Search results for: sensor fault
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1910

Search results for: sensor fault

470 Carbohydrate Intake Estimation in Type I Diabetic Patients Described by UVA/Padova Model

Authors: David A. Padilla, Rodolfo Villamizar

Abstract:

In recent years, closed loop control strategies have been developed in order to establish a healthy glucose profile in type 1 diabetic mellitus (T1DM) patients. However, the controller itself is unable to define a suitable reference trajectory for glucose. In this paper, a control strategy Is proposed where the shape of the reference trajectory is generated bases in the amount of carbohydrates present during the digestive process, due to the effect of carbohydrate intake. Since there no exists a sensor to measure the amount of carbohydrates consumed, an estimator is proposed. Thus this paper presents the entire process of designing a carbohydrate estimator, which allows estimate disturbance for a predictive controller (MPC) in a T1MD patient, the estimation will be used to establish a profile of reference and improve the response of the controller by providing the estimated information of ingested carbohydrates. The dynamics of the diabetic model used are due to the equations described by the UVA/Padova model of the T1DMS simulator, the system was developed and simulated in Simulink, taking into account the noise and limitations of the glucose control system actuators.

Keywords: estimation, glucose control, predictive controller, MPC, UVA/Padova

Procedia PDF Downloads 257
469 Stereotypical Motor Movement Recognition Using Microsoft Kinect with Artificial Neural Network

Authors: M. Jazouli, S. Elhoufi, A. Majda, A. Zarghili, R. Aalouane

Abstract:

Autism spectrum disorder is a complex developmental disability. It is defined by a certain set of behaviors. Persons with Autism Spectrum Disorders (ASD) frequently engage in stereotyped and repetitive motor movements. The objective of this article is to propose a method to automatically detect this unusual behavior. Our study provides a clinical tool which facilitates for doctors the diagnosis of ASD. We focus on automatic identification of five repetitive gestures among autistic children in real time: body rocking, hand flapping, fingers flapping, hand on the face and hands behind back. In this paper, we present a gesture recognition system for children with autism, which consists of three modules: model-based movement tracking, feature extraction, and gesture recognition using artificial neural network (ANN). The first one uses the Microsoft Kinect sensor, the second one chooses points of interest from the 3D skeleton to characterize the gestures, and the last one proposes a neural connectionist model to perform the supervised classification of data. The experimental results show that our system can achieve above 93.3% recognition rate.

Keywords: ASD, artificial neural network, kinect, stereotypical motor movements

Procedia PDF Downloads 300
468 Intelligent System of the Grinding Robot for Spiral Welded Pipe

Authors: Getachew Demeissie Ayalew, Yongtao Sun, Yang Yang

Abstract:

The spiral welded pipe manufacturing industry requires strict production standards for automated grinders for welding seams. However, traditional grinding machines in this sector are insufficient due to a lack of quality control protocols and inconsistent performance. This research aims to improve the quality of spiral welded pipes by developing intelligent automated abrasive belt grinding equipment. The system has equipped with six degrees of freedom (6 DOF) KUKA KR360 industrial robots, enabling concurrent grinding operations on both internal and external welds. The grinding robot control system is designed with a PLC, and a human-machine interface (HMI) system is employed for operations. The system includes an electric speed controller, data connection card, DC driver, analog amplifier, and HMI for input data. This control system enables the grinding of spiral welded pipe. It ensures consistent production quality and cost-effectiveness by reducing the product life cycle and minimizing risks in the working environment.

Keywords: Intelligent Systems, Spiral Welded Pipe, Grinding, Industrial Robot, End-Effector, PLC Controller System, 3D Laser Sensor, HMI.

Procedia PDF Downloads 275
467 Optimized Electron Diffraction Detection and Data Acquisition in Diffraction Tomography: A Complete Solution by Gatan

Authors: Saleh Gorji, Sahil Gulati, Ana Pakzad

Abstract:

Continuous electron diffraction tomography, also known as microcrystal electron diffraction (MicroED) or three-dimensional electron diffraction (3DED), is a powerful technique, which in combination with cryo-electron microscopy (cryo-ED), can provide atomic-scale 3D information about the crystal structure and composition of different classes of crystalline materials such as proteins, peptides, and small molecules. Unlike the well-established X-ray crystallography method, 3DED does not require large single crystals and can collect accurate electron diffraction data from crystals as small as 50 – 100 nm. This is a critical advantage as growing larger crystals, as required by X-ray crystallography methods, is often very difficult, time-consuming, and expensive. In most cases, specimens studied via 3DED method are electron beam sensitive, which means there is a limitation on the maximum amount of electron dose one can use to collect the required data for a high-resolution structure determination. Therefore, collecting data using a conventional scintillator-based fiber coupled camera brings additional challenges. This is because of the inherent noise introduced during the electron-to-photon conversion in the scintillator and transfer of light via the fibers to the sensor, which results in a poor signal-to-noise ratio and requires a relatively higher and commonly specimen-damaging electron dose rates, especially for protein crystals. As in other cryo-EM techniques, damage to the specimen can be mitigated if a direct detection camera is used which provides a high signal-to-noise ratio at low electron doses. In this work, we have used two classes of such detectors from Gatan, namely the K3® camera (a monolithic active pixel sensor) and Stela™ (that utilizes DECTRIS hybrid-pixel technology), to address this problem. The K3 is an electron counting detector optimized for low-dose applications (like structural biology cryo-EM), and Stela is also a counting electron detector but optimized for diffraction applications with high speed and high dynamic range. Lastly, data collection workflows, including crystal screening, microscope optics setup (for imaging and diffraction), stage height adjustment at each crystal position, and tomogram acquisition, can be one of the other challenges of the 3DED technique. Traditionally this has been all done manually or in a partly automated fashion using open-source software and scripting, requiring long hours on the microscope (extra cost) and extensive user interaction with the system. We have recently introduced Latitude® D in DigitalMicrograph® software, which is compatible with all pre- and post-energy-filter Gatan cameras and enables 3DED data acquisition in an automated and optimized fashion. Higher quality 3DED data enables structure determination with higher confidence, while automated workflows allow these to be completed considerably faster than before. Using multiple examples, this work will demonstrate how to direct detection electron counting cameras enhance 3DED results (3 to better than 1 Angstrom) for protein and small molecule structure determination. We will also show how Latitude D software facilitates collecting such data in an integrated and fully automated user interface.

Keywords: continuous electron diffraction tomography, direct detection, diffraction, Latitude D, Digitalmicrograph, proteins, small molecules

Procedia PDF Downloads 95
466 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method

Authors: Mamidi Ramakrishna Rao

Abstract:

Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.

Keywords: direct search, DFIG, equivalent circuit parameters, optimization

Procedia PDF Downloads 247
465 Wireless Sensor Network to Help Low Incomes Farmers to Face Drought Impacts

Authors: Fantazi Walid, Ezzedine Tahar, Bargaoui Zoubeida

Abstract:

This research presents the main ideas to implement an intelligent system composed by communicating wireless sensors measuring environmental data linked to drought indicators (such as air temperature, soil moisture , etc...). On the other hand, the setting up of a spatio temporal database communicating with a Web mapping application for a monitoring in real time in activity 24:00 /day, 7 days/week is proposed to allow the screening of the drought parameters time evolution and their extraction. Thus this system helps detecting surfaces touched by the phenomenon of drought. Spatio-temporal conceptual models seek to answer the users who need to manage soil water content for irrigating or fertilizing or other activities pursuing crop yield augmentation. Effectively, spatio-temporal conceptual models enable users to obtain a diagram of readable and easy data to apprehend. Based on socio-economic information, it helps identifying people impacted by the phenomena with the corresponding severity especially that this information is accessible by farmers and stakeholders themselves. The study will be applied in Siliana watershed Northern Tunisia.

Keywords: WSN, database spatio-temporal, GIS, web mapping, indicator of drought

Procedia PDF Downloads 485
464 Geometric Contrast of a 3D Model Obtained by Means of Digital Photogrametry with a Quasimetric Camera on UAV Classical Methods

Authors: Julio Manuel de Luis Ruiz, Javier Sedano Cibrián, Rubén Pérez Álvarez, Raúl Pereda García, Cristina Diego Soroa

Abstract:

Nowadays, the use of drones has been extended to practically any human activity. One of the main applications is focused on the surveying field. In this regard, software programs that process the images captured by the sensor from the drone in an almost automatic way have been developed and commercialized, but they only allow contrasting the results through control points. This work proposes the contrast of a 3D model obtained from a flight developed by a drone and a non-metric camera (due to its low cost), with a second model that is obtained by means of the historically-endorsed classical methods. In addition to this, the contrast is developed over a certain territory with a significant unevenness, so as to test the model generated with photogrammetry, and considering that photogrammetry with drones finds more difficulties in terms of accuracy in this kind of situations. Distances, heights, surfaces and volumes are measured on the basis of the 3D models generated, and the results are contrasted. The differences are about 0.2% for the measurement of distances and heights, 0.3% for surfaces and 0.6% when measuring volumes. Although they are not important, they do not meet the order of magnitude that is presented by salespeople.

Keywords: accuracy, classical topographic, model tridimensional, photogrammetry, Uav.

Procedia PDF Downloads 127
463 Linear Parameter-Varying Control for Selective Catalytic Reduction Systems

Authors: Jihoon Lim, Patrick Kirchen, Ryozo Nagamune

Abstract:

This paper proposes a linear parameter-varying (LPV) controller capable of reducing nitrogen oxide (NOx) emissions with low ammonia (NH3) slip downstream of selective catalytic reduction (SCR) systems. SCR systems are widely adopted in diesel engines due to high NOx conversion efficiency. However, the nonlinearity of the SCR system and sensor uncertainty result in a challenging control problem. In order to overcome the control challenges, an LPV controller is proposed based on gain-scheduling parameters, that is, exhaust gas temperature and exhaust gas flow rate. Based on experimentally obtained data under the non-road transient driving cycle (NRTC), the simulations firstly show that the proposed controller yields high NOx conversion efficiency with a desired low NH3 slip. The performance of the proposed LPV controller is then compared with other controllers, including a gain-scheduling PID controller and a sliding mode controller. Additionally, the robustness is also demonstrated using the uncertainties ranging from 10 to 30%. The results show that the proposed controller is robustly stable under uncertainties.

Keywords: diesel engine, gain-scheduling control, linear parameter-varying, selective catalytic reduction

Procedia PDF Downloads 139
462 WSN System Warns Atta Cephalotes Climbing in Mango Fruit Trees

Authors: Federico Hahn Schlam, Fermín Martínez Solís

Abstract:

Leaf-cutting ants (Atta cephalotes) forage from mango tree leaves and flowers to feed their colony. Farmers find it difficult to control ants due to the great quantity of trees grown in commercial orchards. In this article, IoT can support farmers for ant detection in real time, as production losses can be considered of 324 US per tree.A wireless sensor network, WSN, was developed to warn the farmer from ant presence in trees during a night. Mango trees were gathered into groups of 9 trees, where the central tree holds the master microcontroller, and the other eight trees presented slave microcontrollers (nodes). At each node, anemitter diode-photodiode unitdetects ants climbing up. A capacitor is chargedand discharged after being sampled every ten minutes. The system usesBLE (Bluetooth Low Energy) to communicate between the master microcontroller by BLE.When ants were detected the number of the tree was transmitted via LoRa from the masterto the producer smartphone to warn him. In this paper, BLE, LoRa, and energy consumption were studied under variable vegetation in the orchard. During 2018, 19 trees were attacked by ants, and ants fed 26.3% of flowers and 73.7% of leaves.

Keywords: BLE, atta cephalotes, LoRa, WSN-smartphone, energy consumption

Procedia PDF Downloads 149
461 A Real Time Monitoring System of the Supply Chain Conditions, Products and Means of Transport

Authors: Dimitris E. Kontaxis, George Litainas, Dimitris P. Ptochos

Abstract:

Real-time monitoring of the supply chain conditions and procedures is a critical element for the optimal coordination and safety of the deliveries, as well as for the minimization of the delivery time and cost. Real-time monitoring requires IoT data streams, which are related to the conditions of the products and the means of transport (e.g., location, temperature/humidity conditions, kinematic state, ambient light conditions, etc.). These streams are generated by battery-based IoT tracking devices, equipped with appropriate sensors, and are transmitted to a cloud-based back-end system. Proper handling and processing of the IoT data streams, using predictive and artificial intelligence algorithms, can provide significant and useful results, which can be exploited by the supply chain stakeholders in order to enhance their financial benefits, as well as the efficiency, security, transparency, coordination, and sustainability of the supply chain procedures. The technology, the features, and the characteristics of a complete, proprietary system, including hardware, firmware, and software tools -developed in the context of a co-funded R&D programme- are addressed and presented in this paper.

Keywords: IoT embedded electronics, real-time monitoring, tracking device, sensor platform

Procedia PDF Downloads 168
460 Intelligent Rainwater Reuse System for Irrigation

Authors: Maria M. S. Pires, Andre F. X. Gloria, Pedro J. A. Sebastiao

Abstract:

The technological advances in the area of Internet of Things have been creating more and more solutions in the area of agriculture. These solutions are quite important for life, as they lead to the saving of the most precious resource, water, being this need to save water a concern worldwide. The paper proposes the creation of an Internet of Things system based on a network of sensors and interconnected actuators that automatically monitors the quality of the rainwater that is stored inside a tank in order to be used for irrigation. The main objective is to promote sustainability by reusing rainwater for irrigation systems instead of water that is usually available for other functions, such as other productions or even domestic tasks. A mobile application was developed for Android so that the user can control and monitor his system in real time. In the application, it is possible to visualize the data that translate the quality of the water inserted in the tank, as well as perform some actions on the implemented actuators, such as start/stop the irrigation system and pour the water in case of poor water quality. The implemented system translates a simple solution with a high level of efficiency and tests and results obtained within the possible environment.

Keywords: internet of things, irrigation system, wireless sensor and actuator network, ESP32, sustainability, water reuse, water efficiency

Procedia PDF Downloads 141
459 Accuracy Improvement of Traffic Participant Classification Using Millimeter-Wave Radar by Leveraging Simulator Based on Domain Adaptation

Authors: Tokihiko Akita, Seiichi Mita

Abstract:

A millimeter-wave radar is the most robust against adverse environments, making it an essential environment recognition sensor for automated driving. However, the reflection signal is sparse and unstable, so it is difficult to obtain the high recognition accuracy. Deep learning provides high accuracy even for them in recognition, but requires large scale datasets with ground truth. Specially, it takes a lot of cost to annotate for a millimeter-wave radar. For the solution, utilizing a simulator that can generate an annotated huge dataset is effective. Simulation of the radar is more difficult to match with real world data than camera image, and recognition by deep learning with higher-order features using the simulator causes further deviation. We have challenged to improve the accuracy of traffic participant classification by fusing simulator and real-world data with domain adaptation technique. Experimental results with the domain adaptation network created by us show that classification accuracy can be improved even with a few real-world data.

Keywords: millimeter-wave radar, object classification, deep learning, simulation, domain adaptation

Procedia PDF Downloads 86
458 Advanced Simulation and Enhancement for Distributed and Energy Efficient Scheduling for IEEE802.11s Wireless Enhanced Distributed Channel Access Networks

Authors: Fisayo G. Ojo, Shamala K. Subramaniam, Zuriati Ahmad Zukarnain

Abstract:

As technology is advancing and wireless applications are becoming dependable sources, while the physical layer of the applications are been embedded into tiny layer, so the more the problem on energy efficiency and consumption. This paper reviews works done in recent years in wireless applications and distributed computing, we discovered that applications are becoming dependable, and resource allocation sharing with other applications in distributed computing. Applications embedded in distributed system are suffering from power stability and efficiency. In the reviews, we also prove that discrete event simulation has been left behind untouched and not been adapted into distributed system as a simulation technique in scheduling of each event that took place in the development of distributed computing applications. We shed more lights on some researcher proposed techniques and results in our reviews to prove the unsatisfactory results, and to show that more work still have to be done on issues of energy efficiency in wireless applications, and congestion in distributed computing.

Keywords: discrete event simulation (DES), distributed computing, energy efficiency (EE), internet of things (IOT), quality of service (QOS), user equipment (UE), wireless mesh network (WMN), wireless sensor network (wsn), worldwide interoperability for microwave access x (WiMAX)

Procedia PDF Downloads 180
457 Testing of Complicated Bus Bar Protection Using Smart Testing Methodology

Authors: K. N. Dinesh Babu

Abstract:

In this paper, the protection of a complicated bus arrangement with a dual bus coupler and bus sectionalizer using low impedance differential protection applicable for very high voltages like 220kV and 400kV is discussed. In many power generation stations, several operational procedures are implemented to utilize the transfer bus as the main bus and to facilitate the maintenance of circuit breakers and current transformers (in each section) without shutting down the bay(s). Owing to this fact, the complications in operational philosophy have thrown challenges for the bus bar protection implementation. Many bus topologies allow any one of the main buses available in the station to be used as an auxiliary bus. In such a system, pre-defined precautions and procedures are made as guidelines, which are followed before assigning any bus as an auxiliary bus. The procedure involves shifting of links, changing rotary switches, insertion of test block, and so on, thereby causing unreliable operation. This kind of unreliable operation or inadvertent procedural lapse may result in the isolation of the bus bar from the grid due to the unpredictable operation of the bus bar protection relay, which is a commonly occurring phenomenon due to manual mistakes. With the sophisticated configuration and implementation of logic in modern intelligent electronic devices, the operator is free to select the transfer arrangement without sacrificing the protection required by a bus differential system for a reliable operation, and labor-intensive processes are completely eliminated. This paper deals with the procedure to test the security logic for such special scenarios using Megger make SMRT, bus bar protection relay to assure system stability and get rid of all the specific operational precautions/procedure.

Keywords: bus bar protection, by-pass isolator, blind spot, breaker failure, intelligent electronic device, end fault, bus unification, directional principle, zones of protection, breaker re-trip, under voltage security, smart megger relay tester

Procedia PDF Downloads 59
456 Determining the Width and Depths of Cut in Milling on the Basis of a Multi-Dexel Model

Authors: Jens Friedrich, Matthias A. Gebele, Armin Lechler, Alexander Verl

Abstract:

Chatter vibrations and process instabilities are the most important factors limiting the productivity of the milling process. Chatter can leads to damage of the tool, the part or the machine tool. Therefore, the estimation and prediction of the process stability is very important. The process stability depends on the spindle speed, the depth of cut and the width of cut. In milling, the process conditions are defined in the NC-program. While the spindle speed is directly coded in the NC-program, the depth and width of cut are unknown. This paper presents a new simulation based approach for the prediction of the depth and width of cut of a milling process. The prediction is based on a material removal simulation with an analytically represented tool shape and a multi-dexel approach for the work piece. The new calculation method allows the direct estimation of the depth and width of cut, which are the influencing parameters of the process stability, instead of the removed volume as existing approaches do. The knowledge can be used to predict the stability of new, unknown parts. Moreover with an additional vibration sensor, the stability lobe diagram of a milling process can be estimated and improved based on the estimated depth and width of cut.

Keywords: dexel, process stability, material removal, milling

Procedia PDF Downloads 514
455 Frank Norris’ McTeague: An Entropic Melodrama

Authors: Mohsen Masoomi, Fazel Asadi Amjad, Monireh Arvin

Abstract:

According to Naturalistic principles, human destiny in the form of blind chance and determinism, entraps the individual, so man is a defenceless creature unable to escape from the ruthless paws of a stoical universe. In Naturalism; nonetheless, melodrama mirrors a conscious alternative with a peculiar function. A typical American Naturalistic character thus cannot be a subject for social criticism of American society since they are not victims of the ongoing virtual slavery, capitalist system, nor of a ruined milieu, but of their own volition, and more importantly, their character frailty. Through a Postmodern viewpoint, each Naturalistic work can encompass some entropic trends and changes culminating in an entire failure and devastation. Frank Norris in McTeague displays the futile struggles of ordinary men and how they end up brutes. McTeague encompasses intoxication, abuse, violation, and ruthless homicides. Norris’ depictions of the falling individual as a demon represent the entropic dimension of Naturalistic novels. McTeague’s defeat is somewhat his own fault, the result of his own blunders and resolution, not the result of sheer accident. Throughout the novel, each character is a kind of insane quester indicating McTeague’s decadence and, by inference, the decadence of Western civilisation. McTeague seems to designate Norris’ solicitude for a community fabricated by the elements of human negative demeanours and conducts hauling acute symptoms of infectious dehumanisation. The aim of this article is to illustrate how one specific negative human disposition gradually, like a running fire, can spread everywhere and burn everything in itself. The author applies the concept of entropy metaphorically to describe the individual devolutions that necessarily comprise community entropy in McTeague, a dying universe.

Keywords: animal imagery, entropy, Gypsy, melodrama

Procedia PDF Downloads 268
454 Prototype Development of ARM-7 Based Embedded Controller for Packaging Machine

Authors: Jeelka Ray

Abstract:

Survey of the papers revealed that there is no practical design available for packaging machine based on Embedded system, so the need arose for the development of the prototype model. In this paper, author has worked on the development of an ARM7 based Embedded Controller for controlling the sequence of packaging machine. The unit is made user friendly with TFT and Touch Screen implementing human machine interface (HMI). The different system components are briefly discussed, followed by a description of the overall design. The major functions which involve bag forming, sealing temperature control, fault detection, alarm, animated view on the home screen when the machine is working as per different parameters set makes the machine performance more successful. LPC2478 ARM 7 Embedded Microcontroller controls the coordination of individual control function modules. In back gone days, these machines were manufactured with mechanical fittings. Later on, the electronic system replaced them. With the help of ongoing technologies, these mechanical systems were controlled electronically using Microprocessors. These became the backbone of the system which became a cause for the updating technologies in which the control was handed over to the Microcontrollers with Servo drives for accurate positioning of the material. This helped to maintain the quality of the products. Including all, RS 485 MODBUS Communication technology is used for synchronizing AC Drive & Servo Drive. These all concepts are operated either manually or through a Graphical User Interface. Automatic tuning of heaters, sealers and their temperature is controlled using Proportional, Integral and Derivation loops. In the upcoming latest technological world, the practical implementation of the above mentioned concepts is really important to be in the user friendly environment. Real time model is implemented and tested on the actual machine and received fruitful results.

Keywords: packaging machine, embedded system, ARM 7, micro controller, HMI, TFT, touch screen, PID

Procedia PDF Downloads 263
453 SPR Immunosensor for the Detection of Staphylococcus aureus

Authors: Muhammad Ali Syed, Arshad Saleem Bhatti, Chen-zhong Li, Habib Ali Bokhari

Abstract:

Surface plasmon resonance (SPR) biosensors have emerged as a promising technique for bioanalysis as well as microbial detection and identification. Real time, sensitive, cost effective, and label free detection of biomolecules from complex samples is required for early and accurate diagnosis of infectious diseases. Like many other types of optical techniques, SPR biosensors may also be successfully utilized for microbial detection for accurate, point of care, and rapid results. In the present study, we have utilized a commercially available automated SPR biosensor of BI company to study the microbial detection form water samples spiked with different concentration of Staphylococcus aureus bacterial cells. The gold thin film sensor surface was functionalized to react with proteins such as protein G, which was used for directed immobilization of monoclonal antibodies against Staphylococcus aureus. The results of our work reveal that this immunosensor can be used to detect very small number of bacterial cells with higher sensitivity and specificity. In our case 10^3 cells/ml of water have been successfully detected. Therefore, it may be concluded that this technique has a strong potential to be used in microbial detection and identification.

Keywords: surface plasmon resonance (SPR), Staphylococcus aureus, biosensors, microbial detection

Procedia PDF Downloads 464
452 Validating Condition-Based Maintenance Algorithms through Simulation

Authors: Marcel Chevalier, Léo Dupont, Sylvain Marié, Frédérique Roffet, Elena Stolyarova, William Templier, Costin Vasile

Abstract:

Industrial end-users are currently facing an increasing need to reduce the risk of unexpected failures and optimize their maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric, we tackle those two issues using both machine learning and first principles models. Machine learning models are incrementally trained from normal data to predict expected values and detect statistically significant short-term deviations. Ageing models are constructed by breaking down physical systems into sub-assemblies, then determining relevant degradation modes and associating each one to the right kinetic law. Validating such anomaly detection and maintenance models is challenging, both because actual incident and ageing data are rare and distorted by human interventions, and incremental learning depends on human feedback. To overcome these difficulties, we propose to simulate physics, systems, and humans -including asset maintenance operations- in order to validate the overall approaches in accelerated time and possibly choose between algorithmic alternatives.

Keywords: degradation models, ageing, anomaly detection, soft sensor, incremental learning

Procedia PDF Downloads 119
451 Paleogene Syn-Rift Play Identification in Palembang Sub-Basin, South Sumatera, Indonesia

Authors: Perdana Rakhmana Putra, Hansen Wijaya, Sri Budiyani, Muhamad Natsir, Alexis badai Samudra

Abstract:

The Palembang Sub-Basin (PSB) located in southern part of South Sumatera basin (SSB) consist of half-graben complex trending N-S to NW-SE. These geometries are believe as an impact of strike-slip regime developed in Eocene-Oligocene. Generally, most of the wells in this area produced hydrocarbon from late stage of syn-rift sequences called Lower Talang Akar (LTAF) and post-rift sequences called Batu Raja Formation (BRF) and drilled to proved hydrocarbon on structural trap; three-way dip anticline, four-way dip anticline, dissected anticline, and stratigraphy trap; carbonate build-up and stratigraphic pinch out. Only a few wells reached the deeper syn-rift sequences called Lahat Formation (LAF) and Lemat Formation (LEF). The new interpretation of subsurface data was done by the tectonostratigraphy concept and focusing on syn-rift sequence. Base on seismic characteristic on basin centre, it divided into four sequences: pre-rift sequence, rift initiation, maximum rift and late rift. These sequences believed as a new exploration target on PSB mature basin. This paper will demonstrate the paleo depositional setting during Paleogene and exploration play concept of syn-rift sequence in PSB. The main play for this area consists of stratigraphic and structure play, where the stratigraphic play is Eocene-Oligocene sediment consist of LAF sandstone, LEF-Benakat formation, and LAF with pinch-out geometry. The pinch-out, lenses geometry and on-lap features can be seen on the seismic reflector and formed at the time of the syn-rift sequence. The structural play is dominated by a 3 Way Dip play related to reverse fault trap.

Keywords: syn-rift, tectono-stratigraphy, exploration play, basin center play, south sumatera basin

Procedia PDF Downloads 184
450 Real-Time Mine Safety System with the Internet of Things

Authors: Şakir Bingöl, Bayram İslamoğlu, Ebubekir Furkan Tepeli, Fatih Mehmet Karakule, Fatih Küçük, Merve Sena Arpacık, Mustafa Taha Kabar, Muhammet Metin Molak, Osman Emre Turan, Ömer Faruk Yesir, Sıla İnanır

Abstract:

This study introduces an IoT-based real-time safety system for mining, addressing global safety challenges. The wearable device, seamlessly integrated into miners' jackets, employs LoRa technology for communication and offers real-time monitoring of vital health and environmental data. Unique features include an LCD panel for immediate information display and sound-based location tracking for emergency response. The methodology involves sensor integration, data transmission, and ethical testing. Validation confirms the system's effectiveness in diverse mining scenarios. The study calls for ongoing research to adapt the system to different mining contexts, emphasizing its potential to significantly enhance safety standards in the industry.

Keywords: mining safety, internet of things, wearable technology, LoRa, RFID tracking, real-time safety system, safety alerts, safety measures

Procedia PDF Downloads 50
449 Research on Sensing Performance of Polyimide-Based Composite Materials

Authors: Rui Zhao, Dongxu Zhang, Min Wan

Abstract:

Composite materials are widely used in the fields of aviation, aerospace, and transportation due to their lightweight and high strength. Functionalization of composite structures is a hot topic in the future development of composite materials. This article proposed a polyimide-resin based composite material with a sensing function. This material can serve as a sensor to achieve deformation monitoring of metal sheets in room temperature environments. In the deformation process of metal sheets, the slope of the linear fitting line for the corresponding material resistance change rate is different in the elastic stage and the plastic strengthening stage. Therefore, the slope of the material resistance change rate can be used to characterize the deformation stage of the metal sheet. In addition, the resistance change rate of the material exhibited a good negative linear relationship with temperature in a high-temperature environment, and the determination coefficient of the linear fitting line for the change rate of material resistance in the range of 520-650℃ was 0.99. These results indicate that the material has the potential to be applied in the monitoring of mechanical properties of structural materials and temperature monitoring of high-temperature environments.

Keywords: polyimide, composite, sensing, resistance change rate

Procedia PDF Downloads 68
448 Estimating Leaf Area and Biomass of Wheat Using UAS Multispectral Remote Sensing

Authors: Jackson Parker Galvan, Wenxuan Guo

Abstract:

Unmanned aerial vehicle (UAV) technology is being increasingly adopted in high-throughput plant phenotyping for applications in plant breeding and precision agriculture. Winter wheat is an important cover crop for reducing soil erosion and protecting the environment in the Southern High Plains. Efficiently quantifying plant leaf area and biomass provides critical information for producers to practice site-specific management of crop inputs, such as water and fertilizers. The objective of this study was to estimate wheat biomass and leaf area index using UAV images. This study was conducted in an irrigated field in Garza County, Texas. High-resolution images were acquired on three dates (February 18, March 25, and May 15th ) using a multispectral sensor onboard a Matrice 600 UAV. On each data of image acquisition, 10 random plant samples were collected and measured for biomass and leaf area. Images were stitched using Pix4D, and ArcGIS was applied to overlay sampling locations and derive data for sampling locations.

Keywords: precision agriculture, UAV plant phenotyping, biomass, leaf area index, winter wheat, southern high plains

Procedia PDF Downloads 90
447 Noninvasive Continuous Glucose Monitoring Device Using a Photon-Assisted Tunneling Photodetector Based on a Quantum Metal-Oxide-Semiconductor

Authors: Wannakorn Sangthongngam, Melissa Huerta, Jaewoo Kim, Doyeon Kim

Abstract:

Continuous glucose monitoring systems are essential for diabetics to avoid health complications but come at a costly price, especially when insurance does not fully cover the diabetic testing kits needed. This paper proposes a noninvasive continuous glucose monitoring system to provide an accessible, low-cost, and painless alternative method of accurate glucose measurements to help improve quality of life. Using a light source with a wavelength of 850nm illuminates the fingertip for the photodetector to detect the transmitted light. Utilizing SeeDevice’s photon-assisted tunneling photodetector (PAT-PD)-based QMOS™ sensor, fluctuations of voltage based on photon absorption in blood cells are comparable to traditional glucose measurements. The performance of the proposed method was validated using 4 test participants’ transmitted voltage readings compared with measurements obtained from the Accu-Chek glucometer. The proposed method was able to successfully measure concentrations from linear regression calculations.

Keywords: continuous glucose monitoring, non-invasive continuous glucose monitoring, NIR, photon-assisted tunneling photodetector, QMOS™, wearable device

Procedia PDF Downloads 80
446 Mapping Feature Models to Code Using a Reference Architecture: A Case Study

Authors: Karam Ignaim, Joao M. Fernandes, Andre L. Ferreira

Abstract:

Mapping the artifacts coming from a set of similar products family developed in an ad-hoc manner to make up the resulting software product line (SPL) plays a key role to maintain the consistency between requirements and code. This paper presents a feature mapping approach that focuses on tracing the artifact coming from the migration process, the current feature model (FM), to the other artifacts of the resulting SPL, the reference architecture, and code. Thus, our approach relates each feature of the current FM to its locations in the implementation code, using the reference architecture as an intermediate artifact (as a centric point) to preserve consistency among them during an SPL evolution. The approach uses a particular artifact (i.e., traceability tree) as a solution for managing the mapping process. Tool support is provided using friendlyMapper. We have evaluated the feature mapping approach and tool support by putting the approach into practice (i.e., conducting a case study) of the automotive domain for Classical Sensor Variants Family at Bosch Car Multimedia S.A. The evaluation reveals that the mapping approach presented by this paper fits the automotive domain.

Keywords: feature location, feature models, mapping, software product lines, traceability

Procedia PDF Downloads 113
445 CRYPTO COPYCAT: A Fashion Centric Blockchain Framework for Eliminating Fashion Infringement

Authors: Magdi Elmessiry, Adel Elmessiry

Abstract:

The fashion industry represents a significant portion of the global gross domestic product, however, it is plagued by cheap imitators that infringe on the trademarks which destroys the fashion industry's hard work and investment. While eventually the copycats would be found and stopped, the damage has already been done, sales are missed and direct and indirect jobs are lost. The infringer thrives on two main facts: the time it takes to discover them and the lack of tracking technologies that can help the consumer distinguish them. Blockchain technology is a new emerging technology that provides a distributed encrypted immutable and fault resistant ledger. Blockchain presents a ripe technology to resolve the infringement epidemic facing the fashion industry. The significance of the study is that a new approach leveraging the state of the art blockchain technology coupled with artificial intelligence is used to create a framework addressing the fashion infringement problem. It transforms the current focus on legal enforcement, which is difficult at best, to consumer awareness that is far more effective. The framework, Crypto CopyCat, creates an immutable digital asset representing the actual product to empower the customer with a near real time query system. This combination emphasizes the consumer's awareness and appreciation of the product's authenticity, while provides real time feedback to the producer regarding the fake replicas. The main findings of this study are that implementing this approach can delay the fake product penetration of the original product market, thus allowing the original product the time to take advantage of the market. The shift in the fake adoption results in reduced returns, which impedes the copycat market and moves the emphasis to the original product innovation.

Keywords: fashion, infringement, blockchain, artificial intelligence, textiles supply chain

Procedia PDF Downloads 251
444 The Effect of Diapirs on the Geometry and Evolution of the Ait Ourir Basin, High Atlas Mountains of Marrakesh, Morocco

Authors: Hadach Fatiha, Algouti Ahmed, Algouti Abdellah, Jdaba Naji, Es-Sarrar Othman, Mourabit Zahra

Abstract:

This paper investigates the structure and evolution of diapirism in the Ait Ourir basin, located in the High Atlas of Marrakesh, using structural and sedimentological fieldwork integrated with field mapping. A tectonic-sedimentological study of the Mesozoic cover of the Ait Ourir basin area revealed that these units were subjected to important saccadic halokinetic activity, reflected by anticline structures associated with regional faults that created several synclinal mini-basins. However, the lack of seismic coverage in the study area makes the proposed interpretation based on extrapolations of information observed on the surface. In this work, we suggest that faults and salt activity led to the formation of different structures within the studied area. The growth of the Triassic evaporites at different stages during the Mesozoic is reflected by progressive and local unconformities, recorded as having different ages. These structures created high diapiric zones with reduced sedimentation, showing abrupt lateral thickness variations in several places where this activity was occurring; this is clearly defined within the Wanina and Jbel Sour’s mini-basins, where the Senonian was observed to rest at an angular unconformity over the entire sedimentary cover encompassing the time period from the Liassic to the Turonian. The diapirism associated with the major faults, especially encountered between the basins, is often accompanied by late Triassic volcanic material. This diapir-fault relationship resulted in shallow and often depocentric zones in a pull-apart system within a distensive context.

Keywords: diapir, evaporites, faults, pull-apart, Mesozoic cover, Ait Ourir, western High Atlas, Morocco

Procedia PDF Downloads 61
443 Some Codes for Variants in Graphs

Authors: Sofia Ait Bouazza

Abstract:

We consider the problem of finding a minimum identifying code in a graph. This problem was initially introduced in 1998 and has been since fundamentally connected to a wide range of applications (fault diagnosis, location detection …). Suppose we have a building into which we need to place fire alarms. Suppose each alarm is designed so that it can detect any fire that starts either in the room in which it is located or in any room that shares a doorway with the room. We want to detect any fire that may occur or use the alarms which are sounding to not only to not only detect any fire but be able to tell exactly where the fire is located in the building. For reasons of cost, we want to use as few alarms as necessary. The first problem involves finding a minimum domination set of a graph. If the alarms are three state alarms capable of distinguishing between a fire in the same room as the alarm and a fire in an adjacent room, we are trying to find a minimum locating domination set. If the alarms are two state alarms that can only sound if there is a fire somewhere nearby, we are looking for a differentiating domination set of a graph. These three areas are the subject of much active research; we primarily focus on the third problem. An identifying code of a graph G is a dominating set C such that every vertex x of G is distinguished from other vertices by the set of vertices in C that are at distance at most r≥1 from x. When only vertices out of the code are asked to be identified, we get the related concept of a locating dominating set. The problem of finding an identifying code (resp a locating dominating code) of minimum size is a NP-hard problem, even when the input graph belongs to a number of specific graph classes. Therefore, we study this problem in some restricted classes of undirected graphs like split graph, line graph and path in a directed graph. Then we present some results on the identifying code by giving an exact value of upper total locating domination and a total 2-identifying code in directed and undirected graph. Moreover we determine exact values of locating dominating code and edge identifying code of thin headless spider and locating dominating code of complete suns.

Keywords: identiying codes, locating dominating set, split graphs, thin headless spider

Procedia PDF Downloads 468
442 A Research Using Remote Monitoring Technology for Pump Output Monitoring in Distributed Fuel Stations in Nigeria

Authors: Ofoegbu Ositadinma Edward

Abstract:

This research paper discusses a web based monitoring system that enables effective monitoring of fuel pump output and sales volume from distributed fuel stations under the domain of a single company/organization. The traditional method of operation by these organizations in Nigeria is non-automated and accounting for dispensed product is usually approximated and manual as there is little or no technology implemented to presently provide information relating to the state of affairs in the station both to on-ground staff and to supervisory staff that are not physically present in the station. This results in unaccountable losses in product and revenue as well as slow decision making. Remote monitoring technology as a vast research field with numerous application areas incorporating various data collation techniques and sensor networks can be applied to provide information relating to fuel pump status in distributed fuel stations reliably. Thus, the proposed system relies upon a microcontroller, keypad and pump to demonstrate the traditional fuel dispenser. A web-enabled PC with an accompanying graphic user interface (GUI) was designed using virtual basic which is connected to the microcontroller via the serial port which is to provide the web implementation.

Keywords: fuel pump, microcontroller, GUI, web

Procedia PDF Downloads 424
441 Immobilization of Cobalt Ions on F-Multi-Wall Carbon Nanotubes-Chitosan Thin Film: Preparation and Application for Paracetamol Detection

Authors: Shamima Akhter, Samira Bagheri, M. Shalauddin, Wan Jefrey Basirun

Abstract:

In the present study, a nanocomposite of f-MWCNTs-Chitosan was prepared by the immobilization of Co(II) transition metal through self-assembly method and used for the simultaneous voltammetric determination of paracetamol (PA). The composite material was characterized by field emission scanning electron microscopy (FESEM) and energy dispersive X-Ray analysis (EDX). The electroactivity of cobalt immobilized f-MWCNTs with excellent adsorptive polymer chitosan was assessed during the electro-oxidation of paracetamol. The resulting GCE modified f-MWCNTs/CTS-Co showed electrocatalytic activity towards the oxidation of PA. The electrochemical performances were investigated using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and differential pulse voltammetry (DPV) methods. Under favorable experimental conditions, differential pulse voltammetry showed a linear dynamic range for paracetamol solution in the range of 0.1 to 400µmol L⁻¹ with a detection limit of 0.01 µmol L⁻¹. The proposed sensor exhibited significant selectivity for the paracetamol detection. The proposed method was successfully applied for the determination of paracetamol in commercial tablets and human serum sample.

Keywords: nanomaterials, paracetamol, electrochemical technique, multi-wall carbon nanotube

Procedia PDF Downloads 197