. CFD also proposed baffle design the effective space utilization. The final design proposed through CFD analysis is used for physical validation on the machine.

Keywords: reservoir, turbulence model, transient model, level set, free-surface flow, moving frame of reference

Procedia PDF Downloads 152
3234 Impact of Climate on Productivity of Major Cereal Crops in Sokoto State, Nigeria

Authors: M. B. Sokoto, L. Tanko, Y. M. Abdullahi

Abstract:

The study aimed at examining the impact of climatic factors (rainfall, minimum and maximum temperature) on the productivity of major cereals in Sokoto state, Nigeria. Secondary data from 1997-2008 were used in respect of annual yield of Major cereals crops (maize, millet, rice, and sorghum (t ha-1). Data in respect of climate was collected from Sokoto Energy Research Centre (SERC) for the period under review. Data collected was analyzed using descriptive statistics, correlation and regression analysis. The result of the research reveals that there is variation in the trend of the climatic factors and also variation in cereals output. The effect of average temperature on yields has a negative effect on crop yields. Similarly, rainfall is not significant in explaining the effect of climate on cereal crops production. The study has revealed to some extend the effect of climatic variables, such as rainfall, relative humidity, maximum and minimum temperature on major cereals production in Sokoto State. This will assist in planning ahead in cereals production in the area. Other factors such as soil fertility, correct timing of planting and good cultural practices (such as spacing of strands), protection of crops from weeds, pests and diseases and planting of high yielding varieties should also be taken into consideration for increase yield of cereals.

Keywords: cereals, climate, impact, major, productivity

Procedia PDF Downloads 390
3233 In-Flight Aircraft Performance Model Enhancement Using Adaptive Lookup Tables

Authors: Georges Ghazi, Magali Gelhaye, Ruxandra Botez

Abstract:

Over the years, the Flight Management System (FMS) has experienced a continuous improvement of its many features, to the point of becoming the pilot’s primary interface for flight planning operation on the airplane. With the assistance of the FMS, the concept of distance and time has been completely revolutionized, providing the crew members with the determination of the optimized route (or flight plan) from the departure airport to the arrival airport. To accomplish this function, the FMS needs an accurate Aircraft Performance Model (APM) of the aircraft. In general, APMs that equipped most modern FMSs are established before the entry into service of an individual aircraft, and results from the combination of a set of ordinary differential equations and a set of performance databases. Unfortunately, an aircraft in service is constantly exposed to dynamic loads that degrade its flight characteristics. These degradations endow two main origins: airframe deterioration (control surfaces rigging, seals missing or damaged, etc.) and engine performance degradation (fuel consumption increase for a given thrust). Thus, after several years of service, the performance databases and the APM associated to a specific aircraft are no longer representative enough of the actual aircraft performance. It is important to monitor the trend of the performance deterioration and correct the uncertainties of the aircraft model in order to improve the accuracy the flight management system predictions. The basis of this research lies in the new ability to continuously update an Aircraft Performance Model (APM) during flight using an adaptive lookup table technique. This methodology was developed and applied to the well-known Cessna Citation X business aircraft. For the purpose of this study, a level D Research Aircraft Flight Simulator (RAFS) was used as a test aircraft. According to Federal Aviation Administration the level D is the highest certification level for the flight dynamics modeling. Basically, using data available in the Flight Crew Operating Manual (FCOM), a first APM describing the variation of the engine fan speed and aircraft fuel flow w.r.t flight conditions was derived. This model was next improved using the proposed methodology. To do that, several cruise flights were performed using the RAFS. An algorithm was developed to frequently sample the aircraft sensors measurements during the flight and compare the model prediction with the actual measurements. Based on these comparisons, a correction was performed on the actual APM in order to minimize the error between the predicted data and the measured data. In this way, as the aircraft flies, the APM will be continuously enhanced, making the FMS more and more precise and the prediction of trajectories more realistic and more reliable. The results obtained are very encouraging. Indeed, using the tables initialized with the FCOM data, only a few iterations were needed to reduce the fuel flow prediction error from an average relative error of 12% to 0.3%. Similarly, the FCOM prediction regarding the engine fan speed was reduced from a maximum error deviation of 5.0% to 0.2% after only ten flights.

Keywords: aircraft performance, cruise, trajectory optimization, adaptive lookup tables, Cessna Citation X

Procedia PDF Downloads 264
3232 Development of pm2.5 Forecasting System in Seoul, South Korea Using Chemical Transport Modeling and ConvLSTM-DNN

Authors: Ji-Seok Koo, Hee‑Yong Kwon, Hui-Young Yun, Kyung-Hui Wang, Youn-Seo Koo

Abstract:

This paper presents a forecasting system for PM2.5 levels in Seoul, South Korea, leveraging a combination of chemical transport modeling and ConvLSTM-DNN machine learning technology. Exposure to PM2.5 has known detrimental impacts on public health, making its prediction crucial for establishing preventive measures. Existing forecasting models, like the Community Multiscale Air Quality (CMAQ) and Weather Research and Forecasting (WRF), are hindered by their reliance on uncertain input data, such as anthropogenic emissions and meteorological patterns, as well as certain intrinsic model limitations. The system we've developed specifically addresses these issues by integrating machine learning and using carefully selected input features that account for local and distant sources of PM2.5. In South Korea, the PM2.5 concentration is greatly influenced by both local emissions and long-range transport from China, and our model effectively captures these spatial and temporal dynamics. Our PM2.5 prediction system combines the strengths of advanced hybrid machine learning algorithms, convLSTM and DNN, to improve upon the limitations of the traditional CMAQ model. Data used in the system include forecasted information from CMAQ and WRF models, along with actual PM2.5 concentration and weather variable data from monitoring stations in China and South Korea. The system was implemented specifically for Seoul's PM2.5 forecasting.

Keywords: PM2.5 forecast, machine learning, convLSTM, DNN

Procedia PDF Downloads 54
3231 Genetic Diversity in Capsicum Germplasm Based on Inter Simple Sequence Repeat Markers

Authors: Siwapech Silapaprayoon, Januluk Khanobdee, Sompid Samipak

Abstract:

Chili peppers are the fruits of Capsicum pepper plants well known for their fiery burning sensation on the tongue after consumption. They are members of the Solanaceae or common nightshade family along with potato, tomato and eggplant. Thai cuisine has gained popularity for its distinct flavors due to usages of various spices and its heat from the addition of chili pepper. Though being used in little quantity for each dish, chili pepper holds a special place in Thai cuisine. There are many varieties of chili peppers in Thailand, and thirty accessions were collected at Rajamangala University of Technology Lanna, Lampang, Thailand. To effectively manage any germplasm it is essential to know the diversity and relationships among members. Thirty-six Inter Simple Sequence Repeat (ISSRs) DNA markers were used to analyze the germplasm. Total of 335 polymorphic bands was obtained giving the average of 9.3 alleles per marker. Unweighted pair-group mean arithmetic method (UPGMA) clustering of data using NTSYS-pc software indicated that the accessions showed varied levels of genetic similarity ranging from 0.57-1.00 similarity coefficient index indicating significant levels of variation. At SM coefficient of 0.81, the germplasm was separated into four groups. Phenotypic variation was discussed in context of phylogenetic tree clustering.

Keywords: diversity, germplasm, Chili pepper, ISSR

Procedia PDF Downloads 152
3230 Utilization of Bottom Ash as Catalyst in Biomass Steam Gasification for Hydrogen and Syngas Production: Lab Scale Approach

Authors: Angga Pratama Herman, Muhammad Shahbaz, Suzana Yusup

Abstract:

Bottom ash is a solid waste from thermal power plant and it is usually disposed of into landfills and ash ponds. These disposal methods are not sustainable since new lands need to be acquired as the landfills and ash ponds are fill to its capacity. Bottom ash also classified as hazardous material that makes the disposal methods may have contributed to the environmental effect to the area. Hence, more research needs to be done to explore the potential of recycling the bottom ash as more useful product. The objective of this research is to explore the potential of utilizing bottom ash as catalyst in biomass steam gasification. In this research, bottom ash was used as catalyst in gasification of Palm Kernel Shell (PKS) using Thermo Gravimetric Analyzer coupled with mass spectrometry (TGA/MS). The effects of temperature (650 – 750 °C), particle size (0.5 – 1.0 mm) and bottom ash percentage (2 % - 10 %) were studied with and without steam. The experimental arrays were designed using expert method of Central Composite Design (CCD). Results show maximum yield of hydrogen gas was 34.3 mole % for gasification without steam and 61.4 Mole % with steam. Similar trend was observed for syngas production. The maximum syngas yield was 59.5 mole % for without steam and it reached up to 81.5 mole% with the use of steam. The optimal condition for both product gases was temperature 700 °C, particle size 0.75 mm and cool bottom ash % 0.06. In conclusion, the use of bottom ash as catalyst is possible for biomass steam gasification and the product gases composition are comparable with previous researches, however the results need to be validated for bench or pilot scale study.

Keywords: bottom ash, biomass steam gasification, catalyst, lab scale

Procedia PDF Downloads 298