Search results for: soil-post interaction modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7444

Search results for: soil-post interaction modeling

6004 Repairing Broken Trust: The Influence of Positive Induced Emotion and Gender

Authors: Zach Banzon, Marina Caculitan, Gianne Laisac, Stephanie Lopez, Marguerite Villegas

Abstract:

The role of incidental positive emotions and gender on people’s trust decisions have been established by existing research. The aim of this experiment is to address the gap in the literature by examining whether these factors will have a similar effect on trust behavior even after the experience of betrayal. A total of 144 undergraduate students participated in a trust game involving the anonymous interaction of a participant and a transgressor. Of these participants, only 125 (63 males and 62 females) were included in the data analyses. A story was used to prime incidental positive emotions or emotions originally unrelated to the trustee. Recovered trust was measured by relating the proportion of the money passed before and after betrayal. Data was analyzed using two-way analysis of variance having two levels for gender (male, female) and two for priming (with, without), with trust propensity scores entered as a covariate. It was predicted that trust recovery will be more apparent in females than in males but the data obtained was not significantly different between the genders. Induced positive emotions, however, had a statistically significant effect on trust behavior even after betrayal. No significant interaction effect was found between induced positive emotion and gender. The experiment provides evidence that the manipulation of situational variables, to a certain extent, can facilitate the reparation of trust.

Keywords: gender effect, positive emotions, trust game, trust recovery

Procedia PDF Downloads 262
6003 Assessment of Golestan Dam Break Using Finite Volume Method

Authors: Ebrahim Alamatian, Seyed Mehdi Afzalnia

Abstract:

One of the most vital hydraulic structures is the dam. Regarding the unrecoverable damages which may occur after a dam break phenomenon, analyzing dams’ break is absolutely essential. GOLESTAN dam is located in the western South of Mashhad city in Iran. GOLESTAN dam break might lead to severe problems due to adjacent tourist and entertainment areas. In this paper, a numerical code based on the finite volume method was applied for assessing the risk of GOLESTAN dam break. As to this issue, first, a canal with a triangular barrier was modeled so as to verify the capability of the concerned code. Comparing analytical, experimental and numerical results showed that water level in the model results is in a good agreement with the similar water level in the analytical solutions and experimental data. The results of dam break modeling are revealed that two of the bridges, that are PARTOIE and NAMAYESHGAH, located downstream in the flow direction, are at risk following the potential GOLESTAN dam break. Therefore, the required times to conduct the precautionary measures at bridges were calculated at about 12 and 21 minutes, respectively. Thus, it is crucial to announce people about the possible risks of the dam break in order to decrease likely losses.

Keywords: numerical model, shallow water equations, GOLESTAN dam break, dry and wet beds modeling

Procedia PDF Downloads 134
6002 Investigation on the Energy Impact of Spatial Geometry in a Residential Building Using Building Information Modeling Technology

Authors: Shashank. S. Bagane, H. N. Rajendra Prasad

Abstract:

Building Information Modeling (BIM) has currently developed into a potent solution. The consistent development of BIM technology in the sphere of Architecture, Engineering, and Construction (AEC) industry has enhanced the effectiveness of construction and decision making. However, aggrandized global warming and energy crisis has impacted on building energy analysis. It is now becoming an important factor to be considered in the AEC industry. Amalgamating energy analysis in the planning and design phase of a structure has become a necessity. In the current construction industry, estimating energy usage and reducing its footprint is of high priority. The construction industry is giving more prominence to sustainability alongside energy efficiency. This demand is compelling the designers, planners, and engineers to inspect the sustainable performance throughout the building's life cycle. The current study primarily focuses on energy consumption, space arrangement, and spatial geometry of a residential building. Most commonly residential structures in India are constructed considering Vastu Shastra. Vastu designs are intended to integrate architecture with nature and utilizing geometric patterns, symmetry, and directional alignments. In the current study, a residential brick masonry structure is considered for BIM analysis, Architectural model of the structure will be created using Revit software, later the orientation and spatial arrangement will be finalized based on Vastu principles. Furthermore, the structure will be investigated for the impact of building orientation and spatial arrangements on energy using Green Building Studio software. Based on the BIM analysis of the structure, energy consumption of subsequent building orientations will be understood. A well-orientated building having good spatial arrangement can save a considerable amount of energy throughout its life cycle and reduces the need for heating and lighting which will prove to diminish energy usage and improve the energy efficiency of the residential building.

Keywords: building information modeling, energy impact, spatial geometry, vastu

Procedia PDF Downloads 146
6001 Establishment of Kinetic Zone Diagrams via Simulated Linear Sweep Voltammograms for Soluble-Insoluble Systems

Authors: Imene Atek, Abed M. Affoune, Hubert Girault, Pekka Peljo

Abstract:

Due to the need for a rigorous mathematical model that can help to estimate kinetic properties for soluble-insoluble systems, through voltammetric experiments, a Nicholson Semi Analytical Approach was used in this work for modeling and prediction of theoretical linear sweep voltammetry responses for reversible, quasi reversible or irreversible electron transfer reactions. The redox system of interest is a one-step metal electrodeposition process. A rigorous analysis of simulated linear scan voltammetric responses following variation of dimensionless factors, the rate constant and charge transfer coefficients in a broad range was studied and presented in the form of the so called kinetic zones diagrams. These kinetic diagrams were divided into three kinetics zones. Interpreting these zones leads to empirical mathematical models which can allow the experimenter to determine electrodeposition reactions kinetics whatever the degree of reversibility. The validity of the obtained results was tested and an excellent experiment–theory agreement has been showed.

Keywords: electrodeposition, kinetics diagrams, modeling, voltammetry

Procedia PDF Downloads 126
6000 Interaction of Non-Gray-Gas Radiation with Opposed Mixed Convection in a Lid-Driven Square Cavity

Authors: Mohammed Cherifi, Abderrahmane Benbrik, Siham Laouar-Meftah, Denis Lemonnier

Abstract:

The present study was conducted to numerically investigate the interaction of non-gray-gas radiation with opposed mixed convection in a vertical two-sided lid-driven square cavity. The opposing flows are simultaneously generated by the vertical boundary walls which slide at a constant speed and the natural convection due to the gradient temperature of differentially heated cavity. The horizontal walls are thermally insulated and perfectly reflective. The enclosure is filled with air-H2O-CO2 gas mixture, which is considered as a non-gray, absorbing, emitting and not scattering medium. The governing differential equations are solved by a finite-volume method, by adopting the SIMPLER algorithm for pressure–velocity coupling. The radiative transfer equation (RTE) is solved by the discrete ordinates method (DOM). The spectral line weighted sum of gray gases model (SLW) is used to account for non-gray radiation properties. Three cases of the effects of radiation (transparent, gray and non-gray medium) are studied. Comparison is also made with the parametric studies of the effect of the mixed convection parameter, Ri (0.1, 1, 10), on the fluid flow and heat transfer have been performed.

Keywords: opposed mixed convection, non-gray-gas radiation, two-sided lid-driven cavity, discrete ordinate method, SLW model

Procedia PDF Downloads 303
5999 Rd-PLS Regression: From the Analysis of Two Blocks of Variables to Path Modeling

Authors: E. Tchandao Mangamana, V. Cariou, E. Vigneau, R. Glele Kakai, E. M. Qannari

Abstract:

A new definition of a latent variable associated with a dataset makes it possible to propose variants of the PLS2 regression and the multi-block PLS (MB-PLS). We shall refer to these variants as Rd-PLS regression and Rd-MB-PLS respectively because they are inspired by both Redundancy analysis and PLS regression. Usually, a latent variable t associated with a dataset Z is defined as a linear combination of the variables of Z with the constraint that the length of the loading weights vector equals 1. Formally, t=Zw with ‖w‖=1. Denoting by Z' the transpose of Z, we define herein, a latent variable by t=ZZ’q with the constraint that the auxiliary variable q has a norm equal to 1. This new definition of a latent variable entails that, as previously, t is a linear combination of the variables in Z and, in addition, the loading vector w=Z’q is constrained to be a linear combination of the rows of Z. More importantly, t could be interpreted as a kind of projection of the auxiliary variable q onto the space generated by the variables in Z, since it is collinear to the first PLS1 component of q onto Z. Consider the situation in which we aim to predict a dataset Y from another dataset X. These two datasets relate to the same individuals and are assumed to be centered. Let us consider a latent variable u=YY’q to which we associate the variable t= XX’YY’q. Rd-PLS consists in seeking q (and therefore u and t) so that the covariance between t and u is maximum. The solution to this problem is straightforward and consists in setting q to the eigenvector of YY’XX’YY’ associated with the largest eigenvalue. For the determination of higher order components, we deflate X and Y with respect to the latent variable t. Extending Rd-PLS to the context of multi-block data is relatively easy. Starting from a latent variable u=YY’q, we consider its ‘projection’ on the space generated by the variables of each block Xk (k=1, ..., K) namely, tk= XkXk'YY’q. Thereafter, Rd-MB-PLS seeks q in order to maximize the average of the covariances of u with tk (k=1, ..., K). The solution to this problem is given by q, eigenvector of YY’XX’YY’, where X is the dataset obtained by horizontally merging datasets Xk (k=1, ..., K). For the determination of latent variables of order higher than 1, we use a deflation of Y and Xk with respect to the variable t= XX’YY’q. In the same vein, extending Rd-MB-PLS to the path modeling setting is straightforward. Methods are illustrated on the basis of case studies and performance of Rd-PLS and Rd-MB-PLS in terms of prediction is compared to that of PLS2 and MB-PLS.

Keywords: multiblock data analysis, partial least squares regression, path modeling, redundancy analysis

Procedia PDF Downloads 126
5998 Helical Motions Dynamics and Hydraulics of River Channel Confluences

Authors: Ali Aghazadegan, Ali Shokria, Julia Mullarneya, Jon Tunnicliffe

Abstract:

River channel confluences are dynamic systems with branching structures that exhibit a high degree of complexity both in natural and man-made open channel networks. Recent and past fields and modeling have investigated the river dynamics modeling of confluent based on a series of over-simplified assumptions (i.e. straight tributary channel with a bend with a 90° junction angle). Accurate assessment of such systems is important to the design and management of hydraulic structures and river engineering processes. Despite their importance, there has been little study of the hydrodynamics characteristics of river confluences, and the link between flow hydrodynamics and confluence morphodynamics in the confluence is still incompletely understood. This paper studies flow structures in confluences, morphodynamics and deposition patterns in 30 and 90 degrees confluences with different flow conditions. The results show that the junction angle is primarily the key factor for the determination of the confluence bed morphology and sediment pattern, while the discharge ratio is a secondary factor. It also shows that super elevation created by mixing flows is a key function of the morphodynamics patterns.

Keywords: helical flow, river confluence, bed morphology , secondary flows, shear layer

Procedia PDF Downloads 129
5997 Design of Enhanced Adaptive Filter for Integrated Navigation System of FOG-SINS and Star Tracker

Authors: Nassim Bessaad, Qilian Bao, Zhao Jiangkang

Abstract:

The fiber optics gyroscope in the strap-down inertial navigation system (FOG-SINS) suffers from precision degradation due to the influence of random errors. In this work, an enhanced Allan variance (AV) stochastic modeling method combined with discrete wavelet transform (DWT) for signal denoising is implemented to estimate the random process in the FOG signal. Furthermore, we devise a measurement-based iterative adaptive Sage-Husa nonlinear filter with augmented states to integrate a star tracker sensor with SINS. The proposed filter adapts the measurement noise covariance matrix based on the available data. Moreover, the enhanced stochastic modeling scheme is invested in tuning the process noise covariance matrix and the augmented state Gauss-Markov process parameters. Finally, the effectiveness of the proposed filter is investigated by employing the collected data in laboratory conditions. The result shows the filter's improved accuracy in comparison with the conventional Kalman filter (CKF).

Keywords: inertial navigation, adaptive filtering, star tracker, FOG

Procedia PDF Downloads 69
5996 Parameters Affecting Load Capacity of Reinforced Concrete Ring Deep Beams

Authors: Atef Ahmad Bleibel

Abstract:

Most codes of practice, like ACI 318-14, require the use of strut-and-tie modeling to analyze and design reinforced concrete deep beams. Though, investigations that conducted on deep beams do not include ring deep beams of influential parameters. This work presents an analytical parametric study using strut-and-tie modeling stated by ACI 318-14 to predict load capacity of 20 reinforced concrete ring deep beam specimens with different parameters. The parameters that were under consideration in the current work are ring diameter (Dc), number of supports (NS), width of ring beam (bw), concrete compressive strength (f'c) and width of bearing plate (Bp). It is found that the load capacity decreases by about 14-36% when ring diameter increases by about 25-75%. It is also found that load capacity increases by about 62-189% when number of supports increases by about 33-100%, while the load capacity increases by about 25-75% when the beam ring width increases by about 25-75%. Finally, it is found that load capacity increases by about 24-76% when compressive strength increases by about 24-76%, while the load capacity increases by about 5-16% when Bp increases by about 25-75%.

Keywords: load parameters, reinforced concrete, ring deep beam, strut and tie

Procedia PDF Downloads 88
5995 AI as a Tool Hindering Digital Education

Authors: Justyna Żywiołek, Marek Matulewski

Abstract:

The article presents the results of a survey conducted among students from various European countries. The aim of the study was to understand how artificial intelligence (AI) affects educational processes in a digital environment. The survey covered a wide range of topics, including students' understanding and use of AI, its impact on motivation and engagement, interaction and support issues, accessibility and equity, and data security and privacy concerns. Most respondents admitted having difficulties comprehending the advanced functions of AI in educational tools. Many students believe that excessive use of AI in education can decrease their motivation for self-study and active participation in classes. Additionally, students reported that interaction with AI-based tools is often less satisfying compared to direct contact with teachers. Furthermore, the survey highlighted inequalities in access to advanced AI tools, which can widen the educational gap between students from different economic backgrounds. Students also expressed concerns about the security and privacy of their personal data collected and processed by AI systems. The findings suggest that while AI has the potential to support digital education, significant challenges need to be addressed to make these tools more effective and acceptable for students. Recommendations include increasing training for students and teachers on using AI, providing more interactive and engaging forms of education, and implementing stricter regulations on data protection.

Keywords: AI, digital education, education tools, motivation and engagement

Procedia PDF Downloads 7
5994 A System Architecture for Hand Gesture Control of Robotic Technology: A Case Study Using a Myo™ Arm Band, DJI Spark™ Drone, and a Staubli™ Robotic Manipulator

Authors: Sebastian van Delden, Matthew Anuszkiewicz, Jayse White, Scott Stolarski

Abstract:

Industrial robotic manipulators have been commonplace in the manufacturing world since the early 1960s, and unmanned aerial vehicles (drones) have only begun to realize their full potential in the service industry and the military. The omnipresence of these technologies in their respective fields will only become more potent in coming years. While these technologies have greatly evolved over the years, the typical approach to human interaction with these robots has not. In the industrial robotics realm, a manipulator is typically jogged around using a teach pendant and programmed using a networked computer or the teach pendant itself via a proprietary software development platform. Drones are typically controlled using a two-handed controller equipped with throttles, buttons, and sticks, an app that can be downloaded to one’s mobile device, or a combination of both. This application-oriented work offers a novel approach to human interaction with both unmanned aerial vehicles and industrial robotic manipulators via hand gestures and movements. Two systems have been implemented, both of which use a Myo™ armband to control either a drone (DJI Spark™) or a robotic arm (Stäubli™ TX40). The methodologies developed by this work present a mapping of armband gestures (fist, finger spread, swing hand in, swing hand out, swing arm left/up/down/right, etc.) to either drone or robot arm movements. The findings of this study present the efficacy and limitations (precision and ergonomic) of hand gesture control of two distinct types of robotic technology. All source code associated with this project will be open sourced and placed on GitHub. In conclusion, this study offers a framework that maps hand and arm gestures to drone and robot arm control. The system has been implemented using current ubiquitous technologies, and these software artifacts will be open sourced for future researchers or practitioners to use in their work.

Keywords: human robot interaction, drones, gestures, robotics

Procedia PDF Downloads 140
5993 Superchaotropicity: Grafted Surface to Probe the Adsorption of Nano-Ions

Authors: Raimoana Frogier, Luc Girard, Pierre Bauduin, Diane Rebiscoul, Olivier Diat

Abstract:

Nano-ions (NIs) are ionic species or clusters of nanometric size. Their low charge density and the delocalization of their charges give special properties to some of NIs belonging to chemical classes of polyoxometalates (POMs) or boron clusters. They have the particularity of interacting non-covalently with neutral hydrated surface or interfaces such as assemblies of surface-active molecules (micelles, vesicles, lyotropic liquid crystals), foam bubbles or emulsion droplets. This makes possible to classify those NIs in the Hofmeister series as superchaotropic ions. The mechanism of adsorption is complex, linked to the simultaneous dehydration of the ion and the molecule or supramolecular assembly with which it can interact, all with an enthalpic gain on the free energy of the system. This interaction process is reversible and is sufficiently pronounced to induce changes in molecular and supramolecular shape or conformation, phase transitions in the liquid phase, all at sub-millimolar ionic concentrations. This new property of some NIs opens up new possibilities for applications in fields as varied as biochemistry for solubilization, recovery of metals of interest by foams in the form of NIs... In order to better understand the physico-chemical mechanisms at the origin of this interaction, we use silicon wafers functionalized by non-ionic oligomers (polyethylene glycol chains or PEG) to study in situ by X-ray reflectivity this interaction of NIs with the grafted chains. This study carried out at ESRF (European Synchrotron Radiation Facility) and has shown that the adsorption of the NIs, such as POMs, has a very fast kinetics. Moreover the distribution of the NIs in the grafted PEG chain layer was quantify. These results are very encouraging and confirm what has been observed on soft interfaces such as micelles or foams. The possibility to play on the density, length and chemical nature of the grafted chains makes this system an ideal tool to provide kinetic and thermodynamic information to decipher the complex mechanisms at the origin of this adsorption.

Keywords: adsorption, nano-ions, solid-liquid interface, superchaotropicity

Procedia PDF Downloads 48
5992 A Review of Different Studies on Hidden Markov Models for Multi-Temporal Satellite Images: Stationarity and Non-Stationarity Issues

Authors: Ali Ben Abbes, Imed Riadh Farah

Abstract:

Due to the considerable advances in Multi-Temporal Satellite Images (MTSI), remote sensing application became more accurate. Recently, many advances in modeling MTSI are developed using various models. The purpose of this article is to present an overview of studies using Hidden Markov Model (HMM). First of all, we provide a background of using HMM and their applications in this context. A comparison of the different works is discussed, and possible areas and challenges are highlighted. Secondly, we discussed the difference on vegetation monitoring as well as urban growth. Nevertheless, most research efforts have been used only stationary data. From another point of view, in this paper, we describe a new non-stationarity HMM, that is defined with a set of parts of the time series e.g. seasonal, trend and random. In addition, a new approach giving more accurate results and improve the applicability of the HMM in modeling a non-stationary data series. In order to assess the performance of the HMM, different experiments are carried out using Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI time series of the northwestern region of Tunisia and Landsat time series of tres Cantos-Madrid in Spain.

Keywords: multi-temporal satellite image, HMM , nonstationarity, vegetation, urban

Procedia PDF Downloads 341
5991 A Study of Secondary Particle Production from Carbon Ion Beam for Radiotherapy

Authors: Shaikah Alsubayae, Gianluigi Casse, Carlos Chavez, Jon Taylor, Alan Taylor, Mohammad Alsulimane

Abstract:

Achieving precise radiotherapy through carbon therapy necessitates the accurate monitoring of radiation dose distribution within the patient's body. This process is pivotal for targeted tumor treatment, minimizing harm to healthy tissues, and enhancing overall treatment effectiveness while reducing the risk of side effects. In our investigation, we adopted a methodological approach to monitor secondary proton doses in carbon therapy using Monte Carlo (MC) simulations. Initially, Geant4 simulations were employed to extract the initial positions of secondary particles generated during interactions between carbon ions and water, including protons, gamma rays, alpha particles, neutrons, and tritons. Subsequently, we explored the relationship between the carbon ion beam and these secondary particles. Interaction vertex imaging (IVI) proves valuable for monitoring dose distribution during carbon therapy, providing information about secondary particle locations and abundances, particularly protons. The IVI method relies on charged particles produced during ion fragmentation to gather range information by reconstructing particle trajectories back to their point of origin, known as the vertex. In the context of carbon ion therapy, our simulation results indicated a strong correlation between some secondary particles and the range of carbon ions. However, challenges arose due to the unique elongated geometry of the target, hindering the straightforward transmission of forward-generated protons. Consequently, the limited protons that did emerge predominantly originated from points close to the target entrance. Fragment (protons) trajectories were approximated as straight lines, and a beam back-projection algorithm, utilizing interaction positions recorded in Si detectors, was developed to reconstruct vertices. The analysis revealed a correlation between the reconstructed and actual positions.

Keywords: radiotherapy, carbon therapy, monitor secondary proton doses, interaction vertex imaging

Procedia PDF Downloads 62
5990 The Impact of Research and Development Cooperation Partner Diversity, Knowledge Source Diversity and Knowledge Source Network Embeddedness on Radical Innovation: Direct Relationships and Interaction with Non-Price Competition

Authors: Natalia Strobel, Jan Kratzer

Abstract:

In this paper, we test whether different types of research and development (R&D) alliances positively impact the radical innovation performance of firms. We differentiate between the R&D alliances without extern R&D orders and embeddedness in knowledge source network. We test the differences between the domestically diversified R&D alliances and R&D alliances diversified abroad. Moreover, we test how non-price competition influences the impact of domestically diversified R&D alliances, and R&D alliance diversified abroad on radical innovation performance. Our empirical analysis is based on the comprehensive Swiss innovation panel, which allowed us to study 3520 firms between the years between 1996 and 2011 in 3 years intervals. We analyzed the data with a linear estimation with Swamy-Aurora transformation using plm package in R software. Our results show as hypothesized a positive impact of R&D alliances diversity abroad as well as domestically on radical innovation performance. The effect of non-price interaction is in contrast to our hypothesis, not significant. This suggests that diversity of R&D alliances is highly advantageous independent of non-price competition.

Keywords: R&D alliances, partner diversity, knowledge source diversity, non-price competition, absorptive capacity

Procedia PDF Downloads 348
5989 Modeling and System Identification of a Variable Excited Linear Direct Drive

Authors: Heiko Weiß, Andreas Meister, Christoph Ament, Nils Dreifke

Abstract:

Linear actuators are deployed in a wide range of applications. This paper presents the modeling and system identification of a variable excited linear direct drive (LDD). The LDD is designed based on linear hybrid stepper technology exhibiting the characteristic tooth structure of mover and stator. A three-phase topology provides the thrust force caused by alternating strengthening and weakening of the flux of the legs. To achieve best possible synchronous operation, the phases are commutated sinusoidal. Despite the fact that these LDDs provide high dynamics and drive forces, noise emission limits their operation in calm workspaces. To overcome this drawback an additional excitation of the magnetic circuit is introduced to LDD using additional enabling coils instead of permanent magnets. The new degree of freedom can be used to reduce force variations and related noise by varying the excitation flux that is usually generated by permanent magnets. Hence, an identified simulation model is necessary to analyze the effects of this modification. Especially the force variations must be modeled well in order to reduce them sufficiently. The model can be divided into three parts: the current dynamics, the mechanics and the force functions. These subsystems are described with differential equations or nonlinear analytic functions, respectively. Ordinary nonlinear differential equations are derived and transformed into state space representation. Experiments have been carried out on a test rig to identify the system parameters of the complete model. Static and dynamic simulation based optimizations are utilized for identification. The results are verified in time and frequency domain. Finally, the identified model provides a basis for later design of control strategies to reduce existing force variations.

Keywords: force variations, linear direct drive, modeling and system identification, variable excitation flux

Procedia PDF Downloads 358
5988 Modeling of the Mechanism of Ion Channel Opening of the Visual Receptor's Rod on the Light and Allosteric Effect of Rhodopsin in the Phosphorylation Process

Authors: N. S. Vassilieva-Vashakmadze, R. A. Gakhokidze, I. M. Khachatryan

Abstract:

In the first part of the paper it is shown that both the depolarization of the cytoplasmic membrane of rods observed in invertebrates and hyperpolarization characteristic of vertebrates on the light may activate the functioning of ion (Na+) channels of cytoplasmic membrane of rods and thus provide the emergence of nerve impulse and its transfer to the neighboring neuron etc. In the second part, using the quantum mechanical program for modeling of the molecular processes, we got a clear picture demonstrating the effect of charged phosphate groups on the protein components of α-helical subunits of the visual rhodopsin receptor. The analysis shows that the phosphorylation of terminal amino acid of seventh α-helical subunits of the visual rhodopsin causes a redistribution of electron density on the atoms, i.e. polarization of subunits, also the changing the configuration of the nuclear subsystem, which corresponds to the deformation process in the molecule. Based on the use of models it can be concluded that this system has an internal relationship between polarization and deformation processes that indicates on the allosteric effect. The allosteric effect is based on quantum-mechanical principle of the self-consistency of the molecules.

Keywords: membrane potential, ion channels, visual rhodopsin, allosteric effect

Procedia PDF Downloads 259
5987 Inter-Personal and Inter-Organizational Relationships in Supply Chain Integration: A Resource Orchestration Perspective

Authors: Bill Wang, Paul Childerhouse, Yuanfei Kang

Abstract:

Purpose: The research is to extend resource orchestration theory (ROT) into supply chain management (SCM) area to investigate the dyadic relationships at both individual and organizational levels in supply chain integration (SCI). Also, we try to explore the interaction mechanism between inter-personal relationships (IPRs) and inter-organizational (IORs) during the whole SCI process. Methodology/approach: The research employed an exploratory multiple case study approach of four New Zealand companies. The data was collected via semi-structured interviews with top, middle, and lower level managers and operators from different departments of both suppliers and customers triangulated with company archival data. Findings: The research highlights the important role of both IPRs and IORs in the whole SCI process. Both IPRs and IORs are valuable, inimitable resources but IORs are formal and exterior while IPRs are informal and subordinated. In the initial stage of SCI process, IPRs are seen as key resources antecedents to IOR building while three IPRs dimensions work differently: personal credibility acts as an icebreaker to strengthen the confidence forming IORs, and personal affection acts as a gatekeeper, whilst personal communication expedites the IORs process. In the maintenance and development stage, IORs and IPRs interact each other continuously: good interaction between IPRs and IORs can facilitate SCI process while the bad interaction between IPRs can damage the SCI process. On the other hand, during the life-cycle of SCI process, IPRs can facilitate the formation, development of IORs while IORs development can cultivate the ties of IPRs. Out of the three dimensions of IPRs, Personal communication plays a more important role to develop IORs than personal credibility and personal affection. Originality/value: This research contributes to ROT in supply chain management literature by highlighting the interaction of IPRs and IORs in SCI. The intangible resources and capabilities of three dimensions of IPRs need to be orchestrated and nurtured to achieve efficient and effective IORs in SCI. Also, IPRs and IORs need to be orchestrated in terms of breadth, depth, and life-cycle of whole SCI process. Our study provides further insight into the rarely explored inter-personal level of SCI. Managerial implications: Our research provides top management with further evidence of the significance roles of IPRs at different levels when working with trading partners. This highlights the need to actively manage and develop these soft IPRs skills as an intangible competitive resource. Further, the research identifies when staff with specific skills and connections should be utilized during the different stages of building and maintaining inter-organizational ties. More importantly, top management needs to orchestrate and balance the resources of IPRs and IORs.

Keywords: case study, inter-organizational relationships, inter-personal relationships, resource orchestration, supply chain integration

Procedia PDF Downloads 218
5986 The Trajectory of the Ball in Football Game

Authors: Mahdi Motahari, Mojtaba Farzaneh, Ebrahim Sepidbar

Abstract:

Tracking of moving and flying targets is one of the most important issues in image processing topic. Estimating of trajectory of desired object in short-term and long-term scale is more important than tracking of moving and flying targets. In this paper, a new way of identifying and estimating of future trajectory of a moving ball in long-term scale is estimated by using synthesis and interaction of image processing algorithms including noise removal and image segmentation, Kalman filter algorithm in order to estimating of trajectory of ball in football game in short-term scale and intelligent adaptive neuro-fuzzy algorithm based on time series of traverse distance. The proposed system attain more than 96% identify accuracy by using aforesaid methods and relaying on aforesaid algorithms and data base video in format of synthesis and interaction. Although the present method has high precision, it is time consuming. By comparing this method with other methods we realize the accuracy and efficiency of that.

Keywords: tracking, signal processing, moving targets and flying, artificial intelligent systems, estimating of trajectory, Kalman filter

Procedia PDF Downloads 446
5985 Modeling Approach for Evaluating Infiltration Rate of a Large-Scale Housing Stock

Authors: Azzam Alosaimi

Abstract:

Different countries attempt to reduce energy demands and Greenhouse Gas (GHG) emissions to mitigate global warming potential. They set different building codes to regulate excessive building’s energy losses. Energy losses occur due to pressure difference between the indoor and outdoor environments, and thus, heat transfers from one region to another. One major sources of energy loss is known as building airtightness. Building airtightness is the fundamental feature of the building envelope that directly impacts infiltration. Most of international building codes require minimum performance for new construction to ensure acceptable airtightness. The execution of airtightness required standards has become more challenging in recent years due to a lack of expertise and equipment, making it costly and time-consuming. Hence, researchers have developed predictive models to predict buildings infiltration rates to meet building codes and to reduce energy and cost. This research applies a theoretical modeling approach using Matlab software to predict mean infiltration rate distributions and total heat loss of Saudi Arabia’s housing stock.

Keywords: infiltration rate, energy demands, heating loss, cooling loss, carbon emissions

Procedia PDF Downloads 142
5984 An Insight into the Conformational Dynamics of Glycan through Molecular Dynamics Simulation

Authors: K. Veluraja

Abstract:

Glycan of glycolipids and glycoproteins is playing a significant role in living systems particularly in molecular recognition processes. Molecular recognition processes are attributed to their occurrence on the surface of the cell, sequential arrangement and type of sugar molecules present in the oligosaccharide structure and glyosidic linkage diversity (glycoinformatics) and conformational diversity (glycoconformatics). Molecular Dynamics Simulation study is a theoretical-cum-computational tool successfully utilized to establish glycoconformatics of glycan. The study on various oligosaccharides of glycan clearly indicates that oligosaccharides do exist in multiple conformational states and these conformational states arise due to the flexibility associated with a glycosidic torsional angle (φ,ψ) . As an example: a single disaccharide structure NeuNacα(2-3) Gal exists in three different conformational states due to the differences in the preferential value of glycosidic torsional angles (φ,ψ). Hence establishing three dimensional structural and conformational models for glycan (cartesian coordinates of every individual atoms of an oligosaccharide structure in a preferred conformation) is quite crucial to understand various molecular recognition processes such as glycan-toxin interaction and glycan-virus interaction. The gycoconformatics models obtained for various glycan through Molecular Dynamics Simulation stored in our 3DSDSCAR (3DSDSCAR.ORG) a public domain database and its utility value in understanding the molecular recognition processes and in drug design venture will be discussed.

Keywords: glycan, glycoconformatics, molecular dynamics simulation, oligosaccharide

Procedia PDF Downloads 121
5983 Transient Response of Elastic Structures Subjected to a Fluid Medium

Authors: Helnaz Soltani, J. N. Reddy

Abstract:

Presence of fluid medium interacting with a structure can lead to failure of the structure. Since developing efficient computational model for fluid-structure interaction (FSI) problems has broader impact to realistic problems encountered in aerospace industry, ship industry, oil and gas industry, and so on, one can find an increasing need to find a method in order to investigate the effect of fluid domain on structural response. A coupled finite element formulation of problems involving FSI issue is an accurate method to predict the response of structures in contact with a fluid medium. This study proposes a finite element approach in order to study the transient response of the structures interacting with a fluid medium. Since beam and plate are considered to be the fundamental elements of almost any structure, the developed method is applied to beams and plates benchmark problems in order to demonstrate its efficiency. The formulation is a combination of the various structure theories and the solid-fluid interface boundary condition, which is used to represent the interaction between the solid and fluid regimes. Here, three different beam theories as well as three different plate theories are considered to model the solid medium, and the Navier-Stokes equation is used as the theoretical equation governed the fluid domain. For each theory, a coupled set of equations is derived where the element matrices of both regimes are calculated by Gaussian quadrature integration. The main feature of the proposed methodology is to model the fluid domain as an added mass; the external distributed force due to the presence of the fluid. We validate the accuracy of such formulation by means of some numerical examples. Since the formulation presented in this study covers several theories in literature, the applicability of our proposed approach is independent of any structure geometry. The effect of varying parameters such as structure thickness ratio, fluid density and immersion depth, are studied using numerical simulations. The results indicate that maximum vertical deflection of the structure is affected considerably in the presence of a fluid medium.

Keywords: beam and plate, finite element analysis, fluid-structure interaction, transient response

Procedia PDF Downloads 551
5982 Comparison of Interactive Performance of Clicking Tasks Using Cursor Control Devices under Different Feedback Modes

Authors: Jinshou Shi, Xiaozhou Zhou, Yingwei Zhou, Tuoyang Zhou, Ning Li, Chi Zhang, Zhanshuo Zhang, Ziang Chen

Abstract:

In order to select the optimal interaction method for common computer click tasks, the click experiment test adopts the ISO 9241-9 task paradigm, using four common operations: mouse, trackball, touch, and eye control under visual feedback, auditory feedback, and no feedback. Through data analysis of various parameters of movement time, throughput, and accuracy, it is found that the movement time of touch-control is the shortest, the operation accuracy and throughput are higher than others, and the overall operation performance is the best. In addition, the motion time of the click operation with auditory feedback is significantly lower than the other two feedback methods in each operation mode experiment. In terms of the size of the click target, it is found that when the target is too small (less than 14px), the click performance of all aspects is reduced, so it is proposed that the design of the interface button should not be less than 28px. In this article, we discussed in detail the advantages and disadvantages of the operation and feedback methods, and the results of the discussion of the click operation can be applied to the design of the buttons in the interactive interface.

Keywords: cursor control performance, feedback, human computer interaction, throughput

Procedia PDF Downloads 180
5981 An Empirical Investigation of Montesquieu’s Theories on Climate

Authors: Lisa J. Piergallini

Abstract:

This project uses panel regression analyses to investigate the relationships between geography, institutions, and economic development, as guided by the theories of the 18th century French philosopher Montesquieu. Contemporary scholars of political economy perpetually misinterpret Montesquieu’s theories on climate, and in doing so they miss what could be the key to resolving the geography vs. institutions debate. There is a conspicuous gap in this literature, in that it does not consider whether geography and institutors might have an interactive, dynamic effect on economic development. This project seeks to bridge that gap. Data are used for all available countries over the years 1980-2013. Two interaction terms between geographic and institutional variables are employed within the empirical analyses, and these offer a unique contribution to the ongoing geography vs. institutions debate within the political economy literature. This study finds that there is indeed an interactive effect between geography and institutions, and that this interaction has a statistically significant effect on economic development. Democracy (as measured by Polity score) and rule of law and property rights (as measured by the Fraser index) have positive effects on economic development (as measured by GDP per capita), yet the magnitude of these effects are stronger in contexts where a low percent of the national population lives in the geographical tropics. This has implications for promoting economic development, and it highlights the importance of understanding geographical context.

Keywords: Montesquieu, institutions, geography, economic development, political philosophy, political economy

Procedia PDF Downloads 239
5980 Chern-Simons Equation in Financial Theory and Time-Series Analysis

Authors: Ognjen Vukovic

Abstract:

Chern-Simons equation represents the cornerstone of quantum physics. The question that is often asked is if the aforementioned equation can be successfully applied to the interaction in international financial markets. By analysing the time series in financial theory, it is proved that Chern-Simons equation can be successfully applied to financial time-series. The aforementioned statement is based on one important premise and that is that the financial time series follow the fractional Brownian motion. All variants of Chern-Simons equation and theory are applied and analysed. Financial theory time series movement is, firstly, topologically analysed. The main idea is that exchange rate represents two-dimensional projections of three-dimensional Brownian motion movement. Main principles of knot theory and topology are applied to financial time series and setting is created so the Chern-Simons equation can be applied. As Chern-Simons equation is based on small particles, it is multiplied by the magnifying factor to mimic the real world movement. Afterwards, the following equation is optimised using Solver. The equation is applied to n financial time series in order to see if it can capture the interaction between financial time series and consequently explain it. The aforementioned equation represents a novel approach to financial time series analysis and hopefully it will direct further research.

Keywords: Brownian motion, Chern-Simons theory, financial time series, econophysics

Procedia PDF Downloads 457
5979 Probabilistic Modeling of Post-Liquefaction Ground Deformation

Authors: Javad Sadoghi Yazdi, Robb Eric S. Moss

Abstract:

This paper utilizes a probabilistic liquefaction triggering method for modeling post-liquefaction ground deformation. This cone penetration test CPT-based liquefaction triggering is employed to estimate the factor of safety against liquefaction (FSL) and compute the maximum cyclic shear strain (γmax). The study identifies a maximum PL value of 90% across various relative densities, which challenges the decrease from 90% to 70% as relative density decreases. It reveals that PL ranges from 5% to 50% for volumetric strain (εvol) less than 1%, while for εvol values between 1% and 3.2%, PL spans from 50% to 90%. The application of the CPT-based simplified liquefaction triggering procedures has been employed in previous researches to estimate liquefaction ground-failure indices, such as the Liquefaction Potential Index (LPI) and Liquefaction Severity Number (LSN). However, several studies have been conducted to highlight the variability in liquefaction probability calculations, suggesting a more accurate depiction of liquefaction likelihood. Consequently, the utilization of these simplified methods may not offer practical efficiency. This paper further investigates the efficacy of various established liquefaction vulnerability parameters, including LPI and LSN, in explaining the observed liquefaction-induced damage within residential zones of Christchurch, New Zealand using results from CPT database.

Keywords: cone penetration test (CPT), liquefaction, postliquefaction, ground failure

Procedia PDF Downloads 49
5978 Listening to the Voices of Syrian Refugee Women in Canada: An Ethnographic Insight into the Journey from Trauma to Adaptation

Authors: Areej Al-Hamad, Cheryl Forchuk, Abe Oudshoorn, Gerald Patrick Mckinley

Abstract:

Syrian refugee women face many obstacles when accessing health services in host countries that are influenced by various cultural, structural, and practical factors. This paper is based on critical ethnographic research undertaken in Canada to explore Syrian refugee women's migration experiences. Also, we aim to critically examine how the intersection of gender, trauma, violence and the political and economic conditions of Syrian refugee women shapes their everyday lives and health. The study also investigates the strategies and practices by which Syrian refugee women are currently addressing their healthcare needs and the models of care that are suggested for meeting their physical and mental health needs. Findings show that these women experienced constant worries, hardship, vulnerability, and intrusion of dignity. These experiences and challenges were aggravated by the structure of the Canadian social and health care system. This study offers a better understanding of the impact of migration and trauma on Syrian refugee women's roles, responsibilities, gender dynamics, and interaction with Ontario's healthcare system to improve interaction and outcomes. Health care models should address these challenges among Syrian refugee families in Canada.

Keywords: Syrian refugee women, intersectionality, critical ethnography, migration

Procedia PDF Downloads 75
5977 An Interactive Platform Displaying Mixed Reality Media

Authors: Alfred Chen, Cheng Chieh Hsu, Yu-Pin Ma, Meng-Jie Lin, Fu Pai Chiu, Yi-Yan Sie

Abstract:

This study is attempted to construct a human-computer interactive platform system that has mainly consisted of an augmented hardware system, a software system, a display table, and mixed media. This system has provided with human-computer interaction services through an interactive platform for the tourism industry. A well designed interactive platform, integrating of augmented reality and mixed media, has potential to enhance museum display quality and diversity. Besides, it will create a comprehensive and creative display mode for most museums and historical heritages. Therefore, it is essential to let public understand what the platform is, how it functions, and most importantly how one builds an interactive augmented platform. Hence the authors try to elaborate the construction process of the platform in detail. Thus, there are three issues to be considered, i.e.1) the theory and application of augmented reality, 2) the hardware and software applied, and 3) the mixed media presented. In order to describe how the platform works, Courtesy Door of Tainan Confucius Temple has been selected as case study in this study. As a result, a developed interactive platform has been presented by showing the physical entity object, along with virtual mixing media such as text, images, animation, and video. This platform will result in providing diversified and effective information that will be delivered to the users.

Keywords: human-computer interaction, mixed reality, mixed media, tourism

Procedia PDF Downloads 472
5976 Spatial Variability of Environmental Parameters and Its Relationship with an Environmental Injustice on the Bike Paths of Santiago, Chile

Authors: Alicia Muñoz, Pedro Oyola, Cristian Henriquez

Abstract:

Pollution in Santiago de Chile has a spatial variability due to different factors, including meteorological parameters and emission sources. Socioenvironmental aspects are also significant for pollution in the canopy layer since it influences the type of edification, vegetal mass proportion and other environmental conditions. This study analyzes spatially urban pollution in Santiago, specifically, from the bike path perspective. Bike paths are located in high traffic zones, as consequence, users are constantly exposed to urban pollution. Measurements were made at the higher polluted hour, three days a week, including three transit regimes, on the most polluted month of the year. The environmental parameters are fine particulate matter (Model 8520, DustTrak Aerosol Monitor, TSI), temperature and relative humidity; it was also considerate urban parameters as sky view factor and vegetal mass. Identification of an environmental injustice will be achieved with a spatial modeling, including all urban factors and environmental mediations with an economic index of population.

Keywords: canopy layer, environmental injustice, spatial modeling, urban pollution

Procedia PDF Downloads 209
5975 Analysis of Replication Protein A (RPA): The Role of Homolog Interaction and Recombination during Meiosis

Authors: Jeong Hwan Joo, Keun Pil Kim

Abstract:

During meiosis, meiotic recombination is initiated by Spo11-mediated DSB formation and exonuclease-mediated DSB resection occurs to expose single stranded DNA formation. RPA is further required to inhibit secondary structure formation of ssDNA that can be formed Watson-Crick pairing. Rad51-Dmc1, RecA homologs in eukaryote and their accessory factors involve in searching homolog templates to mediate strand exchange. In this study, we investigate the recombinational roles of replication protein A (RPA), which is heterotrimeric protein that is composed of RPA1, RPA2, and RPA3. Here, we investigated meiotic recombination using DNA physical analysis at the HIS4LEU2 hot spot. In rfa1-119 (K45E, N316S) cells, crossover (CO) and non-crossover (NCO) products reduced than WT. rfa1-119 delayed in single end invasion-to-double holiday junction (SEI-to-dHJ) transition and exhibits a defect in second-end capture that is also modulated by Rad52. In the further experiment, we observed that in rfa1-119 mutant, RPA could not be released in timely manner. Furthermore, rfa1-119 exhibits failure in the second end capture, implying reduction of COs and NCOs. In this talk, we will discuss more detail how RPA involves in chromatin axis association via formation of axis-bridge and why RPA is required for Rad52-mediated second-end capture progression.

Keywords: homolog interaction, meiotic recombination, replication protein A, RPA1

Procedia PDF Downloads 192