Search results for: software fault prediction
5893 Conception of a Regulated, Dynamic and Intelligent Sewerage in Ostrevent
Authors: Rabaa Tlili Yaakoubi, Hind Nakouri, Olivier Blanpain
Abstract:
The current tools for real time management of sewer systems are based on two software tools: the software of weather forecast and the software of hydraulic simulation. The use of the first ones is an important cause of imprecision and uncertainty, the use of the second requires temporal important steps of decision because of their need in times of calculation. This way of proceeding fact that the obtained results are generally different from those waited. The major idea of the CARDIO project is to change the basic paradigm by approaching the problem by the "automatic" face rather than by that "hydrology". The objective is to make possible the realization of a large number of simulations at very short times (a few seconds) allowing to take place weather forecasts by using directly the real time meditative pluviometric data. The aim is to reach a system where the decision-making is realized from reliable data and where the correction of the error is permanent. A first model of control laws was realized and tested with different return-period rainfalls. The gains obtained in rejecting volume vary from 40 to 100%. The development of a new algorithm was then used to optimize calculation time and thus to overcome the subsequent combinatorial problem in our first approach. Finally, this new algorithm was tested with 16- year-rainfall series. The obtained gains are 60% of total volume rejected to the natural environment and of 80 % in the number of discharges.Keywords: RTC, paradigm, optimization, automation
Procedia PDF Downloads 2845892 Suggestion for Malware Detection Agent Considering Network Environment
Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung
Abstract:
Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment
Procedia PDF Downloads 4355891 Scrum Challenges and Mitigation Practices in Global Software Development of an Integrated Learning Environment: Case Study of Science, Technology, Innovation, Mathematics, Engineering for the Young
Authors: Evgeniia Surkova, Manal Assaad, Hleb Makeyeu, Juho Makio
Abstract:
The main objective of STIMEY (Science, Technology, Innovation, Mathematics, Engineering for the Young) project is the delivery of a hybrid learning environment that combines multi-level components such as social media concepts, robotic artefacts, and radio, among others. It is based on a well-researched pedagogical framework to attract European youths to STEM (science, technology, engineering, and mathematics) education and careers. To develop and integrate these various components, STIMEY is executed in iterative research cycles leading to progressive improvements. Scrum was the development methodology of choice in the project, as studies indicated its benefits as an agile methodology in global software development, especially of e-learning and integrated learning projects. This paper describes the project partners’ experience with the Scrum framework, discussing the challenges faced in its implementation and the mitigation practices employed. The authors conclude with exploring user experience tools and principles for future research, as a novel direction in supporting the Scrum development team.Keywords: e-learning, global software development, scrum, STEM education
Procedia PDF Downloads 1805890 Numerical Simulation of Free Surface Water Wave for the Flow Around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method
Authors: Omar Imine, Mohammed Aounallah, Mustapha Belkadi
Abstract:
Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation, a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of the fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRICscheme for VOF discretization. The results obtained compare well with the experimental data.Keywords: free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid
Procedia PDF Downloads 3785889 Multi-Point Dieless Forming Product Defect Reduction Using Reliability-Based Robust Process Optimization
Authors: Misganaw Abebe Baye, Ji-Woo Park, Beom-Soo Kang
Abstract:
The product quality of multi-point dieless forming (MDF) is identified to be dependent on the process parameters. Moreover, a certain variation of friction and material properties may have a substantially worse influence on the final product quality. This study proposed on how to compensate the MDF product defects by minimizing the sensitivity of noise parameter variations. This can be attained by reliability-based robust optimization (RRO) technique to obtain the optimal process setting of the controllable parameters. Initially two MDF Finite Element (FE) simulations of AA3003-H14 saddle shape showed a substantial amount of dimpling, wrinkling, and shape error. FE analyses are consequently applied on ABAQUS commercial software to obtain the correlation between the control process setting and noise variation with regard to the product defects. The best prediction models are chosen from the family of metamodels to swap the computational expensive FE simulation. Genetic algorithm (GA) is applied to determine the optimal process settings of the control parameters. Monte Carlo Analysis (MCA) is executed to determine how the noise parameter variation affects the final product quality. Finally, the RRO FE simulation and the experimental result show that the amendment of the control parameters in the final forming process leads to a considerably better-quality product.Keywords: dimpling, multi-point dieless forming, reliability-based robust optimization, shape error, variation, wrinkling
Procedia PDF Downloads 2565888 Intra-miR-ExploreR, a Novel Bioinformatics Platform for Integrated Discovery of MiRNA:mRNA Gene Regulatory Networks
Authors: Surajit Bhattacharya, Daniel Veltri, Atit A. Patel, Daniel N. Cox
Abstract:
miRNAs have emerged as key post-transcriptional regulators of gene expression, however identification of biologically-relevant target genes for this epigenetic regulatory mechanism remains a significant challenge. To address this knowledge gap, we have developed a novel tool in R, Intra-miR-ExploreR, that facilitates integrated discovery of miRNA targets by incorporating target databases and novel target prediction algorithms, using statistical methods including Pearson and Distance Correlation on microarray data, to arrive at high confidence intragenic miRNA target predictions. We have explored the efficacy of this tool using Drosophila melanogaster as a model organism for bioinformatics analyses and functional validation. A number of putative targets were obtained which were also validated using qRT-PCR analysis. Additional features of the tool include downloadable text files containing GO analysis from DAVID and Pubmed links of literature related to gene sets. Moreover, we are constructing interaction maps of intragenic miRNAs, using both micro array and RNA-seq data, focusing on neural tissues to uncover regulatory codes via which these molecules regulate gene expression to direct cellular development.Keywords: miRNA, miRNA:mRNA target prediction, statistical methods, miRNA:mRNA interaction network
Procedia PDF Downloads 5145887 A Study on Prediction Model for Thermally Grown Oxide Layer in Thermal Barrier Coating
Authors: Yongseok Kim, Jeong-Min Lee, Hyunwoo Song, Junghan Yun, Jungin Byun, Jae-Mean Koo, Chang-Sung Seok
Abstract:
Thermal barrier coating(TBC) is applied for gas turbine components to protect the components from extremely high temperature condition. Since metallic substrate cannot endure such severe condition of gas turbines, delamination of TBC can cause failure of the system. Thus, delamination life of TBC is one of the most important issues for designing the components operating at high temperature condition. Thermal stress caused by thermally grown oxide(TGO) layer is known as one of the major failure mechanisms of TBC. Thermal stress by TGO mainly occurs at the interface between TGO layer and ceramic top coat layer, and it is strongly influenced by the thickness and shape of TGO layer. In this study, Isothermal oxidation is conducted on coin-type TBC specimens prepared by APS(air plasma spray) method. After the isothermal oxidation at various temperature and time condition, the thickness and shape(rumpling shape) of the TGO is investigated, and the test data is processed by numerical analysis. Finally, the test data is arranged into a mathematical prediction model with two variables(temperature and exposure time) which can predict the thickness and rumpling shape of TGO.Keywords: thermal barrier coating, thermally grown oxide, thermal stress, isothermal oxidation, numerical analysis
Procedia PDF Downloads 3435886 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images
Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang
Abstract:
Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network
Procedia PDF Downloads 965885 Soft Computing Approach for Diagnosis of Lassa Fever
Authors: Roseline Oghogho Osaseri, Osaseri E. I.
Abstract:
Lassa fever is an epidemic hemorrhagic fever caused by the Lassa virus, an extremely virulent arena virus. This highly fatal disorder kills 10% to 50% of its victims, but those who survive its early stages usually recover and acquire immunity to secondary attacks. One of the major challenges in giving proper treatment is lack of fast and accurate diagnosis of the disease due to multiplicity of symptoms associated with the disease which could be similar to other clinical conditions and makes it difficult to diagnose early. This paper proposed an Adaptive Neuro Fuzzy Inference System (ANFIS) for the prediction of Lass Fever. In the design of the diagnostic system, four main attributes were considered as the input parameters and one output parameter for the system. The input parameters are Temperature on admission (TA), White Blood Count (WBC), Proteinuria (P) and Abdominal Pain (AP). Sixty-one percent of the datasets were used in training the system while fifty-nine used in testing. Experimental results from this study gave a reliable and accurate prediction of Lassa fever when compared with clinically confirmed cases. In this study, we have proposed Lassa fever diagnostic system to aid surgeons and medical healthcare practictionals in health care facilities who do not have ready access to Polymerase Chain Reaction (PCR) diagnosis to predict possible Lassa fever infection.Keywords: anfis, lassa fever, medical diagnosis, soft computing
Procedia PDF Downloads 2725884 Comparative Analysis of Real and Virtual Garment Fit
Authors: Kristina Ancutiene
Abstract:
The goal of this research is to perform comparative analysis between the virtual fit of the woman's dress and the fit on a real person. The dress fitting was done using mechanical and structural parameters of the 100 % linen fabric and using Modaris_3D_Fit software (CAD Lectra). The dress was also sawn after which garment fit differences of real and virtual dress was researched. Four respondents whose figures were similar were used to evaluate the ease and strain deformations of the real and virtual dress. The scores that were given by the respondents wearing the real dress were compared to the ease and strain results that were given by the software. The main result was that respondents feel similar to the virtual stretch deformations but their ease feeling is not always matching the virtual ones. The results may be influenced by psychological factors and different understanding about purpose of garment.Keywords: virtual garment, 3D CAD, garment fit, mechanical properties
Procedia PDF Downloads 3495883 Fault Diagnosis in Confined Systems
Authors: Nesrine Berber, Hafid Haffaf, Abdel Madjid Meghabar
Abstract:
In the last decade, technology has continued to grow and has changed the structure of our society. Today, new technologies including the information and communication (ICT) play a main role which importance continues to grow, now it's become indispensable to the economic, social and cultural. Thus, ICT technology has proven to be as a promising intervention in the area of road transport. The supervision model of class of train of intelligent and autonomous vehicles leads us to give some defintions about IAV and the different technologies used for communication between them. Our aim in this work is to present an hypergraph modeling a class of train of Intelligent and Autonomous Vehicles (IAV).Keywords: intelligent transportation system, intelligent autonomous vehicles, Ad Hoc network, wireless technologies, hypergraph modeling, supervision
Procedia PDF Downloads 5495882 Socio-Technical Systems: Transforming Theory into Practice
Authors: L. Ngowi, N. H. Mvungi
Abstract:
This paper critically examines the evolution of socio-technical systems theory, its practices, and challenges in system design and development. It examines concepts put forward by researchers focusing on the application of the theory in software engineering. There are various methods developed that use socio-technical concepts based on systems engineering without remarkable success. The main constraint is the large amount of data and inefficient techniques used in the application of the concepts in system engineering for developing time-bound systems and within a limited/controlled budget. This paper critically examines each of the methods, highlight bottlenecks and suggest the way forward. Since socio-technical systems theory only explains what to do, but not how doing it, hence engineers are not using the concept to save time, costs and reduce risks associated with new frameworks. Hence, a new framework, which can be considered as a practical approach is proposed that borrows concepts from soft systems method, agile systems development and object-oriented analysis and design to bridge the gap between theory and practice. The approach will enable the development of systems using socio-technical systems theory to attract/enable the system engineers/software developers to use socio-technical systems theory in building worthwhile information systems to avoid fragilities and hostilities in the work environment.Keywords: socio-technical systems, human centered design, software engineering, cognitive engineering, soft systems, systems engineering
Procedia PDF Downloads 2875881 Power Grid Line Ampacity Forecasting Based on a Long-Short-Term Memory Neural Network
Authors: Xiang-Yao Zheng, Jen-Cheng Wang, Joe-Air Jiang
Abstract:
Improving the line ampacity while using existing power grids is an important issue that electricity dispatchers are now facing. Using the information provided by the dynamic thermal rating (DTR) of transmission lines, an overhead power grid can operate safely. However, dispatchers usually lack real-time DTR information. Thus, this study proposes a long-short-term memory (LSTM)-based method, which is one of the neural network models. The LSTM-based method predicts the DTR of lines using the weather data provided by Central Weather Bureau (CWB) of Taiwan. The possible thermal bottlenecks at different locations along the line and the margin of line ampacity can be real-time determined by the proposed LSTM-based prediction method. A case study that targets the 345 kV power grid of TaiPower in Taiwan is utilized to examine the performance of the proposed method. The simulation results show that the proposed method is useful to provide the information for the smart grid application in the future.Keywords: electricity dispatch, line ampacity prediction, dynamic thermal rating, long-short-term memory neural network, smart grid
Procedia PDF Downloads 2855880 Analyzing the Performance of Machine Learning Models to Predict Alzheimer's Disease and its Stages Addressing Missing Value Problem
Authors: Carlos Theran, Yohn Parra Bautista, Victor Adankai, Richard Alo, Jimwi Liu, Clement G. Yedjou
Abstract:
Alzheimer's disease (AD) is a neurodegenerative disorder primarily characterized by deteriorating cognitive functions. AD has gained relevant attention in the last decade. An estimated 24 million people worldwide suffered from this disease by 2011. In 2016 an estimated 40 million were diagnosed with AD, and for 2050 is expected to reach 131 million people affected by AD. Therefore, detecting and confirming AD at its different stages is a priority for medical practices to provide adequate and accurate treatments. Recently, Machine Learning (ML) models have been used to study AD's stages handling missing values in multiclass, focusing on the delineation of Early Mild Cognitive Impairment (EMCI), Late Mild Cognitive Impairment (LMCI), and normal cognitive (CN). But, to our best knowledge, robust performance information of these models and the missing data analysis has not been presented in the literature. In this paper, we propose studying the performance of five different machine learning models for AD's stages multiclass prediction in terms of accuracy, precision, and F1-score. Also, the analysis of three imputation methods to handle the missing value problem is presented. A framework that integrates ML model for AD's stages multiclass prediction is proposed, performing an average accuracy of 84%.Keywords: alzheimer's disease, missing value, machine learning, performance evaluation
Procedia PDF Downloads 2555879 Development of Open Source Geospatial Certification Model Based on Geospatial Technology Competency Model
Authors: Tanzeel Ur Rehman Khan, Franz Josef Behr, Phillip Davis
Abstract:
Open source geospatial certifications are needed in geospatial technology education and industry sector. In parallel with proprietary software, free and open source software solutions become important in geospatial technology research and play an important role for the growth of the geospatial industry. ESRI, GISCI (GIS Certification Institute), ASPRS (American Society of Photogrammetry and remote sensing), and Meta spatial are offering certifications on proprietary and open source software. These are portfolio and competency based certifications depending on GIS Body of Knowledge (Bok). The analysis of these certification approaches might lead to the discovery of some gaps in them and will open a new way to develop certifications related to the geospatial open source (OS). This new certification will investigate the different geospatial competencies according to open source tools that help to identify geospatial professionals and strengthen the geospatial academic content. The goal of this research is to introduce a geospatial certification model based on geospatial technology competency model (GTCM).The developed certification will not only incorporate the importance of geospatial education and production of the geospatial competency-based workforce in universities and companies (private or public) as well as describe open source solutions with tools and technology. Job analysis, market analysis, survey analysis of this certification opens a new horizon for business as well.Keywords: geospatial certification, open source, geospatial technology competency model, geoscience
Procedia PDF Downloads 5675878 Fractional Residue Number System
Authors: Parisa Khoshvaght, Mehdi Hosseinzadeh
Abstract:
During the past few years, the Residue Number System (RNS) has been receiving considerable interest due to its parallel and fault-tolerant properties. This system is a useful tool for Digital Signal Processing (DSP) since it can support parallel, carry-free, high-speed and low power arithmetic. One of the drawbacks of Residue Number System is the fractional numbers, that is, the corresponding circuit is very hard to realize in conventional CMOS technology. In this paper, we propose a method in which the numbers of transistors are significantly reduced. The related delay is extremely diminished, in the first glance we use this method to solve concerning problem of one decimal functional number some how this proposition can be extended to generalize the idea. Another advantage of this method is the independency on the kind of moduli.Keywords: computer arithmetic, residue number system, number system, one-Hot, VLSI
Procedia PDF Downloads 4975877 Network Automation in Lab Deployment Using Ansible and Python
Authors: V. Andal Priyadharshini, Anumalasetty Yashwanth Nath
Abstract:
Network automation has evolved into a solution that ensures efficiency in all areas. The age-old technique to configure common software-defined networking protocols is inefficient as it requires a box-by-box approach that needs to be repeated often and is prone to manual errors. Network automation assists network administrators in automating and verifying the protocol configuration to ensure consistent configurations. This paper implemented network automation using Python and Ansible to configure different protocols and configurations in the container lab virtual environment. Ansible can help network administrators minimize human mistakes, reduce time consumption, and enable device visibility across the network environment.Keywords: Python network automation, Ansible configuration, container lab deployment, software-defined networking, networking lab
Procedia PDF Downloads 1655876 Deformation Severity Prediction in Sewer Pipelines
Authors: Khalid Kaddoura, Ahmed Assad, Tarek Zayed
Abstract:
Sewer pipelines are prone to deterioration over-time. In fact, their deterioration does not follow a fixed downward pattern. This is in fact due to the defects that propagate through their service life. Sewer pipeline defects are categorized into distinct groups. However, the main two groups are the structural and operational defects. By definition, the structural defects influence the structural integrity of the sewer pipelines such as deformation, cracks, fractures, holes, etc. However, the operational defects are the ones that affect the flow of the sewer medium in the pipelines such as: roots, debris, attached deposits, infiltration, etc. Yet, the process for each defect to emerge follows a cause and effect relationship. Deformation, which is the change of the sewer pipeline geometry, is one type of an influencing defect that could be found in many sewer pipelines due to many surrounding factors. This defect could lead to collapse if the percentage exceeds 15%. Therefore, it is essential to predict the deformation percentage before confronting such a situation. Accordingly, this study will predict the percentage of the deformation defect in sewer pipelines adopting the multiple regression analysis. Several factors will be considered in establishing the model, which are expected to influence the defamation defect severity. Besides, this study will construct a time-based curve to understand how the defect would evolve overtime. Thus, this study is expected to be an asset for decision-makers as it will provide informative conclusions about the deformation defect severity. As a result, inspections will be minimized and so the budgets.Keywords: deformation, prediction, regression analysis, sewer pipelines
Procedia PDF Downloads 1905875 Concept of Automation in Management of Electric Power Systems
Authors: Richard Joseph, Nerey Mvungi
Abstract:
An electric power system includes a generating, a transmission, a distribution and consumers subsystems. An electrical power network in Tanzania keeps growing larger by the day and become more complex so that, most utilities have long wished for real-time monitoring and remote control of electrical power system elements such as substations, intelligent devices, power lines, capacitor banks, feeder switches, fault analyzers and other physical facilities. In this paper, the concept of automation of management of power systems from generation level to end user levels was determined by using Power System Simulator for Engineering (PSS/E) version 30.3.2.Keywords: automation, distribution subsystem, generating subsystem, PSS/E, TANESCO, transmission subsystem
Procedia PDF Downloads 6775874 Comparative Study of R.C.C. Steel and Concrete Building
Authors: Mahesh Suresh Kumawat
Abstract:
Steel concrete composite construction means the concrete slab is connected to the steel beam with the help of shear connectors so that they act as a single unit. In the present work, steel concrete composite with RCC options are considered for comparative study of G+9 story commercial building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893(Part1)-2002 is considered. A three dimensional modeling and analysis of the structure are carried out with the help of SAP 2000 software. Equivalent Static Method of Analysis and Response spectrum analysis method are used for the analysis of both Composite & R.C.C. structures. The results are compared and it was found that composite structure is more economical.Keywords: composite beam, column, RCC column, RCC beam, shear connector, SAP 2000 software
Procedia PDF Downloads 4525873 Two Spherical Three Degrees of Freedom Parallel Robots 3-RCC and 3-RRS Static Analysis
Authors: Alireza Abbasi Moshaii, Shaghayegh Nasiri, Mehdi Tale Masouleh
Abstract:
The main purpose of this study is static analysis of two three-degree of freedom parallel mechanisms: 3-RCC and 3-RRS. Geometry of these mechanisms is expressed and static equilibrium equations are derived for the whole chains. For these mechanisms due to the equal number of equations and unknowns, the solution is as same as 3-RCC mechanism. Mathematical software is used to solve the equations. In order to prove the results obtained from solving the equations of mechanisms, their CAD model has been simulated and their static is analysed in ADAMS software. Due to symmetrical geometry of the mechanisms, the force and external torque acting on the end-effecter have been considered asymmetric to prove the generality of the solution method. Finally, the results of both softwares, for both mechanisms are extracted and compared as graphs. The good achieved comparison between the results indicates the accuracy of the analysis.Keywords: robotic, static analysis, 3-RCC, 3-RRS
Procedia PDF Downloads 3885872 Early Prediction of Cognitive Impairment in Adults Aged 20 Years and Older using Machine Learning and Biomarkers of Heavy Metal Exposure
Authors: Ali Nabavi, Farimah Safari, Mohammad Kashkooli, Sara Sadat Nabavizadeh, Hossein Molavi Vardanjani
Abstract:
Cognitive impairment presents a significant and increasing health concern as populations age. Environmental risk factors such as heavy metal exposure are suspected contributors, but their specific roles remain incompletely understood. Machine learning offers a promising approach to integrate multi-factorial data and improve the prediction of cognitive outcomes. This study aimed to develop and validate machine learning models to predict early risk of cognitive impairment by incorporating demographic, clinical, and biomarker data, including measures of heavy metal exposure. A retrospective analysis was conducted using 2011-2014 National Health and Nutrition Examination Survey (NHANES) data. The dataset included participants aged 20 years and older who underwent cognitive testing. Variables encompassed demographic information, medical history, lifestyle factors, and biomarkers such as blood and urine levels of lead, cadmium, manganese, and other metals. Machine learning algorithms were trained on 90% of the data and evaluated on the remaining 10%, with performance assessed through metrics such as accuracy, area under curve (AUC), and sensitivity. Analysis included 2,933 participants. The stacking ensemble model demonstrated the highest predictive performance, achieving an AUC of 0.778 and a sensitivity of 0.879 on the test dataset. Key predictors included age, gender, hypertension, education level, urinary cadmium, and blood manganese levels. The findings indicate that machine learning can effectively predict the risk of cognitive impairment using a comprehensive set of clinical and environmental exposure data. Incorporating biomarkers of heavy metal exposure improved prediction accuracy and highlighted the role of environmental factors in cognitive decline. Further prospective studies are recommended to validate the models and assess their utility over time.Keywords: cognitive impairment, heavy metal exposure, predictive models, aging
Procedia PDF Downloads 65871 Non-Contact Digital Music Instrument Using Light Sensing Technology
Authors: Aishwarya Ravichandra, Kirtana Kirtivasan, Adithi Mahesh, Ashwini S.Savanth
Abstract:
A Non-Contact Digital Music System has been conceptualized and implemented to create a new era of digital music. This system replaces the strings of a traditional stringed instrument with laser beams to avoid bruising of the user’s hand. The system consists of seven laser modules, detector modules and distance sensors that form the basic hardware blocks of this instrument. Arduino ATmega2560 microcontroller is used as the primary interface between the hardware and the software. MIDI (Musical Instrument Digital Interface) is used as the protocol to establish communication between the instrument and the virtual synthesizer software.Keywords: Arduino, detector, laser, MIDI, note on, note off, pitch bend, Sharp IR distance sensor
Procedia PDF Downloads 4125870 Thermal and Starvation Effects on Lubricated Elliptical Contacts at High Rolling/Sliding Speeds
Authors: Vinod Kumar, Surjit Angra
Abstract:
The objective of this theoretical study is to develop simple design formulas for the prediction of minimum film thickness and maximum mean film temperature rise in lightly loaded high-speed rolling/sliding lubricated elliptical contacts incorporating starvation effect. Herein, the reported numerical analysis focuses on thermoelastohydrodynamically lubricated rolling/sliding elliptical contacts, considering the Newtonian rheology of lubricant for wide range of operating parameters, namely load characterized by Hertzian pressure (PH = 0.01 GPa to 0.10 GPa), rolling speed (>10 m/s), slip parameter (S varies up to 1.0), and ellipticity ratio (k = 1 to 5). Starvation is simulated by systematically reducing the inlet supply. This analysis reveals that influences of load, rolling speed, and level of starvation are significant on the minimum film thickness. However, the maximum mean film temperature rise is strongly influenced by slip in addition to load, rolling speed, and level of starvation. In the presence of starvation, reduction in minimum film thickness and increase in maximum mean film temperature are observed. Based on the results of this study, empirical relations are developed for the prediction of dimensionless minimum film thickness and dimensionless maximum mean film temperature rise at the contacts in terms of various operating parameters.Keywords: starvation, lubrication, elliptical contact, traction, minimum film thickness
Procedia PDF Downloads 3945869 A Decentralized Application for Secure Data Handling of Wireless Networks Using Ethereum Smart Contracts
Authors: Midhun Xavier
Abstract:
This paper introduces a method to verify multi-agent systems in industrial control systems using blockchain technology. The proposed solution enables to record and verify each process that occurs while generating a customized product using Ethereum-based smart contracts. Node-Red software agents are developed with the help of semantic web technologies, and these software agents interact with IEC 61499 function blocks to execute the processes. The agent associated with each mechatronic component and its controller can communicate with the blockchain to record various events that occur during each process, and the latter smart contract helps to verify these process orders of the customized product.Keywords: blockchain, Ethereum, node-red, IEC 61499, multi-agent system, MQTT
Procedia PDF Downloads 955868 Application of Cube IQ Software to Optimize Heterogeneous Packing Products in Logistics Cargo and Minimize Transportation Cost
Authors: Muhammad Ganda Wiratama
Abstract:
XYZ company is one of the upstream chemical companies that produce chemical products such as NaOH, HCl, NaClO, VCM, EDC, and PVC for downstream companies. The products are shipped by land using trucks and sea lanes using ship mode. Especially for solid products such as flake caustic soda (F-NaOH) and PVC resin, the products are sold in loose bag packing and palletize packing (packed in pallet). The focus of this study is to increase the number of items that can be loaded in pallet packaging on the company's logistics vehicle. This is very difficult because on this packaging, the dimensions or size of the material to be loaded become larger and certainly much heavier than the loose bag packing. This factor causes the arrangement and handling of materials in the mode of transportation more difficult. In this case, it is difficult to load a different type of volume packing pallet dimension in one truck or container. By using the Cube-IQ software, it is hoped that the planning of stuffing activity material by pallet can become easier in optimizing the existing space with various possible combinations of possibilities. In addition, the output of this software can also be used as a reference for operators in the material handling include the order and orientation of materials contained in the truck or container. The more optimal contents of logistics cargo, then transportation costs can also be minimized.Keywords: loading activity, container loading, palletize product, simulation
Procedia PDF Downloads 2995867 An Experimental Study on Heat and Flow Characteristics of Water Flow in Microtube
Authors: Zeynep Küçükakça, Nezaket Parlak, Mesut Gür, Tahsin Engin, Hasan Küçük
Abstract:
In the current research, the single phase fluid flow and heat transfer characteristics are experimentally investigated. The experiments are conducted to cover transition zone for the Reynolds numbers ranging from 100 to 4800 by fused silica and stainless steel microtubes having diameters of 103-180 µm. The applicability of the Logarithmic Mean Temperature Difference (LMTD) method is revealed and an experimental method is developed to calculate the heat transfer coefficient. Heat transfer is supplied by a water jacket surrounding the microtubes and heat transfer coefficients are obtained by LMTD method. The results are compared with data obtained by the correlations available in the literature in the study. The experimental results indicate that the Nusselt numbers of microtube flows do not accord with the conventional results when the Reynolds number is lower than 1000. After that, the Nusselt number approaches the conventional theory prediction. Moreover, the scaling effects in micro scale such as axial conduction, viscous heating and entrance effects are discussed. On the aspect of fluid characteristics, the friction factor is well predicted with conventional theory and the conventional friction prediction is valid for water flow through microtube with a relative surface roughness less than about 4 %.Keywords: microtube, laminar flow, friction factor, heat transfer, LMTD method
Procedia PDF Downloads 4625866 A Survey on Routh-Hurwitz Stability Criterion
Authors: Mojtaba Hakimi-Moghaddam
Abstract:
Routh-Hurwitz stability criterion is a powerful approach to determine stability of linear time invariant systems. On the other hand, applying this criterion to characteristic equation of a system, whose stability or marginal stability can be determined. Although the command roots (.) of MATLAB software can be easily used to determine the roots of a polynomial, the characteristic equation of closed loop system usually includes parameters, so software cannot handle it; however, Routh-Hurwitz stability criterion results the region of parameter changes where the stability is guaranteed. Moreover, this criterion has been extended to characterize the stability of interval polynomials as well as fractional-order polynomials. Furthermore, it can help us to design stable and minimum-phase controllers. In this paper, theory and application of this criterion will be reviewed. Also, several illustrative examples are given.Keywords: Hurwitz polynomials, Routh-Hurwitz stability criterion, continued fraction expansion, pure imaginary roots
Procedia PDF Downloads 3305865 Requirements Definitions of Real-Time System Using the Behavioral Patterns Analysis (BPA) Approach: The Healthcare Multi-Agent System
Authors: Assem El-Ansary
Abstract:
This paper illustrates the event-oriented Behavioral Pattern Analysis (BPA) modeling approach using the Healthcare Multi-Agent System. The Event defined in BPA is a real-life conceptual entity that is unrelated to any implementation. The major contributions of this research are: The Behavioral Pattern Analysis (BPA) modeling methodology. The development of an interactive software tool (DECISION), which is based on a combination of the Analytic Hierarchy Process (AHP) and the ELECTRE Multi-Criteria Decision Making (MCDM) methods.Keywords: analysis, modeling methodology, software modeling, event-oriented, behavioral pattern, use cases, Healthcare Multi-Agent System
Procedia PDF Downloads 5535864 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks
Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian
Abstract:
Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.Keywords: artificial neural network, clayey soil, imperialist competition algorithm, lateral bearing capacity, short pile
Procedia PDF Downloads 153